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Abstract—Data sketching has emerged as a key infrastructure
for large-scale data analysis on streaming and distributed data.
Merging sketches enables efficient estimation of cardinalities and
frequency histograms over distributed data. However, merging
sketches can require that each sketch stores hash codes for
identifiers in different data sets or partitions, in order to perform
effective matching. This can reveal identifiers during merging
or across different data set or partition owners. This paper
presents a framework to use noisy hash codes, with the noise
level selected to obfuscate identifiers while allowing matching,
with high probability. We give probabilistic error bounds on
simultaneous obfuscation and matching, concluding that this is
a viable approach.

Index Terms—data sketches, big data, privacy, information
theory

I. INTRODUCTION

Large data sets are now used across a variety of domains,
including biosciences, language processing, and online ad-
vertising. Despite the variety of applications, data analysis
at scale often requires answering a common set of similar
queries for different data sets [1]–[4]. For example, estimating
the number of unique identifiers in a dataset is called the
count distinct problem. Another canonical problem is the
frequency estimation problem – estimating the distribution of
item frequencies over items in a data set. For small data sets,
these queries are simple to evaluate.

However, streaming and/or distributed data sets are much
more challenging. For them, there are a range of useful
algorithms, known as sketching algorithms or data sketches,
that make a single pass through the data, in parallel for
distributed data sets, maintaining a small data structure in
memory, called a sketch. Sketches from multiple data sets can
be merged to form a single sketch for the combined data set,
and sketches maintain data sufficient to compute estimates that
are accurate, with high confidence. Such mergeable sketches
have seen widespread use in industry, for example in Google’s
BigQuery engine [5] and in the open-source Apache DataS-
ketches library [6]. After processing, a merged sketch can be
stored independently of the sketches from which it was built,
and it can be used to answer multiple queries about the entire
data set.

Conceptually, traditional mergeable sketches operate in a
paradigm where the entity sketching the data is the same
as the entity merging the sketches. However, with changing
privacy regulations [7], this assumption may be invalid. For
example, a multinational company may own data warehouses
in jurisdictions with differing privacy regulations which could

prevent data-sharing across geographies even within the same
organization. Rather than sending raw data, which could
contravene regulation (and is slow at scale), organizations
can send sketches to efficiently answer queries over data
from multiple locations, if the data sketches can be shown
to preserve privacy. More generally, entities holding data may
differ from the entity wishing to answer a query. For exam-
ple, an online advertising broker that runs campaigns across
different vendors needs to estimate statistics for advertising
campaigns over multiple vendors, yet the vendors want to
avoid revealing sensitive statistics or data to the broker or
other vendors. As a solution, vendors can send data sketches
with sufficient noise to obfuscate each vendor’s contribution
to query results over the combined data. This has prompted
novel multiparty computation and communication models for
aggregating statistics, as presented in [8]–[10].

One challenge in developing such combined estimates is that
merging many sketches relies on a key feature of hashing:
that the same input always maps to the same output. Some
sketches hash identifiers to produce hash codes, then transmit
hash code-value pairs as the sketch, where the value is a count
or some other number, for example Bottom-k–type sketches
[11]–[13]. But using the hash codes as keys to compare allows
parties with the hash function to hash identifiers and compare
them to the hash codes transmitted in data sketches. If they
match, then the party can infer, with high probability, that
the identifier was contained in the data that generated the
sketch. We address the issue of key obfuscation in this paper
which is necessary in sketches that rely on key matching in
the merge step such as [10], [13]. Data privacy research more
often addresses obfuscation of the values [14], [15] but both
are important in practice.

Our work addresses how to merge based on keys among un-
trusted parties, to understand how sketches with non-matching
hashes can be merged. In particular, we assume that entities
sketching the data and merging the sketches do not trust each
other. This invalidates the approach of [16] who assume that
the hash function seed is a secret shared among those parties,
and do not add noise to the hash codes. While we use noise
to achieve obfuscation, another option is to encrypt the sketch
prior to merging, but this is time- and resource-intensive [10].
Our contribution is to design a noisy hashing scheme that
permits matching among noisy hashes and only has a small,
controllable probability of revealing any true hash code shared
by two non-trusting entities.

