
Enabling Cross-Language Data Integration and
Scalable Analytics in Decentralized Finance

Conor Flynn
Electrical and Computer Systems Engineering

Rensselaer Polytechnic Institute
Troy, United States of America

flynnc3@rpi.edu

Kristin P. Bennett
Mathematical and Computer Sciences

Rensselaer Polytechnic Institute
Troy, United States of America

bennek@rpi.edu

John S. Erickson
Future of Computing Institute
Rensselaer Polytechnic Institute
Troy, United States of America

erickj4@rpi.edu

Aaron Green
Mathematical Sciences

Rensselaer Polytechnic Institute
Troy, United States of America

greena12@rpi.edu

Oshani Seneviratne
Computer Science

Rensselaer Polytechnic Institute
Troy, United States of America

senevo@rpi.edu

Abstract—With the agile development process of most aca-
demic and corporate entities, designing a robust computational
back-end system that can support their ever-changing data needs
is a constantly evolving challenge. We propose the implementation
of a data and language-agnostic system design that handles
different data schemes and sources while subsequently providing
researchers and developers a way to connect to it that is
supported by a vast majority of programming languages. To
validate the efficacy of a system with this proposed architecture,
we integrate various data sources throughout the decentralized
finance (DeFi) space, specifically from DeFi lending protocols,
retrieving tens of millions of data points to perform analytics
through this system. We then access and process the retrieved
data through several different programming languages (R-Lang,
Python, and Java). Finally, we analyze the performance of the
proposed architecture in relation to other high-performance
systems and explore how this system performs under a high
computational load.

Index Terms—Sockets, Database management, Multi-user
channels

I. INTRODUCTION

Designing a robust computational back-end system poses
a series of challenges many software engineers face daily.
Languages all offer a variety of functionality, each with
its benefits and drawbacks, causing developers to select a
primary language based on the specifications of the project
[1]. However, the selection of this language is often pivotal, as
it determines not only the set of tools at a developer’s disposal
but often the ability to scale a system outside of its original
confines.

Applications revolving around the transferring, storing, and
processing of big data have been evermore prevalent as well.
Although the retrieval of the data may be standardized to a
certain degree through means such as OpenAPI standardization
and Javascript Object Notation (JSON) formatting, the data
being transmitted is not [2] [3]. Often this passed data has
nested values (in the case of JSON, such as having JSON
objects and JSON arrays), different primitive object types, and

varying subsequent request mannerisms, all of which account
for increased system complexity and the potential for over-
engineering solutions [4] [5] [6] [7].

From this, we define a problem that exists in both educa-
tional and business domains, being the lack of heterogeneity
in data sets as well as the inability to expand upon a system
in a practical manner. In this paper, we discuss the imple-
mentation and deployment of a system that accounts for these
discrepancies between data sources and languages, resulting in
a high-performance back-end solution for standardizing data
transmission and storage between multiple data sources and
user applications. We also analyze the underlying architecture
of the system and how it can be independently utilized to
create scalable solutions, how it is used in our application, and
what it means for the system’s architecture moving forward.

Based on these claims, we propose a solution called the
”Decentralized Finance Data Engine,” (DFDE) which uti-
lizes the proposed system architecture. Decentralized Finance
(DeFi) is a ”new breed of consumer-facing financial applica-
tions composed as smart contracts, deployed on permission-
less blockchain technologies” [8]. The architecture includes
features such as multi-tenant architecture with asynchronous
actions, programming language agnostic connections, and sup-
port for multiple data sources within the DeFi space focusing
on different lending protocols such as the AAVE protocol [9]
[10]. This implementation is then used in an educational lab
setting, where researchers can easily pull and manipulate this
data to expedite their work.

To introduce this work, we first cover related works with
similar purposes followed by the relevancy of such a system
and why it is beneficial to these different entities. Following
this, we introduce the underlying architecture the DFDE is
based on and analyze the performance of the design. Next
we review proposed solutions for the internal and external
connections such an implementation requires. Finally, we
review the DFDE’s architecture as a whole, how the different

ar
X

iv
:2

31
1.

02
27

2v
1 

 [
cs

.D
C

] 
 3

 N
ov

 2
02

3



processes within it interact, and the applications it is used for.

II. RELATED WORK

Although this system proposes several improvements to the
interoperability of systems and their transfer of data both
internally and externally, one should recognize the existing de-
velopments in this area; primarily concerning the Application
Programming Interface (API) specifications/protocols [11].

When regarding APIs and the manners to transfer data,
almost all designs will fall under a specific API specifi-
cation using either Remote Procedure Call (RPC), Service
Object Access Protocol (SOAP), Representational State Trans-
fer (REST), gRPC, or GraphQL. In this paper, we explore
implementations using REST and GraphQL protocols.

A REST API refers to an API that follows six architec-
tural constraints: uniform interface, stateless, cacheable, client-
server, layered system, and code on demand [12]. REST
APIs are commonly used for create, read, update, and delete
(CRUD) operations on remote systems, which is why they are
primarily used for exposing server data to external clients [13].

GraphQL acts as a query language for APIs [11]. It allows
users to specify the exact data needed from the source and
then retrieve it in one call to the API. This approach aims to
save both time and computational resources for the client and
server and is adopted in scenarios requiring large amounts of
data to be transferred.

RapidAPI [14] aims to generalize API calls through the use
of a query language, similar to that of SQL and GraphQL,
for the easy retrieval of data from an external source [15].
Similar to the proposed implementation, RapidAPI allows for
MongoDB integration and connection as well as the caching
of previously called data. Although very similar in usage to
the proposed sample application, referenced in section IX-A,
there are some key differences.

