
AutoKG: Efficient Automated Knowledge Graph
Generation for Language Models

Bohan Chen∗ and Andrea L. Bertozzi
Department of Mathematics, University of California, Los Angeles

520 Portola Plaza
Los Angeles, CA, 90095, USA

Abstract—Traditional methods of linking large language mod-
els (LLMs) to knowledge bases via the semantic similarity search
often fall short of capturing complex relational dynamics. To
address these limitations, we introduce AutoKG, a lightweight
and efficient approach for automated knowledge graph (KG)
construction. For a given knowledge base consisting of text
blocks, AutoKG first extracts keywords using a LLM and
then evaluates the relationship weight between each pair of
keywords using graph Laplace learning. We employ a hybrid
search scheme combining vector similarity and graph-based
associations to enrich LLM responses. Preliminary experiments
demonstrate that AutoKG offers a more comprehensive and
interconnected knowledge retrieval mechanism compared to the
semantic similarity search, thereby enhancing the capabilities of
LLMs in generating more insightful and relevant outputs.

Index Terms—Language model, Knowledge Graph, Graph
Learning, Retrieval-augmented Generation

I. INTRODUCTION

Large Language Models (LLMs) such as BERT [1],
RoBERTA [2], T5 [3], and PaLM [4], are intricately designed
architectures equipped with an extensive number of parame-
ters. These models have been rigorously pre-trained on vast
and diverse corpora, thereby enabling them to excel in a wide
array of Natural Language Processing (NLP) tasks, from lan-
guage understanding to both conditional and unconditional text
generation [5], [6]. These advancements have been heralded
as a step toward higher-bandwidth human-computer interac-
tions. However, their deployment faces significant challenges.
On one hand, LLMs exhibit a tendency for ’hallucinations’
[7], [8], providing plausible yet nonfactual predictions. On
the other hand, the black-box nature of LLMs compromises
both interpretability and factual accuracy, often resulting in
erroneous statements despite memorizing facts during training
[9], [10].

Knowledge in natural language can be externally sourced
from a retrievable database, reducing hallucinations and en-
hancing the interpretability of LLMs [11]. Utilizing dense
neural retrievers, which employ dense query and document
vectors generated by a neural network [12], the system can
evaluate the semantic similarity to an information-seeking
query by calculating the embedding vector similarity across
related concepts [13], [14].

Bohan Chen is supported by the UC-National Lab In-Residence Graduate
Fellowship Grant L21GF3606. This work is supported by NSF grants DMS-
2027277 and DMS-2318817.

∗ Corresponding author (email: bhchenyz@ucla.edu).

To go beyond mere semantic similarity in information
retrieval and augment the reasoning capabilities of LLMs,
two advanced methodologies are particularly transformative:
prompt engineering like the Chain-of-thought prompting, and
the incorporation of Knowledge Graphs (KGs) [15]. The
former, chain-of-thought prompting, provides a framework for
advanced reasoning by generating paths of explanations and
predictions that are cross-verified through knowledge retrieval
[16], [17]. While this method offers significant benefits, it is
not the primary focus of this study. As for the latter, KGs
offer LLMs a structured and efficient way to address their
limitations in factual accuracy and reasoning [15], [18]. KGs
not only provide accurate and explicit knowledge crucial for
various applications [19] but are also known for their symbolic
reasoning capabilities to produce interpretable results [20].
These graphs are dynamic, continuously evolving with the
addition of new knowledge [21], and can be specialized for
domain-specific requirements [22].

In this study, our emphasis is on techniques of automated
KG generation and incorporation with LLMs. Most of the
works related to these two tasks rely intensively on the
ongoing training of neural networks [15], [23], which is both
difficult to employ and less flexible for on-the-fly updates.
Traditional KG construction approach uses NLP techniques
for entity recognition [24], [25], or keyword identification
based on term frequency [26], [27], followed by determining
relationship strength through word proximity [28]. Current
automated techniques necessitate neural network training [29]–
[31]. As for the interaction between KGs and LLMs, neural
networks are trained to let LLMs understand the information
retrieved from KGs [32], [33].