We achieve this by using a hash function with a seed shared
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among the parties, but then having each party flip hash code
bits uniformly at random with some probability to add noise
to each hash code. In general, distinct items tend to have hash
codes that disagree in about half their bits. We show that,
given a sufficient hash code bit-length and an appropriate
probability of flipping each bit when adding noise, all hash
codes that did not originally match are likely to maintain
sufficient Hamming distance as noisy keys that considering
clusters of close noisy keys as matching sets is likely to have
few or no matching errors. Also given a sufficient hash code
bit-length and bit-flipping probability, we show that there is
sufficient noise that the center of a cluster of noisy keys is
unlikely to match the hash code for the identifier represented
by the noisy keys. Finally, we complement the theoretical
analysis with a suite of characterizations showing how the
performance varies depending on practical considerations such
as the noise probability over bits in the hash code and the hash
code length.

A. Related Work.

For distinct counting, there is a variety of work focusing
on obfuscation and adding noise to obtain weak privacy [17],
[18]. If sketches do not have added noise and use only a single,
public hash function, then a series of merge operations can
identify the presence of an identifier with high confidence,
which is clearly undesirable from a privacy perspective [19].
If the hash function seed can be kept secret and cryptographic
hash functions are used, then a wide class of practical sketches
can be published under a strong differential privacy guarantee
[14]–[16]. When secretly seeded private noise is combined
with a public hash function strong differential privacy guaran-
tees are possible in some cases. These methods apply when
sketch contributors and the merger all trust one another.

Applying noise by using randomized response [20] bit-
flipping permits merging for the class of sketches [21] that
store only bitmaps; including the Flajolet-Martin sketch [22].
Other types of mergeable sketches that benefit from strong
differential privacy guarantees include linear sketches for fre-
quency estimation by adding noise to entries in the sketch [23],
[24]. This differs from simply adding noise to the estimator,
as seen in [8], [25], [26], which is not sufficient in the setting
where merging sketches is required because merging requires
access to the sketch data structure.

Using a single public hash function is not a serious problem
if sketches keep only a single bit [21] or maintain additive
increments in each bucket [23], [24], in which buckets can
only increase in value by at most one based on an update
from a new or previously seen identifier hashing to that bucket.
This property, known as low sensitivity, enables certain noise
mechanisms to be applied to the sketches prior to merging.

In addition to low sensitivity, the bitmap-style sketches of
[21] and frequency estimator sketches of [23], [24] benefit
from another property: their performance is not degraded by
multiple identifiers hashing to the same bucket. In [21], a bit
is set from 0 to 1 if the corresponding bucket is occupied by
at least one item in the stream. The estimator needs the total

number of set bits and, crucially, does not depend on how
many items have caused a particular bit to be set. Similarly, the
counting arrays in [23], [24] rely on the Count(Min) arrays of
[27], [28]. These arrays have an independent hash function for
each row to determine which rows in the array to increment.
Even if distinct items land in the same bucket in one row of
the array, they are unlikely to do so in further rows, enabling
the estimate to compensate for them easily. So keys are not
required in the data sketch.

A mergeable sketch to estimate both frequency histograms1

and distinct count in small space has been proposed by [10].
The sketch maintains a one-dimensional array of counters
whose buckets are incremented by all items landing in that
location and a hash function that places exponentially more
mass on low-index buckets. These buckets must be resolved
from those that have only a single identifier land there for later
estimation, unlike in the sketches listed previously. One issue
with this approach is that low-indexed buckets with a high
probability of being occupied have artificially large counts
because multiple items are hashed to them. The second issue is
that their collision-resolution uses homomorphic encryption to
generate the keys that indicate which items are in each bucket.
That requires a further hashing step per update and suffers
from the computational overhead of encrypted arithmetic.