The primary difference is how the system communicates
with end users. RapidAPI features a query language for users
to specify explicit instructions which their system interprets
[16]. Although great for the necessary applications, developers
cannot easily expand the system or use it for other capabilities,
which are extrapolated upon in the Routing Architecture
section. Its usage also revolves around a query language,
which may not be language agnostic as using something low-
level such as Sockets [17]. Finally, their requesting system is
much more specific than the proposed implementation. This
has benefits, such as being able to request data in a more
specific manner, while also having its limitations, such as more
specifications being required when executing a call. It cannot
also perform recursive API calls automatically, requiring that
handling be done on the user’s end.

III. RELEVANCY

Before analyzing the underlying architecture of the DFDE
and its processes, one must understand the relevancy of such
a system and the problems to which it can be applied. Pri-
marily, the DFDE aims to resolve problems in relation to API
design; however, these questions can be expanded upon to any

form of data transfer. As Lindman states regarding business,
architecture, process, and organization (BAPO) perspectives:

The main concern of this perspective is to investigate
the technical issues associated with API design and
development, similar to the API layer presented
but from a broader perspective (architecture of the
interacting systems as opposed to API design).
Questions to ask include: How does one manage
API versioning (e.g., side-by-side deployment of
different versions)? How does one design APIs for
an extension? How does one check the backward
compatibility of APIs between different versions?
[18]

This gives insight into the troubles faced by researchers
regarding designing APIs (or any outward-facing programs).
However, the DFDE offers a solution to many of these posed
questions.

Firstly regarding versioning and backward compatibility, the
DFDE does inherently hold backward compatibility function-
alities so long as the underlying Router structure and con-
nection mechanisms are not modified. Processes may change.
However, unlike APIs, where the structuring of data, endpoint
connection, and parameters may change, the DFDE’s internal
calling to external APIs will always remain consistent. The
only inconsistency that may be present is an external data
provider’s API connection may change, causing the DFDE’s
internal storage of data and the outward-facing connection to
be incorrect, requiring manual maintenance by the user of
the DFDE to fix the connection. This makes it so researchers
have to make minimal changes to their existing applications
using the DFDE, allowing for minimal obstruction to the lab’s
workflow with any sudden pivots in the focal research topic.

Similarly, extensions to the DFDE can be made easy thanks
to the Router design. With the only internal modification
requirement being connecting the new Router(s) to the rest
of the system, there is not much else a programmer has to
do to expand upon the DFDE. To access the new Router(s)
and sub-tag(s), users simply have to specify their location
when submitting requests. All internal processes are modular,
making future updates easy. With this, any students working
on a project irrespective of being an original developer can
easily add their own components to the DFDE.

Finally, due to the data-agnostic designs of the DFDE,
new data sets can be easily parsed, stored, and analyzed
by researchers. The language-agnostic design also allows
students to work in their preferred languages, increasing their
productivity and the efficacy of their work while helping to
reduce the friction in learning a new language [19]. This allows
for the usage of such a system in a classroom setting as is
currently being done with the proposed application of the
DFDE, allowing students to explore material outside of the
confines of the course.

IV. ROUTING ARCHITECTURE

This section describes the internal data routing architecture
of the DFDE, on which all processes are inherited.



A. Overview

To design a language and data-agnostic system, a highly
versatile and robust architecture was needed. Therefore the
proposed architecture is modeled after a network consisting
of Routers and Packets, with different Packets of data being
able to be transmitted freely between the connected Routers
[20]. We use fig. 1 to give a visual of the routing architecture.

Fig. 1. Routing Architecture

B. Managers

Managers are the primary link between all Routers, with
each Router sharing the same Manager. All Routers within
a manager are stored using a HashMap, with the key being
the unique ”Tag” of a Router and the value being the Router
object itself [21]. This way, there is a fast connection when
two Routers are trying to communicate, as a HashMap uses
constant time when accessing information [22].

Managers also are ”intelligent” objects recognizing when
two groups of Routers, each with a different Manager, connect.
In such cases, they will override all of the Routers to have the
same Manager so that constant run-time is retained. Managers
also handle all edge case connections, such as duplicate
connections, disconnections, and threaded processes [23].

C. Routers

Routers are the interactive endpoints for all processes. They
contain standardized functions that allow for easy connection
and communication with other Routers. Each Router has a
”Tag,” which is a unique String identifier so a Manager can
recognize it and properly route Packets to it [24]. Routers also
consist of processes, all denoted by a unique String called a
”Sub-Tag” for proper Packet transit within the Router. Each
process is a defined method that returns a Response containing
specific information regarding the call [25].

Similar to Managers, Routers also contain ”intelligent”
capabilities such as the ability to: recognize specifically for-
matted methods as process functions (with unique identifiers),
send Packets to these requested functions, and recognize any

formatting errors when defining these functions during the
initial run-time compilation. To accomplish some of these
functionalities, the architecture uses a feature of the Java
language called Reflection, which allows for the Java program
to analyze the code on which it is running and perform actions
accordingly [26], [27].

D. Packets

Packets are lightweight objects comprised of four main
pieces of information: the sender, the receiver (referred to as
the ”Tag”), the process (referred to as the ”Sub-Tag”), and all
internal data [28]. The sender, Tag, and Sub-Tag are all listed
as Strings, whereas the data is stored as a HashMap (with both
the key and values being Strings) [24] [21].

Each call to a Router’s process then returns a Response.
Responses contain information regarding the call’s outcome
and are comprised of a response code, a message, and op-
tional return data. The response code is a predefined integer
representing a specific outcome (commonly following the
OpenAPI HTTP Status Code standard) [6], [29]. The message
is also predefined and is a String corresponding to the returned
response code, giving more insight into the response of the
code. Finally, the data refers to any optional data requested
by the Packet that may need to be returned. Although the data
is returned as a String, it can be cast into any needed data
type by the requesting process [30].

E. Review

When using this architecture in the implementation and
design of a large system, several benefits and drawbacks can
be found, with their severity on the implementation varying
based on the requirements.

