
Long-term Time Series Forecasting based on
Decomposition and Neural Ordinary Differential

Equations
Seonkyu Lim∗†§, Jaehyeon Park∗§, Seojin Kim∗§, Hyowon Wi∗, Haksoo Lim∗,

Jinsung Jeon∗, Jeongwhan Choi∗ and Noseong Park∗
Yonsei University∗, Seoul, South Korea

Korea Financial Telecommunications & Clearings Institute†, Seoul, South Korea
sklim@kftc.or.kr†, {jaehyun9907, bwnebs1, wihyowon, limhaksoo96, jjsjjs0902, jeongwhan.choi, noseong}@yonsei.ac.kr∗

Abstract—Long-term time series forecasting (LTSF) is a chal-
lenging task that has been investigated in various domains such
as finance investment, health care, traffic, and weather forecast-
ing. In recent years, Linear-based LTSF models showed better
performance, pointing out the problem of Transformer-based
approaches causing temporal information loss. However, Linear-
based approach has also limitations that the model is too simple
to comprehensively exploit the characteristics of the dataset. To
solve these limitations, we propose LTSF-DNODE, which applies
a model based on linear ordinary differential equations (ODEs)
and a time series decomposition method according to data sta-
tistical characteristics. We show that LTSF-DNODE outperforms
the baselines on various real-world datasets. In addition, for each
dataset, we explore the impacts of regularization in the neural
ordinary differential equation (NODE) framework.

Index Terms—long-term time series forecasting, time series de-
composition, instance normalization, neural ordinary differential
equations

I. INTRODUCTION

Time series data is continuously generated from various
real-world applications. To utilize this data, numerous ap-
proaches have been developed in the fields such as fore-
casting [1]–[9], classification [2], [5], [6], [10]–[13], and
generation [14]–[17]. Among them, time series forecasting is
one of the most important research topics in deep learning.
For time series forecasting, recurrent neural network (RNN)-
based models were used, such as LSTM [18] and GRU [19].
These models performed well in time series forecasting but
suffered from error accumulation due to their iterative multi-
step forecasting approach, especially when dealing with long-
term time series forecasting (LTSF).

To overcome this challenge, there have been various at-
tempts in the past few years. Among them, the Transformer-
based approaches [2], which enable direct multi-step fore-
casting, show significant performance improvement. Trans-
former [20] has demonstrated remarkable performance in
various natural language processing tasks, and its ability to

§These authors contributed equally to this research.

effectively capture long-range dependencies and interactions
in sequential data makes it suitable for application in LTSF.

Despite the impressive achievements of Transformer-based
models in LTSF, they have struggled with temporal infor-
mation loss caused by the self-attention mechanism as a
result of permutation invariant and anti-order properties [21].
Furthermore, it was demonstrated that the error upper bound
of Transformer-based models, which is one of the non-linear
deep learning approaches, is higher than linear regression [22].

Recently, simple Linear-based methods [21], [22], as non-
Transformer-based models, show better performance com-
pared to complex Transformer-based models. These ap-
proaches are novel attempts in LTSF where Transformer
architecture has recently taken the lead. However, they have
limits to comprehensively exploit the intricate characteristics
of the time series dataset as the models are too simple.

Inspired by these insights, we aim to design a model
that takes into account the characteristics of each dataset by
introducing some sophistication to the model architecture. Our
proposed model, LTSF-DNODE, adeptly harnesses temporal
information by employing time series decomposition and the
neural ordinary differential equation (NODE) framework. The
NODE framework transforms a single linear layer into time-
derivative modeling. It uses a structure composed of the
same single linear layer, but can better capture the complex
dynamics of time series data, providing various advantages
within time series processing.

Our contributions can be summarized as follows:
• We analyze the temporal information of each real-world

time series datasets with exploratory data analysis. This
investigation helps us detect the presence of seasonality,
guiding us to perform decomposition appropriately.

• Based on the NODE framework, we demonstrate the
following benefits of time-derivative modeling: i) It is
suitable for time series tasks by interpreting discrete
linear layers as continuous linear layers, and ii) more
advanced regularization is available.

• Through various empirical experiments, we demonstrate
that the NODE framework and decomposition according
to data characteristics are effective in LTSF.979-8-3503-2445-7/23/$31.00 ©2023 IEEE

ar
X

iv
:2

31
1.

04
52

2v
2

 [
cs

.L
G

]
 1

0
N

ov
 2

02
3

II. PRELIMINARIES

In this section, we review the decomposition method and
neural ordinary differential equations. Following that, we
conduct empirical explorations to investigate the effectiveness
of these techniques on LTSF.

A. Problem Formulation

The objective of LTSF is to forecast from an input sequence
of historical time series data to a corresponding future se-
quence. Given the input historical data X = [x1, . . . ,xL]

T ∈
RL×F , LTSF models forecast Y = [y1, . . . ,yH]T ∈ RH×F ,
where L is the look-back window size, H is the forecasting
horizon and F is the feature dimension. The LTSF problem
deals with cases where H is longer than 1, and F is not
restricted to univariate cases.

B. Time Series Decomposition

Data preprocessing is used to enhance data quality as
an input to the LTSF method, enabling it to deliver better
outcomes. According to [23], suitable preprocessing methods
for non-stationary time series increased forecasting accuracy
by more than 10% on over 95% of the temporal data.

Time series decomposition is a pivotal technique in time
series preprocessing [24]. The decomposition methods (e.g.,
STL [25] and SEAT [26]) typically decompose the time
series into three components: trend, seasonality, and residual
component. The decomposition can be represented as follows:

X = T+ S+R, (1)

where T,S,R ∈ RL×F respectively represent the trend,
seasonality, and residual component. The trend is a general
systematic linear or nonlinear component that changes over
time and does not repeat within the given timeframe, usu-
ally identified by the two-sided simple moving average [27].
Seasonality means a pattern with a particular cycle in a time
series. To extract seasonality, the classic additive decomposi-
tion method averages the detrended series (X − T) across a
predetermined period. Residual is the remaining value after
removing the trend and seasonality from a series.

We use this method to provide an overall understanding of
time series datasets with exploratory data analysis.