II. NOTATION AND GOALS

Suppose we have a set of data sources, and each has a
set of values. For each value, the data source applies a hash
function to get a hash code, then adds noise to the hash code
by randomly selecting whether to flip the bit (change its value),
independently for each bit in the hash code. The result is a
noisy key. Hash codes are generated by a public hash function
accessible to and computable by all sources. The noisy key
is generated using independent, private randomness for every
source.

Next, all data sources transmit their noisy keys to a merge
process. The merge process clusters the noisy keys into
clusters having zero or one noisy keys from each data source.
Informally, one goal is for the merge process to place all noisy
keys resulting from the same value into a cluster with no other
noisy keys, for each distinct value. If only one data source has
a value, then the goal is to place its noisy key into a “singleton
cluster” with only that noisy key. Another goal is for it to be
difficult to infer the hash code for any noisy key, even if each
data source supplies a noisy key for the same value.

Before formalizing those goals, we introduce some notation.
For any pair of values va and vb from different data sources,
let a and b be the hash codes, and let a′ and b′ be the noisy
keys. All data sources use the same public hash function, so
if va = vb then a = b. Also, assume that if va ̸= vb, then each
bit position in a and b has probability (over hash functions)

1Note that frequency histogram and frequency estimation differ in the
sketching literature. The latter asks us to estimate the frequency of any
identifier in the data stream while the former asks us to estimate the number
of identifiers with a given count in the stream.



one half of having equal bit values. Our probabilities are over
the choice of hash function as well as over random bit flips.

We use d(a, b) and d(a′, b′) to represent Hamming distance
– the number of bit positions with unequal bit values. In-
formally, we say that d(a, b) is the number of disagreements
between sequences a and b. We refer to the number of
bit positions that have equal bit values as the number of
agreements. For example, 00011 and 00110 has Hamming
distance 2, because it has two disagreements (in the third and
fifth positions).

Let (a′, b′) be a pair of noisy keys with a′ from a different
data source than b′. Let t be a matching threshold, and declare
(a′, b′) a match if d(a′, b′) < t and unmatched otherwise.
Define two types of events we wish to avoid or minimize:

• M : d(a′, b′) < t and va ̸= vb – noisy keys match for
unequal values.

• U : d(a′, b′) ≥ t and va = vb – noisy keys for equal
values are unmatched.

Given a set of noisy keys from the same value and the hash
code for the value, define the median key to be bit sequence
with each position’s bit value equal to the majority bit value
in that position over the set of noisy keys, with a tie broken in
favor of the value in that position in the hash code. Specifically,
if a′i = x and there are an equal number of bits x and 1− x
collected, then the value x is reported as the median in position
i. Obfuscation fails if the median key is the same as the hash
code. For each noisy key, define event R to be that the set of
noisy keys that shares its hash code has median key the same
as that hash code.

In the following sections, we will analyze probabilities and
expectations of the undesirable events M , U , and R. Then we
examine key lengths and noise levels (in terms of bit-flipping
probabilities) required for to control the probabilities of those
events.

III. MISMATCHES AND MISSED MATCHES

Let s be the number of data sources, and let mi be the
number of noisy keys from data source i for 1 ≤ i ≤ s.
Assume noisy keys from the same data source result from
distinct values. We are concerned with matching among pairs
of noisy keys from different data sources. Let Q be the set
of those pairs. Since Q is all pairs of noisy keys except those
from the same data source:

|Q| =
(∑s

i=1 mi

2

)
−

s∑
i=1

(
mi

2

)
. (1)

Let n be the length of each hash code and each resulting
noisy key. Let pf be the probability of flipping each bit while
transforming a hash code into a noisy key. Let p∆ be the
probability that bit-flipping alters one bit but not the other in
some position in a pair of noisy keys. Since there are 2 choices
for which bit to flip, and one must flip but not the other,

p∆ = 2pf (1− pf ). (2)

A. Mismatches

Recall the binomial distribution’s probability mass function
(pmf):

b(k, n, p) =

(
n

k

)
pk(1− p)n−k. (3)

And use B(ko, kf , n, p) to denote the probability of a binomial
random variable having value in [ko, kf ]:

B(ko, kf , n, p) =

kf∑
k=ko

(
n

k

)
pk(1− p)n−k. (4)

Recall that M is the event that for a pair (a′, b′) ∈ Q, noisy
keys a′ and b′ match, but they come from different values.