Benefits include the easy scalability of the system, the gen-
eralized data flow, and the performance, later discussed in the
section V section. When designing new systems, developers
may often specify the system to the current needs, not fore-
seeing future updates and improvements. This often creates
a very rigid programming schema, requiring developers to
spend more time when making these updates. The architecture
proposed in this paper solves this problem, allowing for the
easy implementation and addition of new components without
requiring explicit modification to existing regions. Similarly,
this generalized data flow allows for easy communication
between different sections of the system, making any changes
easy to implement. Added latency is also very minimal,
making it a very strong contender on time-sensitive programs.

The primary drawback of this architecture is the generalized
data flow, specifically the casting required to transmit infor-
mation. Since all data is passed as a string, it may often be
challenging to communicate complex objects between portions
of the system. A solution to this could be to create the Packets
using an Object value rather than a String. However,
further checks would need to be done to ensure the safety
of casting the object [31].



V. PERFORMANCE ANALYSIS

This section discusses the performance of the proposed
routing architecture and how one should interpret the results.

A. Experimental Setup
Hardware: The environment used contains a single Intel(R)

i9-12900KF processor with 16 cores, in which each core runs
at 3.187 GHz and 64GB of memory.

Software: The environment is using Microsoft Windows 10
Pro version 10.0.19045 Build 19045 as an operating system.
The programming language Java is used to run the tests, using
Java 20.0.1, build 20.0.1+9-29.

B. Overview
To analyze the performance of the proposed architecture, we

test the rate at which two Routers can submit packets of data to
one another. To accomplish this, we send a packet containing
some information to a sample protocol on a connected Router.
We then analyze the time it takes for that packet to reach the
Router and for a response to be received. Once received, we
send another packet and repeat the cycle for 10 seconds until
the run is up. We then average the packets sent per second
over these 10 seconds to determine the performance.

We also analyze the maximum capacity of the architecture
through threading, calculating how many packets can be sent
asynchronously. To understand how threading affects perfor-
mance, we begin with a singularly threaded test and increase
the number of threads by a factor of 10 until we reach 90
concurrent threads.

C. Analysis
We first review the performance of each thread regarding the

number of packets being sent. As seen by fig. 2. There is a sig-
nificant drop in performance between 1 and 10 threads, which
is to be expected. However, this degradation in performance
becomes more minimal as more threads are used. From this,
we can determine the time it takes for a packet to be sent and
received by dividing the number of nanoseconds per second
(1 billion) by the number of packets sent per second. This
tells us that it takes 218.78ns to send a packet within a single
thread versus 4835.81ns to send a packet when 90 threads are
running concurrently.

Although this drop in performance is very large, we can
also extrapolate the total number of packets being sent per
second. To do this, we take the current number of packets sent
per second and multiply it by the number of threads actively
running. As seen in fig. 3, although the speed at which packets
are sent is greatly reduced, the number of overall packets being
sent is greatly increased, with 90 threads handling over 4 times
the number of packets as a single thread.

From this, we can see the trade-off of performance versus
capacity. Should a system need fast interactions between
processes, it may opt to limit the number of threads so that
performance is retained. Likewise, if an application relies
on transmitting large quantities of information with minimal
emphasis on time, it may choose to operate with a large
number of threads.

Fig. 2. Packets Sent Per Second Per Thread

Fig. 3. Packets Sent Per Second Across All Active Threads

VI. INTERNAL STORAGE

This section covers all internal architecture relating to the
processing, storage, and retrieval of all agnostic data handled
by the DFDE.

A. Data Schema

Standardizing a database with no context of the incoming
data is certainly challenging. To solve this problem, we rely
on the preliminary condition of the data being structured
properly before the DFDE interprets it. The required format
is JSON, a lightweight, text-based, language-independent data
interchange format [3]. From this, it can be easily converted
into Binary JSON (BSON) so the MongoDB can properly
process the data points [32]. Through the use of recursion,
we can easily extract information embedded within the calls
and use it if necessary [33]. Use cases include recursive calls
to endpoints, extracting storage information, and fast data
filtering.

B. Collection Management

To house the formatted data points, MongoDB relies on
Collections [34]. Collections are groups of data points stored



under a common name, which a database can easily access.
This includes two primary components: the request name and
date (should the data be dated). Request names are required
to be unique on initialization, with the DFDE checking each
request for uniqueness. This unique name allows for consis-
tency within the DFDE, allowing for calls to be validated if
the data has already been received or not. For dated data, the
naming schema changes slightly. Rather than just being the
unique name passed, it will also include the date to be stored
in the format: name-yyyy-MM-dd with the year, month, and
day following the standardized ”Formatting and parsing date-
time patterns” [35]. Although this schema is trivial, it allows
for a variety of functionality which will be further expanded
upon in later sections.

C. Review

There are many benefits to using a data-agnostic system
such as the DFDE, as described above, which include easy
accessibility, reduction of latency, and credential obfuscation.
Easy accessibility refers to the availability of the data to both
users operating with the external protocols mentioned later as
well as to users directly interacting with the MongoDB [36].
Reduced latency refers to the reduction of calls to external data
sources since called data is cached and stored for subsequent
calls. Finally, credential obfuscation means that one user can
request data using an API key and subsequent calls to retrieve
the data without requiring the key, as the data is already cached
and stored properly.

VII. EXTERNAL DATA CONNECTIONS

This section covers all external connections to data sources
outside the scope of the DFDE. This includes but is not limited
to, external REST APIs, WebSockets, and Web3 connections
[37]–[39].

A. Abstract Connections

Designing a system to account for every existing type of
available endpoint is nearly impossible. Between different
endpoint schemes used by companies, the types of connections
offered (such as REST APIs and WebSockets), and the data
returned by these endpoints, a system would have to be
needlessly over-engineered, defeating the purpose of a high-
frequency data transferring system.