C. Neural Ordinary Differential Equations

Neural ordinary differential equations (NODEs) [28] can
handle time series data in a continuous manner, using the
differential equation as follows:

z(T) = z(0) +

∫ T

0

f(z(t), t;θf)dt, (2)

where f(z(t), t;θf), called an ODE function, is a neural
network to approximate the derivative of z(t) with respect
to t (denoted as dz(t)

dt).
To solve the integral problem, the NODEs use the ODE

solver. The ODE solvers divide the integral time domain [0, T]
in Eq. (2) into small steps and convert the integral into many

𝑓𝑓 𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4

(a) Euler method

𝑓𝑓 𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4

(b) RK4 method

Fig. 1. The (a) explicit Euler method and (b) RK4 method in a step. We
note that the Euler method creates the residual connection and RK4 makes
the dense connection given the ODE function f parameterized by θf .

steps of additions. For example, one step of the explicit Euler
method, a typical ODE solver, is as follows:

z(t+ s) = z(t) + s · f(z(t), t;θf), (3)

where s ∈ (0, 1] is step size of the Euler method. A more
sophisticated method, such as the 4-th order Runge-Kutta
(RK4) method, is as follows:

z(t+ s) = z(t) +
s

6

(
f1 + 2f2 + 2f3 + f4

)
, (4)

where f1 = f(z(t), t;θf), f2 = f(z(t) + s
2f1, t +

s
2 ;θf),

f3 = f(z(t)+ s
2f2, t+

s
2 ;θf), and f4 = f(z(t)+sf3, t+s;θf).

Fig. 1 denotes the Euler and RK4 methods. These are
some of the explicit methods that have a fixed step size. The
RK4 method requires four times as much work as the Euler
method in a single step. When the step size is 1, the Euler
method is equivalent to the residual connection. Similarly,
when f represents a neural network layer, the RK4 method is
analogous to the dense connection. On the other hand, one of
the most advanced methods, Dormand-Prince (DOPRI) [29],
uses an adaptive step size. Recently, the Memory-efficient ALF
Integrator [30] guaranteeing constant memory cost shows good
performance. However, when NODE learns a complex dataset,
the step size of the ODE solver often becomes extremely
small. Consequently, this results in dynamics equivalent to a
substantial number of layers, thereby increasing the training
time significantly. To address this issue, Jacobian and kinetic
regularizations [31] are introduced, simplifying the dynamics,
increasing the step size, and reducing the training time.

The NODEs demonstrated superior performance in vari-
ous tasks, including time series and others, by employing
continuous modeling [32]–[34]. Specifically, the neural rough
differential equations applied to the NODEs using rough-path
theory showed good performance in the long-term time series
task [35], [36].

In our model, we use a single linear layer as f with various
ODE solvers and regularizers to model times series dynamics
effectively.

D. Empirical Explorations on Decomposition and NODEs

We conduct ablation studies to explore the efficacy of
decomposition and NODE in LTSF. We implement simple
variants of a single linear layer model by applying the de-
composition method and NODE framework:

• “Linear” is a single linear layer identical to the one intro-
duced in [21]. This model predicts future values based on

TABLE I
MSE OF FORECASTING RESULTS BASED ON DECOMPOSITION AND NODE.

WE SET THE LOOK-BACK WINDOW SIZE AS 336.

Datasets Forecasting
horizon Linear Linear

with T/R
Linear

with T/S/R
Linear

with NODE

ETTh1

96 0.375 0.375 0.378 0.371
192 0.418 0.405 0.404 0.406
336 0.479 0.439 0.437 0.437
720 0.624 0.472 0.472 0.475

ETTh2

96 0.288 0.289 0.288 0.280
192 0.377 0.383 0.359 0.364
336 0.452 0.448 0.422 0.438
720 0.698 0.605 0.570 0.568

past values via a weighted summation. The single linear
layer is mathematically expressed as Ŷ = WX, where
W ∈ RP×L is a weight matrix.

• “Linear with T/R” decomposes time series into trend and
residual components and then individually learns them
using single linear layers, as proposed in [21].

• “Linear with T/S/R” decomposes time series into trend,
seasonality, and residual components, and then individu-
ally learns them through single linear layers.

• “Linear with NODE” also uses a single linear layer with
the same structure as “Linear” to build the ODE function
in the NODE framework. It employs the Euler method as
the ODE solver.

The mathematical expression of “Linear” can also be depicted
using the time variable t as follows:

x̂(t1) = Wx(t0), (5)

where x̂(t1) is the future sequence Ŷ, x(t0) is the historical
sequence X. W is a single linear layer matrix.

“Linear with NODE” formulation based on Eq. (5) is as
follows:

dx(t)

dt
=

1

t1 − t0
(logW)x(t), (6)

x(t1) = x(t0) +

∫ t1

t0

1

t1 − t0
(logW)x(t)dt. (7)

The parameters are trained using the adjoint sensitivity method
of the NODE framework.

Table I shows the LTSF results for each variant model.
Based on these observations, we infer the following findings:

1) Applying time series decomposition methods enhances
the performance of LTSF. This assertion is corroborated
by the empirical observation that “Linear with T/R”
shows better performance compared to the “Linear”.

2) In the ETTh2 dataset, “Linear with T/S/R” demonstrates
a discernible advantage over “Linear with T/R”. This
suggests that the merits of a finer-grained decompo-
sition, particularly the extraction of seasonality, might
vary depending on the characteristics of the datasets.

3) The better performance of “Linear with NODE” as
compared to “Linear” demonstrates the benefits of incor-
porating the NODE framework in the domain of LTSF.

From these observations, we can infer that time-derivate
modeling based on the NODE framework and more refined
time series decomposition have a positive impact on LTSF.

III. PROPOSED METHOD

We explain the detailed information about our proposed
model, LTSF-DNODE, in this section. We first describe an
overview of how our model works, followed by detailed
components and how they contribute to time series forecasting.

A. Overall Workflow

Fig. 2 illustrates the forecasting procedure of LTSF-
DNODE. It consists of three main blocks: the decomposition
block (DCMP), the normalizing and denormalizing blocks
(NORM & DENORM), and the NODE block (NODE). These
blocks are sequentially applied to make predictions as follows:

1) Find data characteristics with exploratory data analysis.
2) An observed series X is given as input. The DCMP

block decomposes X depending on data characteristics.
3) For datasets with distribution discrepancy problems, we

apply the NORM block to address them.
4) Then, the NODE block forecasts the future patterns of

each decomposed component.
5) In the case of the dataset normalized in (2), denormal-

ization is performed in the DENORM block.
6) Finally, the forecasting series Ŷ is reconstructed by

addition of the future decomposed components.

B. Exploratory Data Analysis

1) Properties: To obtain insights from the datasets, we
analyze their characteristics. The results of this analysis are
presented in Table IV. The fundamental structure and method-
ology of this analysis are derived from [37]. The detailed
methods used to acquire statistical properties are as follows:

• “Forecastability” [38] refers to a measure calculated by
subtracting the entropy of the Fourier decomposition of
the time series from one.

• “Trend” is the slope of the linear regression applied to
the time series, adjusted according to its magnitude.

• “Seasonality” is the ratio of noticeable patterns quantified
by the ACF test [39].

• “Stationarity” is measured by the ADF test on the residual
component after removing trend and seasonality compo-
nents from the time series.