Lemma 1. Let

pM = Pr {d(a′, b′) < t|va ̸= vb} (5)

be the probability of a match given different values. Then

pM = B

(
0, t− 1, n,

1

2

)
. (6)

Proof. Recall that our probabilities are over selection of a hash
function, and we assume that assigns each bit either 0 or 1
with probability 1

2 for each value, independently over bits and
between hash codes for va ̸= vb. If the bit-flip probability
pf is independent of whether a bit has value 0 or 1, then,
by symmetry, the probability of value 0 or 1 remains 1

2 after
random bit-flipping. To see this, the probability of 0 is the
probability of starting with 0 and not flipping the bit plus the
probability of starting with 1 and flipping the bit: 1

2 (1−pf )+
1
2pf = 1

2 .

B. Missed Matches

Recall that U is the event that (a′, b′) ∈ Q are unmatched
and they come from the same value.

Lemma 2. Let

pU = Pr {d(a′, b′) ≥ t|va = vb} . (7)

Then
pU = B(t, n, n, p∆). (8)

Proof. Since va = vb, their hash codes are equal: a = b.
So adding noise must introduce at least t disagreements to
get d(a′, b′) ≥ t. For each bit position, the probability of
introducing disagreement is p∆.

C. Matching Errors Over All Pairs

Since mismatches and missed matches are disjoint, the
probability of either happening is at most the maximum of
their probabilities:

Lemma 3. Let pW be the probability that a pair of noisy keys
(a′, b′) ∈ Q has a mismatch or a missed match. Then

pW ≤ max(pM , pU ). (9)

Proof. Note that

pW = Pr {M ∨ U} . (10)



Since M requires va ̸= vb and U requires va = vb, they are
disjoint events and pW = Pr {M}+ Pr {U}. Note that

Pr {U} = Pr {d(a′, b′) ≥ t ∧ va = vb} (11)
= Pr {d(a′, b′) ≥ t|va = vb}Pr {va = vb} (12)
= pUPr {va = vb} . (13)

Similarly,
Pr {M} = pMPr {va ̸= vb} . (14)

So

pW = Pr {M}+ Pr {U} (15)
= pMPr {va ̸= vb}+ pUPr {va = vb} (16)

But Pr {va ̸= vb} = 1− Pr {va = vb}, so

pW = pM (1− Pr {va = vb}) + pUPr {va = vb} . (17)

Since this is a convex combination,

pW ≤ max(pM , pU ). (18)

Consider the expected number of matching errors of either
type:

Theorem 1. Let w be the number of mismatches and missed
matches over all pairs in Q. Then

Ew = pW |Q| (19)
≤ max(pM , pU )|Q| (20)

= max(pM , pU )

[(∑s
i=1 mi

2

)
−

s∑
i=1

(
mi

2

)]
. (21)

Proof. By linearity of expectations, the expectation over Q is
the probability for each pair, pW , times |Q|. For the second
and third lines, apply Lemma 3 for pW and Expression 1 for
|Q|.

Now consider the distribution of the number of matching
errors:

Corollary 1.

∀h ≥ 0 : Pr {w ≥ h} ≤ max(pM , pU )|Q|
h

. (22)

Proof. Apply Markov’s inequality to nonnegative random vari-
able w, using Theorem 1 for the expectation.

For the probability of no matching errors:

Corollary 2.

Pr {w = 0} ≥ 1−max(pM , pU )|Q|. (23)

Proof. Apply Corollary 1, with h = 1.

IV. OBFUSCATION

Recall that the median key for a set of noisy keys and a
hash code that was used to generate the noisy keys is defined
as the bit sequence that agrees with the majority of the noisy
keys in each position, and agrees with the original hash code
in positions with a tie over the noisy keys. It is the “best
guess” for which hash code generated the noisy keys, with
ties broken in favor of guessing correctly, to be conservative.
Also recall that event R occurs for a noisy key if and only if
the set of noisy keys with the same hash code as the noisy
key has median key equal to that hash code.