To counter this issue, we implemented generic and com-
monly used protocols while also leaving the DFDE open to
abstraction for further development. This way, should the in-
tegrated solutions not be suited for a given project, developers
can easily integrate their own abstract endpoints with the
required specifications.

B. Configuration

Before designing a system to cater to these different data
sources, we first need to comprise a way for the DFDE to
easily interpret new endpoints. This can be achieved through
the usage of properties files, which are files that contain spe-
cific key-value pairs able to be read by the DFDE. By creating

a directory that houses these different configuration files, the
DFDE can load them on initialization and recognize/handle
incoming requests.

C. REST APIs

The primary generalized architecture supports external calls
to REST APIs [37]. REST APIs consist of several different
properties, primarily: a Uniform Resource Locator (URL),
properties defined after the URL, and headers to specify
specific underlying properties not passed within the URL [40].
There are also edge cases, such as URLs having a unique path
differing from the one specified, which the DFDE must also
account for. To handle these different cases and information
required, we have variables within the properties files such as
url.base, url.properties, and url.headers which
will properly translate the passed requests into the proper
REST API calls necessary to retrieve information.

Other information can be necessary, such as retrieving dated
data. Rather than having users make individual calls to retrieve
each date, we can use a recursive function to extrapolate every
date and make each call on behalf of the user. For this, we
have key-value pairs that define the variables used for setting
the properties controlling the dates, such as date.start and
date.end as well as ones defining how the date is formatted
date.format using the same schema as the collection
management system [35].

Finally, the DFDE has to account for recursive calls. This
is because most external systems have a limit as to how many
data points a single REST API call can return. To determine
if a recursive call has reached the end of the data (stored
within the given dates or endpoint), we use a limiter. If the
number of data points returned is below the limit defined, we
deem the call finished allowing it to move to the next call.
While designing the DFDE, we identified four main types of
recursive calls: Single, URL, Incremental, and Static.

1) Single: A single call is the most basic type of call. It
tells the DFDE that no recursion is required and there is only
one request needed to retrieve all the data. This is commonly
used for retrieving static data sets containing reference data.

2) URL: A URL call states that there is an iterative URL
returned with the data that the user should use to make the
next call. For this type of call, the DFDE just needs to know
where the new URL is located in the returned data, and it will
be able to substitute it to make the next call.

3) Incremental: An Incremental call tells the DFDE that
there is a variable that needs to be increased to retrieve the
next group of data. Commonly used for endpoints that have
”Pages” of data, and the page needs to be increased by one
each call to obtain the next set of data.

4) Static: A static call refers to a data point that is returned
inside the passed call that needs to replace a parameter in the
URL. This is typically a timestamp or index where by passing
the timestamp or index, the external data source will return a
certain number of data points after that value.



Due to the probability of more niche cases than these, the
DFDE allows for the abstract configuration of external calls,
as mentioned previously.

D. WebSockets

WebSockets refer to a form of continuous communication
and data flow, where one system acts as a client and the
other as a server [38]. This form of constant communication
is seen primarily in live data feed applications. To integrate
connections such as these into the DFDE, all that is necessary
is an establishment of the connection and the usage of the
PUSH call as defined by the LocalStreamHandler.

E. Web3

Designing a Web3 connection is most likely the most
specialized type of connection supported by the DFDE, as
there are many ways to connect to decentralized applications.
Later in this paper, we will explore connections to AAVE and
The Graph, both of which are Web3 applications. However,
should users want to obtain other Web3 data, it will most
likely require them to develop a new connection utilizing the
abstract connection types discussed previously [41], [42].

VIII. LANGUAGE AGNOSTIC CONNECTIONS

This section contains information regarding the program-
ming language features required for connection, the steps to
connect, and the embedded multi-tenant architecture of the
DFDE [9].

A. Language Feature Requirements

Outside of common object-oriented programming function-
alities, the only language requirement is the support of Socket
connections. [43] [44]. Since Sockets are considered a basic
programming feature, most modern generic programming lan-
guages will support their usage [17].

Sockets were selected as the primary method of choice
for transmitting data for a few reasons. Commonly referred
to as WebSockets, this form of communication ”provides a
full-duplex, bidirectional communication channel that operates
through a single Socket over the Web” [45]. This gives
them several large advantages over REST API calls with
functionalities such as reading and writing capabilities, non-
capped data transfer (typically capped at 2MB for common
server instances), and a constant line of communication [46].
The usage of all of these functions will be explored in later
sections.

B. Initializing Connections

There are a few steps required to connect to the DFDE
before requesting and retrieving data.

1) Destination Key Retrieval: Upon a user initiating a
connection with the DFDE, the DFDE will submit a one-line
response to the Socket containing a unique key. This key, re-
ferred to as the destination-key, is the unique identifier
of the application. It tells the DFDE where to send data that
is requested. When a user requests data from the DFDE, they
are also required to submit their destination-key so that
the DFDE can properly transmit their data. One benefit of this
is an application can asynchronously request data to be sent
to other applications by sharing each other’s keys.

2) Sending a Request: Due to the way requests are pro-
cessed, the DFDE has strict syntactical requirements for the
formatting of requests. Since the DFDE utilizes the Router
architecture previously discussed, a request can be made to
any Router’s tag and sub-tag. To send requests to the DFDE,
we utilize the tag SRC (the stream registry controller) and the
sub-tag RQST (the request protocol).

Next, we specify the required details relating to the call.
To handle these different parameters, the DFDE has a spec-
ified delimiter (defaulted to &&&) which is used to iso-
late these values. For calls to RQST, we have the required
value of protocol which specifies which external call
you want to make. For example, this could be defined as
graph-aave-users which tells the DFDE to retrieve user
data from AAVE using The Graph [10] [42].