2) Decomposition: DCMP block requires a pre-defined
kernel size and seasonality period during the decomposition
process. In order to achieve a suitable decomposition, we
need to find the optimal parameters depending on the dataset.
We consider various parameter combinations as candidates
and conduct two tests, the auto-correlation function (ACF)
test [39] and the augmented Dickey-Fuller (ADF) test, to find
the optimal values among them. The ACF test examines if

DCMP

NORM

DENORM

NODE NODE NODE

NORM

DENORM

D
C

M
P

B
lo

ck
N

O
D

E
B

lo
ck

① padding
x

x

②moving averaging
③ detrend

x

x

P 2P0

④averaging across P
0

⑤ subtract

𝐳𝐳 0 𝐳𝐳 𝑇𝑇𝐳𝐳 𝑇𝑇 = 𝐳𝐳 0 +�
0

𝑇𝑇
𝑓𝑓 𝐳𝐳 𝑡𝑡 ,𝑡𝑡;𝜃𝜃𝑓𝑓 𝑑𝑑𝑡𝑡

Observed series 𝐗𝐗

Forecasting series �𝐘𝐘

Trend 𝐓𝐓

Trend �𝐓𝐓

Residual 𝐑𝐑

Residual �𝐑𝐑

Seasonality �𝐒𝐒

Seasonality 𝐒𝐒

𝐓𝐓rend

𝐒𝐒easonality

𝐑𝐑esidual

NO
RM

 &
DE

NO
RM

B
lo

ck
s

Normalizing

Denormalizing

Normalized
output �𝐂𝐂

Normalized
input �𝐂𝐂

Input 𝐂𝐂

Output 𝐂𝐂

Statistics
𝜇𝜇, σ

𝐗𝐗

ODE Function

�𝐳𝐳

D
ec

od
in

g
La

ye
r

Fig. 2. The overall workflow of LTSF-DNODE. LTSF-DNODE consists of three blocks: the decomposition block (DCMP), the normalizing and denormalizing
blocks (NORM & DENORM), and the neural ODE block (NODE). DCMP block decomposes the observed time series into trend, seasonality, and residual
components. NORM block normalizes the observed series based on its mean and variance. NODE block forecasts of the decomposed component based on
each ODE. The processes indicated by dotted lines are optionally applied, considering the characteristics of the dataset.

a sequence follows a repeating seasonal pattern with a pre-
defined cycle, while the ADF test is used to check whether
the sequence is stationary or not.

We first divide the time series into non-overlapping window-
sized sequences and then decompose them. The ACF test is
conducted for analyzing the seasonality components, while
the ADF test is utilized to assess the residual components.
Following the tests, we can quantify both seasonality and
stationarity by calculating the proportion of sequences meeting
the criteria relative to the total number of sequences.

This procedure is applied to all the datasets. An overview
of the experimental parameters selected for each dataset and a
summary of the results derived from the exploratory analysis
are presented in Table IV.

3) Normalization: We investigate the distribution of trend
components in both training and testing data. If there exists a
noticeable discrepancy between these distributions, we employ
the NORM block to perform instance normalization. The same
procedure is also applied to the residual components.

The instance normalization method aids in mitigating dis-
tribution disparities and aligning the overall trend. Additional
findings can be found in Section IV.

C. DCMP Block

The DCMP block decomposes the time series into three,
trend T, seasonality S, and residual R components, or two,
without seasonality depending on the characteristics of the
observed series X. In the DCMP block, in order to extract
the trend from the X, we use the moving average method. To
align the length of the derived trend with X, we first apply
padding(·), which involves pre-padding with the first value

and post-padding with the last value of the input. After that,
we perform an average pooling operation to extract the trend
as follows:

T = AvgPool(padding(X)). (8)

If the time series has a low significance of seasonality,
extracting seasonality is omitted. In this case, the detrended
(X − T) is regarded as the residual component, and the
decomposition process is completed. However, if the series
exhibits significant seasonality, we extract the seasonality from
(X − T). We first obtain seasonal fragments by averaging
(X − T) across the pre-defined period P . In the fragments,
each element is calculated as follows:

Si =
1

m

m−1∑
k=0

(Xi+kP −Ti+kP), (9)

where m is the smallest integer satisfying L < i+mP for 0 ≤
i < P and sequence length L, Si, Ti+kP and Xi+kP denote
the i-th element of the seasonal fragments and the (i+kP)-th
element of T and X.

We produce seasonal fragments with a period P using
Eq. (9). Then we construct the overall seasonality component
S of length L by tiling the obtained seasonal fragments. The
residual component R is the remaining part of the observed
series X, obtained by subtracting the trend (and seasonality,
depending on the dataset).

We effectively capture the temporal information from the
time series using the decomposition method, which allows
us to enhance the forecasting capabilities of our model. The
analysis about the significance of seasonality for the datasets
we use is in Section IV-C.

D. NODE Block

For the decomposition of the time series into trend, season-
ality and residual, the NODEs can be written as follows and
solved by the ODE solvers:

T(T) = T(0) +

∫ T

0

fT(T(t);θT)dt,

S(T) = S(0) +

∫ T

0

fS(S(t);θS)dt,

R(T) = R(0) +

∫ T

0

fR(R(t);θR)dt,

(10)

where the function fT : RL → RL is a neural network with
parameters θT that are learned from the data and captures the
dynamics of the data with the trend. The function fT is defined
as fT := dT(t)

dt = W TT(t), where W T ∈ RL×L is a weight
matrix associated with the trend component, modeled as a
single linear layer. Starting with an initial value, T(0) = T,
the NODE block computes the output, T(T), at the terminal
time T by solving the initial value problems. The fS and fR
are defined and parameterized in the same manner as fT.

Note that we use various ODE solvers with the Jacobian
and kinetic regularization [31]. Leveraging these regularizers
allows for more accurate regularization of the learned dynam-
ics at each time point, which exhibits diverse patterns.

Since NODE requires the same dimension size of input and
output, the results of the ODE solvers are decoded into the
forecasting horizon through the decoding layer, as follows:

T̂ = FCT
L→H(T(T)),

Ŝ = FCS
L→H(S(T)),

R̂ = FCR
L→H(R(T)),

(11)

where each FCL→H means a fully-connected layer whose
input size is L and output size is H .

The decomposed components T, S, and R of the observed
sequence yield the future decomposed components T̂, Ŝ, and
R̂ after passing through the NODE block.