Lemma 4. Let pR(z) be the probability that, for a set of z
noisy keys that have the same hash code, for all n positions,
the median bit value is the same as the bit value for that
position in the hash code.

pR(z) = B
(
0,
⌊z
2

⌋
, z, pf

)n

. (24)

Proof. If there are at most ⌊ z
2⌋ bit flips, then the median bit

value remains the same as the hash code bit value. This is
independent among positions.

For the expected number of noisy keys with hash codes
“revealed” by median keys: let r be the number of noisy keys
for which R occurs.

Theorem 2. Let r be the number of noisy keys for which R
occurs. Then

E r ≤ max
z∈{1,...,s}

pR(z)

s∑
i=1

mi. (25)

Proof. Each noisy key may be in a set of from 1 to s noisy
keys with the same hash code. So pR(z) is its probability of R
for some z ∈ {1, . . . , s}. Relying on linearity of expectation,
we can sum those pR(z) values over the number of noisy
keys.

V. EMPIRICAL RESULTS

A. Numbers and Figures

We now provide a series of plots illustrating the bounds
derived in Section III. Figure 1 shows key lengths sufficient
to ensure 95% confidence that all pairwise matches are correct
(based on Corollary 2), given 95% confidence that each
median of matched noisy keys is not equal to its original
key – so on average 95% obfuscation (by Theorem 2). Each
plotted value is for the worst-case arrangement of matching
values over the s data sources (generally, having full sets of s
matches) and for optimal bit-flip probability pf and matching
threshold t. Noisy key lengths grow slowly in the number of
keys per data source (m), and somewhat aggressively in the
number of data sources contributing keys for matching (s).
The key lengths are similar for even s values and the next
odd values, because we assume that a median noisy key with
a tied number of zero and one values for a bit position is the
same as the original key’s bit value for the position, to be
conservative.



Fig. 1. Number of bits per noisy key (n) sufficient to achieve at least
95% confidence of no pairwise matching errors while maintaining a 95%
probability that the median of matched noisy keys does not match the original
key. In general, the key length grows with the number of data sources s. Key
lengths are nearly equal for each even s and s+ 1, because we define each
median noisy key bit to have the bit value of the original key in case of a tie
in bit values over the set of noisy keys.

Figures 2 to 7 give a sense of the scales of probabilities
of events M (incorrectly matching different values), U (incor-
rectly not matching two keys of the same value), and R (the
median key reveals the true hash code), and numbers of pairs
of potential matches among noisy keys |Q|. Note that most of
the plots are logarithmic on the y-axis.

Figure 2 presents probabilities of R – the event that the
median key of a set of noisy keys from the same value
may reveal the hash code that generated the key. That would
allow anyone with the hash function and a value of interest
to test whether the value hashes to the revealed hash code.
More noise (higher bit-flip probability pf ) makes revelation
less likely, as does using more bits in the noisy keys, as
it allows more opportunities for some bit position to be
flipped in the majority of the noisy keys from the same value.
Inspecting the pairs of curves for pf = 0.09, pf = 0.18 and
pf = 0.12, pf = 0.24 we see that the magnitude of the
gradient increases by roughly a factor five. This means that
doubling the noise probability increases the exponential rate
parameter describing the probabilities by a factor of roughly
five. The plot is for 2 data sources.

Figure 3 presents bit-flip probabilities pf required to achieve
low revelation probabilities as the bit sequence length varies.
The probabilities range from about a fifth to a third for n =
50 bits per noisy key (on the left) to about 5% to 10% for
1000 bits per noisy key. The numbers presented are for 2 data
sources – they would increase with more data sources. Using
less noise makes correct matching more likely.

Figures 4 and 5 show probabilities of the incorrect matching
events M and U for each pair of noisy keys from different
data sources. Event M is an incorrect match – matching
noisy keys that result from different values, put another way:

Fig. 2. Upper bound on probability that the median key for a noisy keys set
of matched noisy keys is equal to its hash code. More noise (higher bit-flip
probability pf ) makes this possibility to identify a noisy key’s hash code less
likely, and more bits in the noisy key (n) make it exponentially less likely.
(The values are for s = 2 data sources.)