Finally, we pass optional parameters which may be spe-
cific to the call. These typically fall under the values:
properties, headers, start_date, and end_date.
Both properties and headers refer to the standard URL
parameters passed through a common REST API call [47].
The date parameters start_date and end_date are used
to specify the dates of the data should it be a dated call.

A sample call to the DFDE would be formatted as follows
(note with no line breaks):
SRC&&&RQST&&&protocol&&&graph-aave-users
&&&start_date&&&2022-01-01
&&&end_date&&&2023-01-01

This would send a request to graph-aave-users to
retrieve data all user data for the year 2022.

3) Parsing the Response: Finally, the user application has
to properly handle all incoming data being sent through the
Socket. The format for all data passed is in JSON, with each
data point being sent as an individual JSON object rather than
in an array [32] [48]. This can be easily processed in most
languages and then stored however the user application needs.

The user application also needs to know when the data
flow ends, as the connection will not automatically disconnect.
Therefore, once the DFDE is done transmitting data, it will
pass the character sequence <<<end>>> signaling the end of
the data transmission.

To keep the connection alive on larger data set requests,
as Socket connections will automatically timeout after a short
period of time, we use a ”heartbeat” connection [49] [50].
This is passed to the user at every predetermined interval
of time (defaulted to 5 seconds) as the character sequence
<<<heartbeat>>>. If the user receives this line, they can



just ignore it and continue to the next line, as it is not part of
the transmitted data.

C. Multi-tenant Architecture

Multi-tenant architecture refers to the usage of the same
computational resources by multiple external users. In the
instance of the DFDE, we utilize multi-tenant architecture
by hosting a threaded ServerSocket application for users
to connect to [51] [52]. fig. 4 gives a visual of how the
OutputHandler Router within the DFDE acts as a Server-
Socket being able to handle multiple Socket connections at
once.

Fig. 4. Socket Connection Overview

To keep track of these various Socket connections, we
use the destination-key mentioned previously. The
OutputHandler keeps a registry of each of these Socket
and key pairs, routing all of the connections and requests for
the DFDE.

The handler also splits the storage of the consumer (incom-
ing data stream) and producer (outgoing data stream), allowing
each of them to work asynchronously. This is because only
the consumer, the channel used for receiving user requests, is
bound to a thread, allowing for the outward data stream to be
accessed by multiple threads.

IX. IMPLEMENTED APPLICATION

In this section, we will discuss the currently implemented
application of the proposed architecture, the DFDE, and how
it is working to improve the efficiency and quality of data
analytics performed in a lab setting. This particular application
is for the analysis of transaction data from DeFi protocols. The
size and structure of the data for this application are described
in section IX-C.

A. DeFi Data Engine

To demonstrate the efficacy of the designs discussed, we
present the full architectural implementation of the DFDE.
This engine utilized the Router system, internal storage mech-
anism, external agnostic data retrieval system, and Socket

connections for communications. By using all of these sys-
tems, we can create a flow chart for the different Router
connections and their interactions, as shown in fig. 5. Each
of the processes listed here is a Router, all of which contain
multiple sub-processes, with the lines showing the Routers’
requests between each other.

Several of these implemented Routers are imperative
to the functionality of the engine. For managing data
streams, the engine relies on the LocalStreamHandler
(LSH), the ExternalStreamHandler (ESH), and the
StreamRegistryController (SRC) to handle and pro-
cess requests. When handling events such as user connections
and data flows, the engine utilizes the OutputHandler
(OUT). And finally, for internal communication and engine
stability/information, it utilizes the Engine (ENG) and the
Logger (LOG) Routers, with all other defined Routers sup-
porting infrastructure-related processes of the system. From
these brief descriptions, as well as through reference to fig. 5,
we can get a better understanding of how different data streams
and requests flow throughout the system.

The most common request is the request for stored data,
where the system will either retrieve it from the historical
database or from an external source. In fig. 6, we show a
simplified version of the flow throughout the different Routers
to execute a request.

B. Sample Connections

To demonstrate the language-agnostic connection capabili-
ties of the DFDE, sample connections were developed in R-
Lang [53], Python [54], and Java [55]. These examples utilize
the aforementioned parameters required to send a request
(protocol, properties, headers, startdate, and
enddate) and automatically instantiate the Socket connec-
tion with the server the engine is hosted on. After interpreting
the request and receiving the ending statement (<<<end>>>),
these systems will terminate the connection with the engine
and output the returned data. The sample implementations for
R-Lang and Python can be found on Github.

C. Data Retrieval

To further expand upon the functionality of the engine,
research was conducted using it within a laboratory setting,
with the primary objective of the research being the analysis of
data from DeFi lending protocols as illustrated in these papers
[56], [57]. Using the DFDE for these analyses showcases the
engine’s ability to retrieve large datasets. The data acquired
for these analyses included more than 60 million transactions
from various DeFi lending protocols such as Aave [58], [59],
Compound [60], and MakerDAO [61]. Retrieving this data
required the engine to connect to dozens of different tables
from The Graph [42], API endpoints from Amberdata [62],
and API endpoints from DeFi Llama [63]. From The Graph,
GraphQL [64] was used to acquire raw transaction data for
seven different markets of Aave. From Amberdata, a REST
API connection [2] was used to acquire raw transaction data
for Compound, MakerDAO, and one additional Aave market;



Fig. 5. DeFi Data Engine Architecture

Fig. 6. Sample Request Flow

blockchain address data was also acquired from Amberdata.
From DeFi Llama, we pulled data for classifying cryptocur-
rencies as stable or non-stable coins using a REST API.
Retrieving data from multiple sources aims to showcase the
data-agnostic design of the engine.

Aside from the retrieval of the data, preliminary processing
is required to get the data in the form the researchers require.
For this, the sample file of GetTransactions.Rmd is
created, which handles all internal processing of the data so
that it can be loaded easily with a simple function call [65]. It
makes use of 13 sample requests, showcasing the data-agnostic
designs of the engine [66].