E. NORM & DENORM Blocks

If the dataset has distribution discrepancy problems, we
apply instance normalization to the trend and residual com-
ponents using the NORM and DENORM blocks. In Sec-
tion IV-C, it will be discussed why instance normalization is
only done on the trend and residual components. Instance nor-
malization is performed on feature dimensions. Specifically,
given the original component C, which could be a trend or
a residual, represented as Cij ∈ RL×F , the normalization
procedure can be expressed as follows:

µi =
1

F

F∑
j=1

Cij , σi
2 =

1

F

F∑
j=1

(Cij − µi)
2, (12)

C̃ij =
Cij − µi

σi
, (13)

TABLE II
COMPARISON WITH EXISTING BASELINE MODELS, WHICH USE

DECOMPOSITION AND NORMALIZATION

Models Main ArchitectureDecompositionNormalization

FEDformer [40] Transformer Frequency -
Autoformer [41] Transformer Fixed (T/S) -

NLinear [21] Single Linear - Subtraction
DLinear [21] Single Linear Fixed (T/R) -

LTSF-DNODE Neural ODE Selective
(T/S/R)

Instance
Normalization

where L is the length of the sequence, F is the number of
features, µi and σi

2 are the i-th mean and variance of the
original data, and C̃ij is normalized component.

DENORM block conducts the inverse process of normal-
ization using the preserved mean (µi) and standard deviation
(σi) obtained during the normalization process. When nor-
malized component C̃ is given, the denormalization procedure
performs the reverse of normalization as follows:

Cij = σiC̃ij + µi, (14)

F. Forecasting

To forecast future series, if the dataset is normalized, we
apply denormalization to restore the original distribution, and
we add up T̂, Ŝ, and R̂ to obtain the final prediction Ŷ:

Ŷ = T̂+ Ŝ+ R̂. (15)

The values used as Trend regularizers are defined as follows:

ĖT(t) = ||fT(T(t); θ)||2, (16)

J̇T(t) = ||ϵ⊤∇fT(T(t); θ)||, (17)

where ‘·’ denotes derivative, ϵ is sampled from standard
normal distribution, and fT refers to the function defined in
Eq. (10). The same definitions are applied to the seasonality
and residual components as well.

The proposed model is trained using the mean square error
(MSE) loss function with regularization terms as follows:

Loss =

∑n
i=1(Yi − Ŷi)

2

n

+
∑

j∈{T,S,R}

(λKEj(t) + λJJj(t))
(18)

where Yi is the i-th element of the ground truth Y, n is the
number of elements, and {T,S,R} each represent the Trend,
Seasonality, and Residual in the summation, respectively. The
coefficients λK and λJ are used as hyperparameters.

G. Comparison with Existing Models

Table II shows the main differences between our model
and the baselines. In contrast to the baseline models using
single linear and Transformer, our model employs NODE as
the main architecture. If we remove the NODE framework
from our proposed model, it closely resembles a combination
of the NLinear and DLinear. However, our approach employs

TABLE III
MSE AND MAE RESULTS FOR MULTIVARIATE TIME SERIES FORECASTING ON BENCHMARK DATASETS. WE SET THE LOOK-BACK WINDOW SIZE AS 104

FOR ILI AND 336 FOR THE OTHERS. THE ILI DATASET HAS A FORECASTING HORIZON H ∈ {24, 36, 48, 60}. FOR THE OTHERS,
H ∈ {96, 192, 336, 720}. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Datasets Forecasting
horizon

LTSF-DNODE NLinear DLinear FEDformer Autoformer Informer Pyraformer LogTrans

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity

96 0.140 0.237 0.141 0.237 0.140 0.237 0.193 0.308 0.201 0.317 0.274 0.368 0.386 0.449 0.258 0.357
192 0.153 0.249 0.154 0.248 0.153 0.249 0.201 0.315 0.222 0.334 0.296 0.386 0.386 0.443 0.266 0.368
336 0.168 0.267 0.171 0.265 0.169 0.267 0.214 0.329 0.231 0.338 0.300 0.394 0.378 0.443 0.280 0.380
720 0.203 0.300 0.210 0.297 0.203 0.301 0.246 0.355 0.254 0.361 0.373 0.439 0.376 0.445 0.283 0.376

Exchange

96 0.078 0.200 0.089 0.208 0.081 0.203 0.148 0.278 0.197 0.323 0.847 0.752 0.376 1.105 0.968 0.812
192 0.155 0.292 0.180 0.300 0.157 0.293 0.271 0.380 0.300 0.369 1.204 0.895 1.748 1.151 1.040 0.851
336 0.259 0.388 0.331 0.415 0.305 0.414 0.460 0.500 0.509 0.524 1.672 1.036 1.874 1.172 1.659 1.081
720 0.606 0.591 1.033 0.780 0.643 0.601 1.195 0.841 1.447 0.941 2.478 1.310 1.943 1.206 1.941 1.127

Weather

96 0.174 0.234 0.182 0.232 0.176 0.237 0.217 0.296 0.266 0.336 0.300 0.384 0.896 0.556 0.458 0.490
192 0.215 0.272 0.225 0.269 0.220 0.282 0.276 0.336 0.307 0.367 0.598 0.544 0.622 0.624 0.658 0.589
336 0.262 0.311 0.271 0.301 0.265 0.319 0.339 0.380 0.359 0.395 0.578 0.523 0.739 0.753 0.797 0.652
720 0.323 0.362 0.338 0.348 0.323 0.362 0.403 0.428 0.419 0.428 1.059 0.741 1.004 0.934 0.869 0.675

ILI

24 1.626 0.848 1.683 0.858 2.215 1.081 3.228 1.260 3.483 1.287 5.764 1.677 1.420 2.012 4.480 1.444
36 1.589 0.845 1.703 0.859 1.963 0.963 2.679 1.080 3.103 1.148 4.755 1.467 7.394 2.031 4.799 1.467
48 1.566 0.861 1.719 0.884 2.130 1.024 2.622 1.078 2.669 1.085 4.763 1.469 7.551 2.057 4.800 1.468
60 1.693 0.911 1.819 0.917 2.368 1.096 2.857 1.157 2.770 1.125 5.264 1.564 7.662 2.100 5.278 1.560

ETTh1

96 0.369 0.392 0.374 0.394 0.375 0.399 0.376 0.419 0.449 0.459 0.865 0.713 0.664 0.612 0.878 0.740
192 0.403 0.411 0.408 0.415 0.405 0.416 0.420 0.448 0.500 0.482 1.008 0.792 0.790 0.681 1.037 0.824
336 0.423 0.422 0.429 0.427 0.439 0.443 0.459 0.465 0.521 0.496 1.107 0.809 0.891 0.738 1.238 0.932
720 0.425 0.444 0.440 0.453 0.472 0.490 0.506 0.507 0.514 0.512 1.181 0.865 0.963 0.782 1.135 0.852

ETTh2

96 0.272 0.334 0.277 0.338 0.289 0.353 0.346 0.388 0.358 0.397 3.755 1.525 0.645 0.597 2.116 1.197
192 0.334 0.375 0.344 0.381 0.383 0.418 0.429 0.439 0.456 0.452 5.602 1.931 0.788 0.683 4.315 1.635
336 0.341 0.390 0.357 0.400 0.448 0.465 0.496 0.487 0.482 0.486 4.721 1.835 0.907 0.747 1.124 1.604
720 0.387 0.428 0.394 0.436 0.605 0.551 0.463 0.474 0.515 0.511 3.647 1.625 0.963 0.783 3.188 1.540