The recent advancements in LLMs make us think much
more simply about the automatic generation of KGs and the
integration of LLMs with KGs. State-of-the-art LLMs such
as ChatGPT1, BARD2, and LLAMA [34] have demonstrated
impressive reasoning capabilities [35], [36]. Given sufficient
information, they can independently execute effective infer-
ence. This observation suggests an opportunity to simplify the
KG structure: perhaps the intricate relational patterns found
in traditional KGs could be simplified into basic strength
indicators of association. Consequently, specific relationships

1https://openai.com/blog/chatgpt
2https://blog.google/technology/ai/bard-google-ai-search-updates/

ar
X

iv
:2

31
1.

14
74

0v
1

 [
cs

.C
L

]
 2

2
N

ov
 2

02
3

https://openai.com/blog/chatgpt
https://blog.google/technology/ai/bard-google-ai-search-updates/

are implicitly conveyed to the model through corpus blocks
associated with the KG. In addition, we can provide retrieved
keywords and the related corpus directly in the prompt rather
than training a network to let LLMs understand the retrieved
subgraph structure.

Motivated by these ideas, this study makes the following
contributions:

1) We introduce AutoKG, an innovative method for au-
tomated KG generation, based on a knowledge base
comprised of text blocks. AutoKG circumvents the need
for training or fine-tuning neural networks, employs pre-
trained LLMs for extracting keywords as nodes, and ap-
plies graph Laplace learning to evaluate the edge weights
between these keywords. The output is a simplified KG,
where edges lack attributes and directionality, possessing
only a weight that signifies the relevance between nodes.

2) We present a hybrid search strategy in tandem with
prompt engineering, which empowers large LLMs to
effectively utilize information from the generated KGs.
This approach simultaneously searches for semantically
relevant corpora based on embedding vectors and the
most pertinent adjacent information within the knowledge
graphs.

The KG constructed here is a simplified version compared to
traditional KGs, which are typically composed of relations in
the form of triplets. Firstly, nodes in AutoKG are not entities
in the usual sense; they are more abstract keywords. These
keywords can represent entities, concepts, or any content
that serves as a foundation for search. Additionally, instead
of directed edges with specific semantic meanings found in
traditional KGs, AutoKG utilizes undirected edges with a
single weight value. The node keywords are extracted from
the knowledge base with the aid of LLMs, while the graph
structure is algorithmically derived. Such a KG can be effi-
ciently stored with just a keyword list and a sparse adjacency
matrix.

Section II explains the detailed process of automated KG
generation, while Section III describes the hybrid search
method. An essential highlight is that our proposed techniques
require no neural network training or fine-tuning.

II. AUTOMATED KG GENERATION

In this section, we introduce our proposed approach, Au-
toKG, for automated KG generation. The training aspects of
the LLM are not the focus of this article. We operate under
the assumption that the LLM is already pre-trained and is
accompanied by a corresponding vector embedding model.
Specifically, we have employed OpenAI’s gpt-4 or gpt-3.5-
turbo-16k as the LLM and the text-embedding-ada-002 as the
embedding model.

Consider a scenario involving an external knowledge base,
comprised of discrete text blocks. AutoKG constructs a KG
where the nodes represent keywords extracted from the ex-
ternal knowledge base. The edges between these nodes carry
a single non-negative integer weight, signifying the strength
of the association between the connected keywords. AutoKG

encompasses two primary steps: the extraction of keywords,
which correspond to the nodes in the graph, and the establish-
ment of relationships between these keywords, represented by
the edges in the graph. It is worth noting that the pretrained
LLM is employed only in the keyword extraction step of the
process. Figure 1 is the flowchart of the KG construction.

A. Keywords Extraction

Let the external knowledge base be denoted by X =
{x1, x2, . . . , xN}, where each xi is a block of text with the
maximum length of T tokens, represented as a string. The
corresponding embedding vectors for these text blocks are
encapsulated in V = {v(x1),v(x2), . . . ,v(xN)} ⊂ Rd, where
v is the embedding projection from string to Rd. We extract
keywords from the knowledge base X with unsupervised
clustering algorithms and the assistance of LLMs.

Algorithm 1 outlines the keyword extraction process. The
algorithm takes as input all text blocks and their corresponding
embedding vectors X and V , along with pre-defined parame-
ters: n for the number of clusters, c for the number of text
blocks to select, and l1, l2 as keyword extraction parame-
ters. Additionally, the algorithm also utilizes a parameter m
to specify the number of sampled previous keywords. Two
unsupervised clustering algorithms, K-means clustering [37],
[38] and spectral clustering [39], are applied to cluster the
knowledge base. For each cluster identified, we sample 2c
text blocks, with c closest to the cluster center and c randomly
selected, to capture both the global and centered information.
The LLM is used twice in this algorithm. First, it extracts
keywords from a selection of 2c text blocks, guided by the
parameters l1 and l2, while avoiding the sampled m previous
keywords. Second, the same LLM is employed to filter and
refine the extracted keywords.