Once the data is all retrieved and processed, it will be
presented to the user in a list of two objects. The first object
within the list is response which details the outcome of the
call to the engine. This contains the code (code corresponding
to the outcome of the call), message (accompanying message
to the response code), and data (any data that may be
returned from the call). The second object is the data frame
previously mentioned under the key df, which contains all
returned and processed data.

D. Data Analytics

Two sample plots are used to show how the retrieved
processed data can be used in research. Each only uses data
retrieved from the engine with no external supporting data.

The first plot, shown in fig. 7, is a k-means clustering plot
assigning different clusters to users of the AAVE lending



Fig. 7. User Clustering Plot

Fig. 8. Transaction Type Density Plot

protocol based on their skill level and risk profile derived
from their transaction history [56], [67]. From this chart, we
can see this clustering and each of the different users found
within the lending transaction data being placed into one of
four categories.

The second plot, shown in fig. 8, is a density plot, which
informs the researcher how many of each transaction type
occurred during a certain time period based on the clusters
found in fig. 7.

Although these plots are demonstrative visual overviews of
the data retrieved, more meaningful points can certainly be
extrapolated with more time based on the given researchers’
needs.

X. CONCLUSION

To further improve this application of the proposed sys-
tems, developers and researchers can make use of further
external communication generalizations. Outside of the pre-
viously discussed REST API generalized connections already
implemented, developers can potentially integrate connections
such as live connections to external Websocket applications,
generalized connections to other query languages such as SQL
and NoSQL databases, and further improve the efficiency of
the internal designs [15].

Consequently, we have proposed a language and data ag-
nostic system called the ”DeFi Data Engine” which aims to
generalize data retrieval and storage from multiple external
sources for easy usage. First, we explored the internal archi-
tecture of the system, analyzing its performance capabilities,
how it can be used to scale systems, and the embedded data
agnostic communication architecture. Then, we discussed the
internal and external communication processes developed to
support the DFDE and how the implementation can handle
the different formatting of data from these sources. Finally we
discuss the DFDE being used as an application in classroom
and lab settings, as well as the results and papers that were
derived from its usage.

XI. ACKNOWLEDGEMENTS

The authors acknowledge the support from NSF IUCRC
CRAFT center research grants (CRAFT Grants #22003,
#22006) for this research. The opinions expressed in this
publication and its accompanying code base do not necessarily
represent the views of NSF IUCRC CRAFT. This work was
supported by the Rensselaer Institute for Data Exploration
and Applications (IDEA).1 We also thank Amberdata for
supporting us with access to their data.

REFERENCES

[1] L. Goosen, E. Mentz, and H. Nieuwoudt, “Choosing the “best” pro-
gramming language,” in Proceedings of the computer science and IT
education conference. Citeseer, 2007, pp. 269–282.

[2] C. Mulligan, “Open api standardisation for the ngn platform,” in 2008
First ITU-T Kaleidoscope Academic Conference - Innovations in NGN:
Future Network and Services, 2008, pp. 25–32.

[3] T. Bray, “The javascript object notation (json) data interchange format,”
Tech. Rep., 2014.

[4] “Jsonobject.” [Online]. Available: https://docs.oracle.com/javaee/7/api/
javax/json/JsonObject.html

[5] “Jsonarray.” [Online]. Available: https://docs.oracle.com/javaee/7/api/
javax/json/JsonArray.html

[6] “Primitive data types.” [Online]. Available: https://docs.oracle.com/
javase/tutorial/java/nutsandbolts/datatypes.html

[7] “What is overengineering?” Jan 2008. [Online]. Available: https:
//www.codesimplicity.com/post/what-is-overengineering/

[8] J. R. Jensen, V. von Wachter, and O. Ross, “An introduction to de-
centralized finance (defi),” Complex Systems Informatics and Modeling
Quarterly, no. 26, pp. 46–54, 2021.

[9] F. Chong, G. Carraro, and R. Wolter, “Multi-tenant data architecture,”
MSDN Library, Microsoft Corporation, pp. 14–30, 2006.

[10] “Aave - open source liquidity protocol.” [Online]. Available: https:
//aave.com/

[11] “What is an api: Definition, types, specifications, documentation,” Nov
2022. [Online]. Available: https://www.altexsoft.com/blog/engineering/
what-is-api-definition-types-specifications-documentation/

[12] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine, 2000.

[13] “Rpc vs rest - difference between api architectures - aws,”
Aug 2023. [Online]. Available: https://aws.amazon.com/compare/
the-difference-between-rpc-and-rest/

[14] “What is rapidql?” [Online]. Available: https://docs.rapidql.com/docs
[15] M. Stonebraker, “Sql databases v. nosql databases,” Communications of

the ACM, vol. 53, no. 4, pp. 10–11, 2010.
[16] “Rapidql.” [Online]. Available: https://github.com/RapidAPI/rapidql
[17] L. Kalita, “Socket programming,” International Journal of Computer

Science and Information Technologies, vol. 5, no. 3, pp. 4802–4807,
2014.

1https://idea.rpi.edu/

https://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
https://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
https://docs.oracle.com/javaee/7/api/javax/json/JsonArray.html
https://docs.oracle.com/javaee/7/api/javax/json/JsonArray.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://www.codesimplicity.com/post/what-is-overengineering/
https://www.codesimplicity.com/post/what-is-overengineering/
https://aave.com/
https://aave.com/
https://www.altexsoft.com/blog/engineering/what-is-api-definition-types-specifications-documentation/
https://www.altexsoft.com/blog/engineering/what-is-api-definition-types-specifications-documentation/
https://aws.amazon.com/compare/the-difference-between-rpc-and-rest/
https://aws.amazon.com/compare/the-difference-between-rpc-and-rest/
https://docs.rapidql.com/docs
https://github.com/RapidAPI/rapidql


[18] J. Lindman, J. Horkoff, I. Hammouda, and E. Knauss, “Emerging per-
spectives of application programming interface strategy: A framework
to respond to business concerns,” IEEE Software, vol. 37, no. 2, p. 55,
2020.