Fig. 3. Minimum bit-flip probability to ensure the upper bound on revelation
probability (pR) is at most some selected values. Achieving a revelation
probability bound less than 0.05 with fewer than 400 bits per noisy key
requires bit-flip probabilities at least 0.05. For 50 bits per noisy key (the
leftmost data points), a bit-flip probability of about 0.25 is required for
a revelation probability bound of 0.05. (The values are for a pair of data
sources.)

failure to separate a pair of noisy keys that should not be
matched. Event U is failure to match a pair of noisy keys
that should be matched. Failure to separate is independent of
bit-flip probability pf , but failure to match depends on it. The
pf values used for Figure 5 are the minimums necessary to
bound the revelation probability pR by 5% for 2 data sources.

Figure 6 shows the probabilities of event M∨U – either type
of matching error – for each pair of noisy keys from different
data sources, given that bit-flip probability pf is large enough
to ensure revelation probability pR ≤ 0.05. The results shown



Fig. 4. Probabilities pM , for each pair of noisy keys, that they are matched,
given that they should not be, that is, given that they are produced from
different values. Each line is for a procedure that declares a match if fewer
than the specified fraction of bits disagree. For each fraction, the probability
decreases exponentially in n – the number of bits per noisy key.

Fig. 5. Probabilities pU , for each pair of noisy keys, that they are left
unmatched, given that they should be matched, since equal values produce
them. Each line is for a procedure that declares a non-match if at least a
specified fraction of bits disagree. For each number of bits in each noisy key
(n), the probabilities shown are based on using the bit-flip probability pf that
required for a revelation probability (pR) upper bound of 0.05, with a pair
of data sources. Decreases in n are super-exponential because that pf value
decreases with n, as shown in Figure 3. Nonetheless, over 300 bits are needed
per noisy key to make this probability less than one in a billion, even if noisy
keys match if they agree on only three-quarters or more of their bits.

Fig. 6. Probabilities pW , for each pair of noisy keys, that they are incorrectly
matched – either matched though they have different values or left unmatched
though they have the same values. Each point is for the optimal choice of bit-
flip probability pf among those great enough to produce revelation probability
pR ≤ 0.05 and the optimal choice of matching threshold t ∈ {1, ..., n}. Each
line shows results for a different number of data sources s.

are for the optimal choices among those bit flip probabilities
and matching threshold t – the choices that minimize the
maximum of pM and pU . Each line corresponds to a number
of data sources; as that number grows, the probabilities of
matching errors increase substantially, because s data sources
allows up to s noisy keys for the same value, making it more
likely that the median of those keys is the same as their (pre-
noise) hash code, so forcing a higher bit-flip probability to
achieve a low revelation probability.

Figure 7 shows how the number of pairs of noisy keys
from different data sources grows as the number of keys per
data source mi and the number of data sources s increase.
The growth is sub-exponential in the number of keys per data
source, as it is O(ms2). In contrast, the values for pM and pU
decrease exponentially and super-exponentially, respectively,
in the number of bits per noisy key. This is promising as
problem sizes increase, since the product of these numbers
bounds the expected number of matching errors of any type
(by Theorem 1) and the probability of any matching error (by
Corollary 2).

B. Discussion of Empirical Results

The empirical results show that noisy key lengths required
for correct matching with high probability while achieving
95% obfuscation grow slowly in the number of keys per data
source s but aggressively in the number of contributors s
wishing to protect their data from each other. At the high
end of the number of keys per source plotted (about 216),
the accuracy compares favorably with LiguidLegions [10],
which counts frequencies up to about 1010 using 216 keys
with relative error about 2.5%. (As far as we know, that
is the only comparable method that merges noisy sketches
for frequency histogram estimation.) Although LiquidLegions