ETTm1

96 0.299 0.343 0.306 0.348 0.299 0.343 0.379 0.419 0.505 0.475 0.672 0.571 0.543 0.510 0.600 0.546
192 0.334 0.364 0.349 0.375 0.335 0.365 0.426 0.441 0.553 0.496 0.795 0.669 0.557 0.537 0.837 0.700
336 0.369 0.386 0.375 0.388 0.369 0.386 0.445 0.459 0.621 0.537 1.212 0.871 0.754 0.655 1.124 0.832
720 0.424 0.419 0.433 0.422 0.425 0.421 0.543 0.490 0.671 0.561 1.166 0.823 0.908 0.724 1.153 0.820

ETTm2

96 0.163 0.253 0.167 0.255 0.167 0.260 0.203 0.287 0.255 0.339 0.365 0.453 0.435 0.507 0.768 0.642
192 0.217 0.291 0.221 0.293 0.224 0.303 0.269 0.328 0.281 0.340 0.533 0.563 0.730 0.673 0.989 0.757
336 0.270 0.325 0.274 0.327 0.281 0.342 0.325 0.366 0.339 0.372 1.363 0.887 1.201 0.845 1.334 0.872
720 0.359 0.381 0.368 0.384 0.397 0.421 0.421 0.415 0.433 0.432 3.379 1.338 3.625 1.451 3.048 1.328

both data characteristic-dependent decomposition and normal-
ization methods, as opposed to the consistent method used in
other baselines. The normalization and decomposition methods
of each model can be found in Table II.

IV. EXPERIMENTAL EVALUATIONS

In this section, we compare the performance of LTSF-
DNODE for multivariate LTSF on real-world datasets against
baselines and provide an analysis of the model’s architecture
with respect to data characteristics.

A. Experimental Environments

All experiments are conducted in the following software
and hardware environments: UBUNTU 18.04.4 LTS, PYTHON
3.8.13, PYTORCH 1.11.0, CUDA V10.0.130, NVIDIA
QUADRO RTX 6000/8000.

We select several cases for each dataset by varying hyper-
parameters. The learning rates are in {0.05, 0.01, 0.005, 0.001,
0.0005, 0.0001} and the batch sizes are in {8, 16, 32, 64}. The
number of training epochs is set to a maximum of 100. With
the validation dataset, an early-stop approach with a patience
of 10 iterations is applied. We implement the ODE function
of the NODE framework using a single linear layer without

an activation function and use Euler, RK4, and DOPRI as
the ODE solvers. The coefficients of the Jacobian and kinetic
regularizers are in {0.1, 0.2, . . . , 1.0}. The terminal time,
denoted as T , is set to 1.

1) Datasets: In order to evaluate LTSF-DNODE, we con-
duct experiments on real-world datasets with diverse char-
acteristics collected from various domains such as energy,
economics, and more. These datasets possess a wide range
of features (see Table IV for its detailed descriptions).

• Electricity records the amount of electricity consumption
of 321 customers from 2012 to 2014.

• Exchange Rate [42] consists of the daily records of the
exchange rates of eight countries from 1990 to 2016.

• Weather consists of data from 21 weather-related features
(e.g. air temperature, humidity), recorded in Germany
with 10-min interval during 2020.

• ILI (Influenza-like Illness) is compiled by the Centers for
Disease Control and Prevention of the United States from
2002 to 2021.

• ETT (Electricity Transformer Temperature) [43] consists
of two datasets with hourly granularity and two datasets
with 15-minute granularity. Each data shows seven oil

TABLE IV
THE ANALYSIS RESULTS OF THE BENCHMARK DATASETS. THE SELECTED KERNEL SIZE AND PERIOD YIELDS THE HIGHEST SEASONALITY.

Datasets Electricity Exchange Weather ILI ETTh1 ETTh2 ETTm1 ETTm2

Features 321 8 21 7 7 7 7 7
Timesteps 26,304 7,588 52,696 966 17,420 17,420 69,680 69,680

Granularity 1hour 1day 10min 1week 1hour 1hour 15min 15min
Forecastability 0.126 0.159 0.141 0.173 0.148 0.156 0.142 0.144

Trend −4.00× 10−6 1.84× 10−4 4.00× 10−6 1.46× 10−3 −1.90× 10−5 −7.90× 10−5 −5.40× 10−5 −2.00× 10−4

Kernel size 25 10 10 25 10 25 50 25
Period 24 7 6 52 48 24 7 7

Seasonality 98.70% 11.25% 52.38% 22.22% 97.02% 93.45% 94.20% 80.21%
Stationarity 100.00% 100.00% 99.87% 96.83% 100.00% 100.00% 100.00% 100.00%

and load related properties of transformer. The data was
aggregated from July 2016 to July 2018.

2) Baselines: We consider the following 7 baselines for
long-term time series forecasting. These baselines consist of
five Transformer-based models and two Linear-based models,
the previous state-of-the-art models:

• Linear-based models: NLinear and DLinear [21]
• Transformer-based models: Informer [43],

Pyraformer [44], and LogTrans [45]
• Tranformer-based models with decomposition method:

FEDformer [40], and Autoformer [41]
3) Metrics: To evaluate our model, we use MSE and mean

absolute error (MAE). These metrics are as follows:

MSE =

∑n
i=1(Yi − Ŷi)

2

n
, MAE =

1

n

n∑
i=1

∣∣∣Yi − Ŷi

Yi

∣∣∣, (19)

where Yi is the i-th element of the ground truth Y, n is the
number of elements.

B. Main Results

In Table III, we list the results of the multivariate long-
term time series forecasting. The forecasting horizon refers
to the length of the sequence that the model aims to pre-
dict. LTSF-DNODE shows better performance in most cases
than the previous models. This result indicates that LTSF-
DNODE effectively utilized the essential temporal information
emphasized in [21] for LTSF, leveraging precise preprocessing
methods and forecasting modeling based on NODE.

There are performance improvements (e.g., up to 15.08% on
MSE and up to 6.28% on MAE) observed in the Exchange,
ILI, ETTh1, ETTh2, and ETTm2 datasets. In the Electricity,
Weather, and ETTm1 datasets, our model demonstrated per-
formance similar to that of Linear-based models.

These improvements are attributed to decomposition and
normalization methods tailored to the data characteristics. In
addition, it can be argued that formulating between past and
future values as Eq. (6) contributed positively to LTSF by ac-
curately capturing the dynamics of time series. The subsequent
section discusses the analysis results of data characteristics
and how each component of our proposed model contributed
to performance enhancement.