[19] N. Shrestha, C. Botta, T. Barik, and C. Parnin, “Here we go again: Why
is it difficult for developers to learn another programming language?”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020, pp. 691–701.

[20] “How routers transfer packets - planning for network deployment
in oracle solaris 11.2,” Nov 2014. [Online]. Available: https:
//docs.oracle.com/cd/E36784 01/html/E37474/ipplan-43.html

[21] “Hashmap (java platform se 8).” [Online]. Available: https://docs.oracle.
com/javase/8/docs/api/java/util/HashMap.html

[22] D. Bajracharya and N. Kathmandu, “A review on java hashmap and
treemap.”

[23] A. I. Holub and A. Hollub, Taming Java Threads. Springer, 2000.
[24] “Strings.” [Online]. Available: https://docs.oracle.com/javase/tutorial/

java/data/strings.html
[25] “Defining methods.” [Online]. Available: https://docs.oracle.com/javase/

tutorial/java/javaOO/methods.html
[26] I. R. Forman, Java reflection in action, 2005.
[27] ronmamo, “Reflections,” Oct 2021. [Online]. Available: https://github.

com/ronmamo/reflections
[28] “Defi data engine wiki architecture - packets,” May 2023. [Online].

Available: https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/wiki/
Architecture

[29] “Openapi specification v3.1.0,” Feb 2021. [Online]. Available: https:
//spec.openapis.org/oas/v3.1.0

[30] May 2021. [Online]. Available: https://www.baeldung.com/
java-type-casting

[31] A. Fruit and S. Rectangle, “Object-oriented programming,” 1993.
[32] [Online]. Available: https://www.mongodb.com/json-and-bson
[33] E. W. Dijkstra, “Recursive programming,” in Edsger Wybe Dijkstra: His

Life, Work, and Legacy, 2022, pp. 291–300.
[34] [Online]. Available: https://www.mongodb.com/docs/manual/core/

databases-and-collections/
[35] 03 2021. [Online]. Available: https://www.ibm.com/docs/en/rtw/9.1.1?

topic=reference-formatting-parsing-date-time-patterns
[36] “Mongodb documentation.” [Online]. Available: https://www.mongodb.

com/docs/
[37] C. Rodrı́guez, M. Baez, F. Daniel, F. Casati, J. C. Trabucco, L. Canali,

and G. Percannella, “Rest apis: A large-scale analysis of compliance
with principles and best practices,” in Web Engineering: 16th Interna-
tional Conference, ICWE 2016, Lugano, Switzerland, June 6-9, 2016.
Proceedings 16. Springer, 2016, pp. 21–39.

[38] I. Fette and A. Melnikov, “The websocket protocol,” Tech. Rep., 2011.
[39] S. Yang and M. Li, “Web3. 0 data infrastructure: Challenges and

opportunities,” IEEE Network, vol. 37, no. 1, pp. 4–5, 2023.
[40] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform resource

locators (url),” Tech. Rep., 1994.
[41] E. Frangella and L. Herskind, Aave V3 Technical Paper, Jan 2022.
[42] [Online]. Available: https://thegraph.com/
[43] B. Stroustrup, “What is object-oriented programming?” IEEE software,

vol. 5, no. 3, pp. 10–20, 1988.
[44] M. J. Donahoo and K. L. Calvert, TCP/IP sockets in C: practical guide

for programmers. Morgan Kaufmann, 2009.
[45] V. Pimentel and B. G. Nickerson, “Communicating and displaying real-

time data with websocket,” IEEE Internet Computing, vol. 16, no. 4, pp.
45–53, 2012.

[46] “Apache tomcat configuration reference - the http connector.” [Online].
Available: https://tomcat.apache.org/tomcat-5.5-doc/config/http.html

[47] “Http header fields and uri parameters.” [On-
line]. Available: https://www.ibm.com/docs/en/odm/8.10?topic=
api-http-header-fields-uri-parameters

[48] “What is json, json object and json array?” [Online]. Available:
https://toolsqa.com/rest-assured/what-is-json/

[49] “Timeouts.” [Online]. Available: https://websockets.readthedocs.io/en/
stable/topics/timeouts.html

[50] “Ibm documentation.” [Online]. Available:
https://www.ibm.com/docs/en/powerha-aix/7.2?topic=
heartbeating-over-tcpip-storage-area-networks

[51] “Serversocket.” [Online]. Available: https://docs.oracle.com/javase/8/
docs/api/java/net/ServerSocket.html

[52] S. Kleiman, D. Shah, and B. Smaalders, Programming with threads.
Sun Soft Press Mountain View, 1996.

[53] “R: The r project for statistical computing,” Jun 2016. [Online].
Available: https://www.r-project.org/

[54] G. Van Rossum and F. L. Drake Jr, Python tutorial. Centrum voor
Wiskunde en Informatica Amsterdam, The Netherlands, 1995, vol. 620.

[55] K. Arnold, J. Gosling, and D. Holmes, The Java programming language.
Addison Wesley Professional, 2005.

[56] A. Green, C. Cammilleri, J. S. Erickson, O. Seneviratne, and K. P. Ben-
nett, “Defi survival analysis: Insights into risks and user behaviors,” in
The International Conference on Mathematical Research for Blockchain
Economy. Springer, 2022, pp. 127–141.

[57] A. Green, M. Giannattasio, K. Wang, J. S. Erickson, O. Seneviratne,
and K. P. Bennett, “Characterizing common quarterly behaviors in defi
lending protocols,” 2023.