The construction of the prompts for these applications
strictly follows the format outlined in Table I. A specific
prompt example for the keyword extraction is given in the
Appendix. Specifically, each prompt is formed by concate-
nating the Task Information, Input Information, Additional
Requirements, and Outputs. It is essential to note that within
each task, the length of the prompt sections corresponding to
Task Information and Additional Requirements is fixed.

For Task 1, which deals with keyword extraction, the
maximum input length is set to 2cT + m(l2 + 1), where
T represents the token length of a single text block. Note
that each keyword can have a length of up to l2 + 1 tokens
when accounting for potential separators such as commas.
Similarly, the maximum output length is l1(l2 + 1), where l1
is the maximum number of keywords and l2 is the maximum
token length of each keyword. Since Task 1 is applied once
for each of the n clusters generated by the two clustering
methods, the total maximum token usage for Task 1 would be
2n(2cT+(m+l1)(l2+1)). This process yields a maximum of
2nl1 extracted keywords. For Task 2, which involves filtering
and refining the keywords, the maximum lengths for both the
input and output are governed by the formula 2nl1(l2 + 1).

Fig. 1. Flowchart of the KG Construction Process. This figure illustrates the different steps involved in the construction of the KG. The blue blocks represent
the core components of the KG, yellow blocks indicate the embedding process, green blocks focus on keyword extraction, and the red blocks correspond to
the establishment of relationships between keywords and the corpus as well as among the keywords themselves.

In summary, the maximum usage of tokens Mtokens KG for the
keyword extraction process is

Mtokens KG = 2n(2cT + (m+ 2l1)(l2 + 1)) + LF , (1)

where LF is the fixed total length of tokens of the task
information and additional requirement parts.

B. Graph Structure Construction

In this section, we detail how to construct a KG based on the
keywords extracted in Section II-A. Specifically, we establish
whether there are edges between keywords and how to weight
these edges. We propose a method based on label propagation
on the graph, a step that does not require the involvement of
any LLM.

Firstly, we create a graph Gt = (X ,W t) where X is the
set of text blocks serving as the nodes of graph Gt, and W t

is the weight matrix for the edges. W t
ij is determined by the

similarity between the corresponding embedding vectors vi

and vj . Define the similarity function:

w(vi, vj) = exp

(
−∠(vi, vj)2√

τiτj

)
, (2)

where ∠(vi, vj) = arccos
(

v⊤i vj
∥vi∥∥vj∥

)
is the angle between

feature vectors vi and vj . The normalization constant τi is
chosen according to the similarity to the Kth nearest neighbor
of i (i.e., τi = ∠(vi, viK), where viK is the Kth nearest
neighbor to vi).

For computational efficiency, we construct a sparse weight
matrix W t by considering only the K-nearest neighbors [40]

for each vertex. Let xik , k = 1, 2, . . . ,K be the K-nearest
neighbors (KNN) of xi (including xi itself) according to angle
similarity. Define a sparse weight matrix by

W̄ t
ij =

{
w(vi, vj), j = i1, i2, . . . , iK ,

0, otherwise.
(3)

K is chosen to ensure that the corresponding graph Gt is
connected, empirically K = 30. We symmetrize the sparse
weight matrix to obtain our final weight matrix W t by
redefining W t

ij := (W̄ t
ij + W̄ t

ji)/2. Note that W t is sparse,
symmetric, and non-negative (i.e. W t

ij ≥ 0).
Next, we utilize the graph Gt = (X ,W t), constructed on

text blocks, to establish a keyword KG Gk = (K,W k). Here,
K is the set of keywords, and W k is the weight matrix for the
edges. In this matrix, W k

ij quantifies the strength of association
between keywords ki and kj . Importantly, this association is
not semantic but is reflected across the entire corpus in the
knowledge base. Specifically, W k

ij corresponds to the count
of text blocks that are simultaneously associated with both
keywords ki and kj .