Fig. 7. Numbers of pairs of noisy keys from different data sources. The base-
10 logarithm of the expected number of matching errors for 2 data sources
is at most the numbers plotted here plus the numbers on the line for s = 2
in Figure 6, according to Theorem 1. As an example, for 2 data sources and
m1 = m2 = 64 000 noisy keys (the point on the right of the lowest line in
this figure), the number of pairs |Q| is between 109 and 1010. For noisy key
length n = 400 and s = 2, Figure 6 shows that the error probability for each
pair is less than 10−13. So that gives an expected number of matching errors
on the order of 10−3, implying (via Corollary 2) about a 99.9% probability
of correct matching.

uses 256 bits per key, their matching scheme relies on cryp-
tographic functions that are slow to evaluate. Regarding the
number of contributors, sketches that offer privacy consistently
have performance degradation in the number of parties sharing
data [10], [19], [21], with noticeable losses in accuracy as
the number of contributors progresses from 2. The amount
of computation required for merging with privacy can also
increase substantially, for example if a method’s cryptographic
communication protocol requires computation that is quadratic
in the number of contributors [10]. Finally, the method of
noisy keys presented in this paper can be applied to key-based
methods such as Bottom-k sketches [11], [12], [29] and the
related Theta sketches [6], [13] that use a fixed number of keys,
which is convenient since it allows implementors to determine
sketch sizes a priori.

VI. CONCLUSIONS AND FUTURE WORK

We have examined how random bit flips can obfuscate
hash codes and still allow effective matching. We found that
an upper bound on the probability that the median of noisy
keys from the same hash code reveals the hash code – the
revelation probability – implies a lower bound on the bit-flip
probability required, and that bound grows with the number of
data sources and shrinks with more bits per key. For matching
error, selecting a threshold number of bit positions that must
agree to declare a match mediates a tradeoff between two types
of matching error – matching noisy keys that have different
values or failing to match those with the same value. The
probabilities of both types of errors decrease exponentially
as key length (in bits) increases. And bit-flip probability also

plays a role in the probability of failing to match keys from
equal values.

There are two ways to view error probabilities – on a
per-key or per-pair basis, or as a probability that no such
errors occur over all keys or pairs. For revelation probabilities,
we imposed per-key limits, meaning, for example, an upper
bound of 5% for revelation probability, which implies that,
on average, fewer than 5% of keys agree with their median
keys. For matching error probabilities, we analyzed per-pair
probabilities and probabilities over all pairs. For per-pair
probabilities, the data for Figure 6 show that the per-pair
probability of either type of matching error is less than 5%
(for revelation probability at most 5%) for 100-bit keys for
up to 5 data sources, and 200-bit keys manage it for up to
10 data sources. However, achieving a low probability that
no noisy key pair has a matching error of either type requires
longer keys. For 2 data sources, achieving 95% confidence that
matching (or separation) is correct over all pairs requires about
300 bits for a few thousand noisy keys per data source, about
350 bits for about 10,000 keys per data source, and about 400
bits for 40 to 60,000 keys per source.

Since one goal of sketching is to use data summaries that
only require small memory footprints, using many bits per
key may be a concern. In practice, some sketches use as few
as 64 bits per key without noise and privacy [6], [13], [30].
However, it is known that more bits per key are needed for
privacy deployments and both [10], [16] use 256 bits per key.
Hence, there can be a cost (in bits) for the obfuscation achieved
through noise. On the other hand, the numbers of bits detailed
in this paper are total bits per key – not additional bits, so
any implementation using the number of bits detailed here or
more would not need to add bits per key.

Also, achieving high confidence that there are no pairwise
matching or separation errors may be a conservative require-
ment for achieving correct matching, especially for greater
numbers of data sources, which require longer noisy keys.
With several data sources, it should be possible to recover
from some matching errors. For example, with 5 data sources,
if there are five noisy keys resulting from the same value, then
there are

(
5
2

)
= 10 pairs among the noisy keys. If there are one

or two errors, it may be possible to infer that the five should
match on the strength of the evidence that eight or nine of
the pairs match; and it is likely that the non-matching pairs
would have Hamming distances close to the threshold value
t. More research is needed to understand how different levels
of pairwise errors affect the accuracy of different matching
methods.
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