[58] Boado, Ernesto, “AAVE Protocol Whitepaper V2.0,” Tech. Rep.,
12 2020. [Online]. Available: https://cryptorating.eu/whitepapers/Aave/
aave-v2-whitepaper.pdf

[59] Emilio Frangella, Lasse Herskind, “AAVE V3 Technical Paper,”
Tech. Rep., 01 2022. [Online]. Available: https://github.com/aave/
aave-v3-core/blob/master/techpaper/Aave V3 Technical Paper.pdf

[60] Robert Leshner, Geoffrey Hayes, “Compound: The Money Market
Protocol,” Tech. Rep., 02 2019. [Online]. Available: https://compound.
finance/documents/Compound.Whitepaper.pdf

[61] MakerDAO, “The Maker Protocol: MakerDAO’s Multi-Collateral Dai
(MCD) System,” Tech. Rep. [Online]. Available: https://makerdao.com/
en/whitepaper/#abstract

[62] “Amberdata.” [Online]. Available: https://www.amberdata.io
[63] “Defillama.” [Online]. Available: https://www.defillama.com
[64] “Graphql — a query language for your api.” [Online]. Available:

https://graphql.org/
[65] C. Flynn, “Gettransactions.java.” [Online]. Available:

https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/blob/
main/Materials\/All%20DeFi%20Data%20Engine%20Content/
R-Code-Samples/GetTransactions.Rmd

[66] ——, “Requests directory.” [Online]. Available: https:
//github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/blob/main/Materials\
/All%20DeFi%20Data%20Engine%20Content/DeFi-Data-Engine/
DeFi%20Data%20Engine/src/main/resources/requests

[67] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

https://docs.oracle.com/cd/E36784_01/html/E37474/ipplan-43.html
https://docs.oracle.com/cd/E36784_01/html/E37474/ipplan-43.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/tutorial/java/data/strings.html
https://docs.oracle.com/javase/tutorial/java/data/strings.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methods.html
https://github.com/ronmamo/reflections
https://github.com/ronmamo/reflections
https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/wiki/Architecture
https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/wiki/Architecture
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0
https://www.baeldung.com/java-type-casting
https://www.baeldung.com/java-type-casting
https://www.mongodb.com/json-and-bson
https://www.mongodb.com/docs/manual/core /databases-and-collections/
https://www.mongodb.com/docs/manual/core /databases-and-collections/
https://www.ibm.com/docs/en/rtw/9.1.1?topic=reference-formatting-parsing-date-time-patterns
https://www.ibm.com/docs/en/rtw/9.1.1?topic=reference-formatting-parsing-date-time-patterns
https://www.mongodb.com/docs/
https://www.mongodb.com/docs/
https://thegraph.com/
https://tomcat.apache.org/tomcat-5.5-doc/config/http.html
https://www.ibm.com/docs/en/odm/8.10?topic=api-http-header-fields-uri-parameters
https://www.ibm.com/docs/en/odm/8.10?topic=api-http-header-fields-uri-parameters
https://toolsqa.com/rest-assured/what-is-json/
https://websockets.readthedocs.io/en/stable/topics/timeouts.html
https://websockets.readthedocs.io/en/stable/topics/timeouts.html
https://www.ibm.com/docs/en/powerha-aix/7.2?topic=heartbeating-over-tcpip-storage-area-networks
https://www.ibm.com/docs/en/powerha-aix/7.2?topic=heartbeating-over-tcpip-storage-area-networks
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html
https://www.r-project.org/
https://cryptorating.eu/whitepapers/Aave/aave-v2-whitepaper.pdf
https://cryptorating.eu/whitepapers/Aave/aave-v2-whitepaper.pdf
https://github.com/aave/aave-v3-core/blob/master/techpaper/Aave_V3_Technical_Paper.pdf
https://github.com/aave/aave-v3-core/blob/master/techpaper/Aave_V3_Technical_Paper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://makerdao.com/en/whitepaper/#abstract
https://makerdao.com/en/whitepaper/#abstract
https://www.amberdata.io
https://www.defillama.com
https://graphql.org/
https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/blob/main/Materials\/All%20DeFi%20Data%20Engine%20Content/R-Code-Samples/GetTransactions.Rmd
https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/blob/main/Materials\/All%20DeFi%20Data%20Engine%20Content/R-Code-Samples/GetTransactions.Rmd
https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/blob/main/Materials\/All%20DeFi%20Data%20Engine%20Content/R-Code-Samples/GetTransactions.Rmd
https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/blob/main/Materials\/All%20DeFi%20Data%20Engine%20Content/DeFi-Data-Engine/DeFi%20Data%20Engine/src/main/resources/requests
https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/blob/main/Materials\/All%20DeFi%20Data%20Engine%20Content/DeFi-Data-Engine/DeFi%20Data%20Engine/src/main/resources/requests
https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/blob/main/Materials\/All%20DeFi%20Data%20Engine%20Content/DeFi-Data-Engine/DeFi%20Data%20Engine/src/main/resources/requests
https://github.rpi.edu/DataINCITE/IDEA-DeFi-CRAFT/blob/main/Materials\/All%20DeFi%20Data%20Engine%20Content/DeFi-Data-Engine/DeFi%20Data%20Engine/src/main/resources/requests

	Introduction
	Related Work
	Relevancy
	Routing Architecture
	Overview
	Managers
	Routers
	Packets
	Review

	Performance Analysis
	Experimental Setup
	Overview
	Analysis

	Internal Storage
	Data Schema
	Collection Management
	Review

	External Data Connections
	Abstract Connections
	Configuration
	REST APIs
	Single
	URL
	Incremental
	Static

	WebSockets
	Web3

	Language Agnostic Connections
	Language Feature Requirements
	Initializing Connections
	Destination Key Retrieval
	Sending a Request
	Parsing the Response

	Multi-tenant Architecture

	Implemented Application
	DeFi Data Engine
	Sample Connections
	Data Retrieval
	Data Analytics

	Conclusion
	Acknowledgements
	References