(a) ILI OT feature

(b) ETTh1 OT feature

Fig. 3. Distribution of original, trend, and residual for feature OT in (a) ILI
and (b) ETTh1. There is a clear discrepancy in the distribution between the
train and test datasets.

C. Data Analysis Results

The result of exploratory analysis on each dataset can be
found in Table IV. “Forecastability” and “Trend” metrics are
evaluated for the full sequence, with averaging across the
features. “Seasonality” is determined based on sub-sequences
with a length (104 for ILI and 336 for the others) using
kernel sizes of {10, 25, 50} and periods that are determined
based on the “Granularity” (e.g., the period is 24 for an hour-
based dataset to determine the seasonality of a day, 48 for two
days). In Table IV, “Seasonality” is the highest ratio obtained
among combinations of kernel sizes and periods. Similarly, we
calculate the proportion of sequences exhibiting stationarity
for each feature and take the average sequences sliced of length
720 (also 104 for ILI).

Based on the results of the ACF test, we select three can-
didates with the highest seasonality ratio for each kernel size.
Then, using the outcomes of the ADF test, we compare the
stationarity ratio of the residuals to identify the best parameter
combination. Since the residual should show stationarity, we

TABLE V
ACCURACY COMPARISON BETWEEN LTSF-DNODE AND ITS VARIANTS.

(NUMBERS) UNDER DATASETS ARE FORECASTING HORIZONS.

Models Metrics Exchange
(96)

ILI
(24)

ETTh1
(336)

ETTh2
(336)

ETTm2
(720)

w/o. DCMP MSE 0.088 1.662 0.429 0.342 0.366
MAE 0.206 0.844 0.427 0.392 0.382

w/o. NORM MSE 0.082 1.708 0.433 0.399 0.401
MAE 0.205 0.894 0.434 0.437 0.423

w/o. NODE MSE 0.082 1.620 0.426 0.360 0.365
MAE 0.205 0.893 0.424 0.400 0.383

LTSF-DNODE MSE 0.078 1.626 0.423 0.341 0.359
MAE 0.200 0.848 0.422 0.390 0.381

select the parameter combination that shows a higher ratio of
stationarity in the residual. If it is ambiguous to differentiate
the candidates by stationarity ratios, we compare the p-values
obtained from the ADF test for each sequence. Since a lower
p-value indicates a stronger indication of stationarity, we select
the parameter combination with a greater number of sequences
having lower p-values as the optimal choice.

Additionally, we determine whether to extract seasonality
during the decomposition process based on the seasonality
ratios. The Exchange, ILI, and Weather datasets have lower
seasonality ratios compared to other datasets, indicating that
these datasets have a lower significance of seasonality. We
decompose these datasets without extracting seasonality.

Fig. 3 shows a clear distribution discrepancy between trend
components of the training and testing datasets. It was ob-
served in the ETTh1, ETTh2, ETTm2, and ILI datasets. For
these datasets, we adopt instance normalization to mitigate
distribution discrepancies. There are less significant changes
in the distributions of residual components. Nevertheless, we
have observed different variances between the training and
testing datasets, and to mitigate these, we apply instance
normalization to residual components. For the seasonality
component, instance normalization is not applied since sea-
sonality repeats values periodically, as defined.

D. Ablation Studies

In order to understand the effectiveness of each block of
LTSF-DNODE, we conduct ablation studies on the datasets.

1) Decomposition: To assess the effectiveness of the
DCMP block (utilizing the classical decomposition method),
we compare the performance of the LTSF-DNODE model with
the “w/o. DCMP”, where the DCMP block is omitted. LTSF-
DNODE performs better compared to “w/o. DCMP”, with
a maximum improvement of 11.26% on MSE and 3.01% on
MAE in the Exchange dataset. As a result, we can infer that
time series decomposition has a positive impact on forecasting.

Additionally, we conduct an ablation study to investigate al-
ternative decomposition methods, specifically frequency-based
approaches, as follows:

• “FTLinear” employs Fourier transform [46] to decompose
the time series. It uses low or high-pass filters with

TABLE VI
MSE AND MAE ON VARIOUS DECOMPOSITION METHODS

Models Metrics Exchange
(96)

ILI
(24)

ETTh1
(336)

ETTh2
(336)

ETTm2
(720)

FTLinear MSE 0.087 1.978 0.442 0.410 0.409
MAE 0.215 0.983 0.443 0.436 0.426

WTLinear MSE 0.086 1.948 0.438 0.408 0.414
MAE 0.213 0.969 0.439 0.435 0.429

TSRLinear MSE 0.079 1.981 0.437 0.422 0.385
MAE 0.201 0.979 0.438 0.444 0.409

frequency criteria of 1.00×10−4. The filtered time series
passes through individual single linear layers.

• “WTLinear” employs Wavelet transform [46] to decom-
pose the time series. This model has a structure similar
to “FTLinear” and uses a low or high-pass filter.

• “TSRLinear” decomposes time series into trend, season-
ality, and residual components using classical methods.
This model is identical to the LTSF-DNODE, excluding
the NORM and NODE blocks.

Table VI shows the forecasting results of these models.
In various benchmark datasets, the classical decomposition
method is the better option than other methods.

2) Normalization: To assess how NORM and DENORM
blocks impact a dataset with distribution disparities, we com-
pare the performance of LTSF-DNODE with “w/o. NORM”,
which excludes instance normalization. LTSF-DNODE im-
proves performance by up to 14.54% in MSE and 10.76%
in MAE compared to “w/o. NORM” in the ETTh2 dataset.

Therefore, it can be inferred that instance normalization is
effective when there exists a distribution discrepancy between
the training and testing datasets.

3) Neural ODEs: Finally, we investigate the effectiveness
of modeling the relationship between the past and the future in
LTSF using linear ODEs, as shown in Eq. (6). We compare two
variants: “w/o. NODE” and LTSF-DNODE. To investigate the
effectiveness of NODE, we compare “w/o. NODE” and LTSF-
DNODE. Both models utilize decomposition and normaliza-
tion methods. However “w/o. NODE” has a single linear
layer, while LTSF-DNODE adopts the NODE framework. The
experimental results show that LTSF-DNODE outperforms
“w/o. NODE” with a maximum performance improvement
of 5.28% on MSE and 2.50% on MAE in the ETTh2 dataset.

Also, we explore the effect of various learning techniques,
such as ODE solver and regularizer, within the NODE frame-
work. The ODE solver is one of the crucial factors in the
NODE framework. Table VII shows the MSE and MAE
against various ODE solvers. Additionally, the Jacobian and
kinetic regularizers enable smoother learning. It transforms un-
stable learning into stable learning, leading to an improvement
in forecasting accuracy. In Fig. 4 (a), we can see the loss
decreases as the Jacobian and kinetic coefficients increase,
respectively; however, in Fig. 4 (b), it does not. These findings
indicate that the effectiveness of the regularizer depends on the
dataset. As a result, the incorporation of a regularizer suggests

TABLE VII
MSE AND MAE ON VARIOUS ODE SOLVERS. IT WAS CONDUCTED FOR

THE ILI DATASET WITH THE FORECASTING HORIZON OF 60.

ODE Solver MSE MAE

Euler 1.836 0.942
RK4 1.693 0.911

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Kinetic coefficient K

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Ja
co

bi
an

 c
oe

ffi
cie

nt

J

2.20

2.25

2.30

2.35

2.40

M
SE

(a) ILI

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Kinetic coefficient K

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

Ja
co

bi
an

 c
oe

ffi
cie

nt

J

0.290

0.292

0.294

0.296

0.298

M
SE

(b) ETTh2

Fig. 4. Analyses about the impact of the Jacobian and kinetic regularization
on performance (MSE). The forecasting horizon is 60 in (a) and 96 in (b).

its potential to enhance the learning process of our proposed
model.

4) Model Efficiency Analyses: Fig. 5 shows the number of
parameters and the MSE of models. Our LTSF-DNODE model
employs fewer parameters compared to Transformer-based
models and slightly more parameters compared to Linear-
based models. However, LTSF-DNODE outperforms these
models on various datasets.

V. RELATED WORK

Recently, various Transformer-based models have shown
encouraging results in the field of LTSF. Transformer-based
LTSF models overcome the limitations of RNNs in LTSF by
enabling direct multi-step forecasting, but difficulties remain
due to quadratic time complexity, high memory usage, and the
inherent limitations of the encoder-decoder architecture.

Transformer-based LTSF models have addressed these is-
sues in various ways. LogTrans [45] utilizes a convolu-
tional self-attention mechanism to address challenges re-
lated to locality-agnostic property and memory limitations.
Pyraformer [44] uses an interscale tree structure, reflecting
a multi-resolution representation of a time series dataset. In-
former [43] introduces a Probsparse self-attention to minimize
time complexity and reduce the processing time. Also, it uses
a generative decoder to improve performance.

On the other hand, other transformer-based models have
attempted to learn the characteristics of time series by com-
bining self-attention structures and decomposition methods.
Autoformer [41] aims to enhance forecasting accuracy by
capturing auto-correlation and employing the decomposition
method, which extracts trend and seasonality. This structure
enables progressive decomposition capabilities for intricate
time series. FEDformer [40] also utilizes the Fast Fourier

105 106 107

The number of parameters

0.5

1.0

1.5

M
SE

Pyraformer
Informer
Autoformer
FEDformer
DLinear
NLinear
LTSF-DNODE

Fig. 5. Model efficiency. It was measured for the Exchange dataset. The
bottom left corner is preferred.

transform with a low-rank approximation for preprocessing
the temporal data. Moreover, it employs a mixture of expert
decomposition, which extracts trend and seasonality, to man-
age the distribution discrepancy problem.

Due to the issues with Transformers, non-Transformer-
based models have also emerged. N-BEATS [47] incorporates
fully-connected networks with trend and seasonality decom-
position to enhance interpretability. Furthermore, DEPTS [48]
advances N-BEATS to propose a more effective model that
specializes in learning periodic time series. SNaive [22] uses
simple linear regression and demonstrates that a simple sta-
tistical model using linear regression could achieve better
performance. NLinear and DLinear [21] are Linear-based
models that use a single linear layer with simple preprocessing.
NLinear utilizes a normalization method that subtracts the last
value of the sequence from the input. DLinear utilizes the
classical decomposition method that decomposes the input into
a trend and a remainder.

VI. CONCLUSION AND FUTURE WORK

Long-term time series forecasting is an important research
topic in deep learning, and simple models such as Linear-
based approaches are showing good performance. However,
these models are too simple to represent the dynamics of
the time series. Our proposed method, LTSF-DNODE, uses
a neural ODE (NODE) framework with a simple architecture
and utilizes decomposition depending on data characteristics.
Our contribution allows the model to not only use temporal
information appropriately but also capture time series dynam-
ically. We experimentally demonstrated that LTSF-DNODE
outperforms the existing baselines on real-world benchmark
datasets. In ablation studies, we analyzed how the main
components of LTSF-DNODE affect performance.

In future work, we will refine the modeling of the resid-
ual component. Our analysis results demonstrate the evident
stationarity of the residual component within the optimal
settings we have identified. Therefore, we hypothesize that
the performance of LTSF can be further improved through an
elaborate modeling of the residual component, potentially via
an approach such as stochastic differential equations (SDEs).

ACKNOWLEDGEMENT

Noseong Park is the corresponding author. This work was
supported by the Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by
the Korean government (MSIT) (No. 2020-0-01361, Artificial
Intelligence Graduate School Program at Yonsei University,
10%), and (No.2022-0-00857, Development of AI/data-based
financial/economic digital twin platform, 90%)

REFERENCES

[1] B. Lim and S. Zohren, “Time-series forecasting with deep learning: a
survey,” Philosophical Transactions of the Royal Society A, vol. 379,
no. 2194, p. 20200209, 2021.

[2] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Trans-
formers in time series: A survey,” arXiv preprint arXiv:2202.07125,
2022.

[3] J. Hwang, J. Choi, H. Choi, K. Lee, D. Lee, and N. Park, “Climate
modeling with neural diffusion equations,” in ICDM. IEEE, 2021, pp.
230–239.

[4] J. Choi, H. Choi, J. Hwang, and N. Park, “Graph neural controlled
differential equations for traffic forecasting,” in AAAI, vol. 36, no. 6,
2022, pp. 6367–6374.

[5] S. Y. Jhin, H. Shin, S. Hong, M. Jo, S. Park, N. Park, S. Lee, H. Maeng,
and S. Jeon, “Attentive neural controlled differential equations for time-
series classification and forecasting,” in ICDM. IEEE, 2021, pp. 250–
259.

[6] S. Y. Jhin, J. Lee, M. Jo, S. Kook, J. Jeon, J. Hyeong, J. Kim, and
N. Park, “Exit: Extrapolation and interpolation-based neural controlled
differential equations for time-series classification and forecasting,” in
TheWebConf (former WWW), 2022, pp. 3102–3112.

[7] J. Choi and N. Park, “Graph neural rough differential equations for traffic
forecasting,” ACM Transactions on Intelligent Systems and Technology,
2023.

[8] H. Choi, J. Choi, J. Hwang, K. Lee, D. Lee, and N. Park, “Climate
modeling with neural advection–diffusion equation,” Knowledge and
Information Systems, vol. 65, no. 6, pp. 2403–2427, 2023.

[9] S. Hong, M. Jo, S. Kook, J. Jung, H. Wi, N. Park, and S.-B. Cho,
“TimeKit: A time-series forecasting-based upgrade kit for collaborative
filtering,” in 2022 IEEE International Conference on Big Data (Big
Data). IEEE, 2022, pp. 565–574.

[10] A. Alqahtani, M. Ali, X. Xie, and M. W. Jones, “Deep time-series
clustering: A review,” Electronics, vol. 10, no. 23, p. 3001, 2021.

[11] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt,
J. Weber, G. I. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean,
“Inceptiontime: Finding alexnet for time series classification,” Data
Mining and Knowledge Discovery, vol. 34, no. 6, pp. 1936–1962, 2020.

[12] W. Chen and K. Shi, “Multi-scale attention convolutional neural network
for time series classification,” Neural Networks, vol. 136, pp. 126–140,
2021.

[13] S. Y. Jhin, M. Jo, S. Kook, and N. Park, “Learnable path in neural
controlled differential equations,” in AAAI, 2023.

[14] J. Jeon, J. Kim, H. Song, S. Cho, and N. Park, “Gt-gan: General purpose
time series synthesis with generative adversarial networks,” NeurIPS,
vol. 35, pp. 36 999–37 010, 2022.

[15] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative
adversarial networks,” NeurIPS, vol. 32, 2019.

[16] A. Alaa, A. J. Chan, and M. van der Schaar, “Generative time-series
modeling with fourier flows,” in ICLR, 2021.

[17] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthe-
sis,” arXiv preprint arXiv:1802.04208, 2018.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[19] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS,
vol. 30, 2017.

[21] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective
for time series forecasting?” in AAAI, vol. 37, no. 9, 2023, pp. 11 121–
11 128.

[22] H. Li, J. Shao, K. Liao, and M. Tang, “Do simpler statistical methods
perform better in multivariate long sequence time-series forecasting?” in
Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, 2022, pp. 4168–4172.

[23] R. Salles, K. Belloze, F. Porto, P. H. Gonzalez, and E. Ogasawara,
“Nonstationary time series transformation methods: An experimental
review,” Knowledge-Based Systems, vol. 164, pp. 274–291, 2019.

[24] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

[25] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, “Stl:
A seasonal-trend decomposition,” J. Off. Stat, vol. 6, no. 1, pp. 3–73,
1990.

[26] E. B. Dagum and S. Bianconcini, Seasonal adjustment methods and real
time trend-cycle estimation. Springer, 2016.

[27] R. J. Hyndman, “Moving averages.” 2011.
[28] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural

ordinary differential equations,” NeurIPS, vol. 31, 2018.
[29] J. R. Dormand and P. J. Prince, “A family of embedded runge-kutta

formulae,” Journal of computational and applied mathematics, vol. 6,
no. 1, pp. 19–26, 1980.

[30] J. Zhuang, N. C. Dvornek, S. Tatikonda, and J. S. Duncan, “Mali: A
memory efficient and reverse accurate integrator for neural odes,” arXiv
preprint arXiv:2102.04668, 2021.

[31] C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. Oberman, “How to
train your neural ode: the world of jacobian and kinetic regularization,”
in ICML. PMLR, 2020, pp. 3154–3164.

[32] J. Jeon, S. Kang, M. Jo, S. Cho, N. Park, S. Kim, and C. Song,
“Lightmove: A lightweight next-poi recommendation fortaxicab rooftop
advertising,” in Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, 2021, pp. 3857–3866.

[33] S. Y. Jhin, M. Jo, T. Kong, J. Jeon, and N. Park, “Ace-node: Attentive
co-evolving neural ordinary differential equations,” in Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, 2021, pp. 736–745.

[34] S. Hong, H. Shin, J. Choi, and N. Park, “Prediction-based one-shot
dynamic parking pricing,” in Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, 2022, pp. 748–
757.

[35] J. Morrill, C. Salvi, P. Kidger, and J. Foster, “Neural rough differential
equations for long time series,” in Proceedings of the International
Conference on Machine Learning (ICML). PMLR, 2021, pp. 7829–
7838.

[36] J. Lee, J. Jeon, J. Hyeong, J. Kim, M. Jo, K. Seungji, N. Park et al.,
“Lord: Lower-dimensional embedding of log-signature in neural rough
differential equations,” arXiv preprint arXiv:2204.08781, 2022.

[37] R. Wang, Y. Dong, S. O. Arik, and R. Yu, “Koopman neural fore-
caster for time series with temporal distribution shifts,” arXiv preprint
arXiv:2210.03675, 2022.

[38] G. Goerg, “Forecastable component analysis,” in ICML. PMLR, 2013,
pp. 64–72.

[39] A. Witt, J. Kurths, and A. Pikovsky, “Testing stationarity in time series,”
physical Review E, vol. 58, no. 2, p. 1800, 1998.

[40] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer:
Frequency enhanced decomposed transformer for long-term series fore-
casting,” in ICML. PMLR, 2022, pp. 27 268–27 286.

[41] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting,”
NeurIPS, vol. 34, pp. 22 419–22 430, 2021.

[42] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-
term temporal patterns with deep neural networks,” in SIGIR, 2018, pp.
95–104.

[43] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in AAAI, vol. 35, no. 12, 2021, pp. 11 106–11 115.

[44] S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. X. Liu, and S. Dustdar,
“Pyraformer: Low-complexity pyramidal attention for long-range time
series modeling and forecasting,” in ICLR, 2021.

[45] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “En-
hancing the locality and breaking the memory bottleneck of transformer
on time series forecasting,” NeurIPS, vol. 32, 2019.

[46] R. A. Roberts and C. T. Mullis, Digital signal processing. Addison-
Wesley Longman Publishing Co., Inc., 1987.

[47] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-beats:
Neural basis expansion analysis for interpretable time series forecasting,”
arXiv preprint arXiv:1905.10437, 2019.

[48] W. Fan, S. Zheng, X. Yi, W. Cao, Y. Fu, J. Bian, and T.-Y. Liu, “Depts:
deep expansion learning for periodic time series forecasting,” arXiv
preprint arXiv:2203.07681, 2022.

	Introduction
	Preliminaries
	Problem Formulation
	Time Series Decomposition
	Neural Ordinary Differential Equations
	Empirical Explorations on Decomposition and NODEs

	Proposed Method
	Overall Workflow
	Exploratory Data Analysis
	Properties
	Decomposition
	Normalization

	DCMP Block
	NODE Block
	NORM & DENORM Blocks
	Forecasting
	Comparison with Existing Models

	Experimental Evaluations
	Experimental Environments
	Datasets
	Baselines
	Metrics

	Main Results
	Data Analysis Results
	Ablation Studies
	Decomposition
	Normalization
	Neural ODEs
	Model Efficiency Analyses

	Related Work
	Conclusion and Future Work
	References