Algorithm 2 establishes the relationship between a keyword
and text blocks. The core idea is to select a subset of text
blocks that are closest to the keyword as positive data, and
another subset that is farthest as negative data. We then employ
graph Laplace learning [41] based on the graph structure
Gt = (X ,W t) that we have previously constructed for
text blocks. The graph Laplace learning is a semi-supervised
learning method on graphs, utilizing the harmonic property of
the solution function u : X → [0, 1] to diffuse the label values

TABLE I
PROMPT CONSTRUCTION FOR DIFFERENT TASKS USING LLM

ID Task Information Input Information Additional Requirements Outputs

1 Keywords Extraction 1.Sampled text blocks
2.Sampled previous keywords

1. Avoid previous keywords
Extracted Keywords2. Output up to l1 keywords

3. Each output keyword is at most l2 tokens
2 Refining Keywords Originally extracted keywords Concentration, deduplication, splitting, and deletion Refined Keywords

3 Response to the Query
1. Original query Indicate the method used to search for texts and keywords:

Direct, via keywords, or KG adjacency search Final Response2. Related text blocks
3. Related keywords

Algorithm 1 Algorithm for Keyword Extraction in AutoKG
Input: All text blocks and their corresponding embedding

vectors X and V , pre-defined parameters n (number
of clusters), c (number of text blocks to select), l1, l2
(keyword extraction parameters), m (number of sampled
previous keywords)

Output: A set of extracted keywords K = {k1,k2, . . . ,kM}
1: K = ∅
2: for each clustering algorithm P in {k-means, spectral

clustering} do
3: Cluster V into n clusters VP

i , i = 1, 2, . . . , n using
algorithm P

4: for i = 1,2,. . . ,n do
5: Randomly select c text blocks and c nearest to the

cluster center from cluster VP
i

6: if |K| > m then
7: Select a subset Ks ⊂ K such that |Ks| = m
8: else
9: Ks = K

10: end if
11: Include these 2c text blocks and previous keywords

Ks in a prompt for keyword extraction
12: Use LLM, extract up to l1 keywords of maximum

token length l2, collected as KP
i

13: Update K = K ∪ KP
i

14: end for
15: end for
16: Filter and refine K using a LLM to obtain the final

keyword list
17: return K

from a subset of labeled nodes to other unlabeled nodes in the
graph. The text blocks that are classified towards the positive
side (with a node function value u ≥ 0.5) are considered to
be associated with the keyword.

The association weight W k
ij between ki and kj is defined

as follows:
W k

ij = W k
ji = |X ki ∩ X kj |. (4)

With this, we complete the construction of the keyword-based
KG Gk, which is built upon the text block graph Gt.

C. Time Complexity Analyzation

This section analyzes the efficiency of the AutoKG method.
The token consumption required for KG construction in the

Algorithm 2 Identifying Keyword to Text Block Association
Input: Keyword k, Set of text blocks X , Forward relation

parameter n1, Backward relation parameter n2

Output: X k ⊂ X , the subset of X associated with k
1: Obtain the embedding vector v(k).
2: Find the n1 nearest vectors in X to v(k) (label them as

1) and n2 farthest vectors (label them as 0).
3: In the text-block graph Gt = (X ,W t), use the graph

Laplace learning algorithm [41] to label the remaining
nodes based on these n1 + n2 labeled nodes. Obtain a
real-valued function u : X → [0, 1] on the graph nodes.

4: Define X k = {xi ∈ X : u(xi) ≥ 0.5}
5: return X k

AutoKG method has the upper bound according to Eq. 1.
The efficiency of the algorithm is mainly influenced by three
aspects:

1) Constructing the similarity graph based on text blocks
Gt = (X ,W t): An approximate nearest neighbor search
[40] is employed for KNN search, leading to a complexity
of O(N logN).

2) Clustering algorithm: Since both K-means clustering
[37], [38] and spectral clustering [39] are NP-hard,
we bound the complexity by Imax, the preset maxi-
mum number of iterations. Spectral clustering is essen-
tially the Kmeans method augmented with an eigen-
decomposition of the graph Laplacian. The time complex-
ity here is mainly dominated by the Kmeans method and
is O(NndImax), where n is the number of clusters, and
d is the vector dimension (1536 for OpenAI’s embedding
model).

3) Graph Laplace learning: Given that our graph Lapla-
cian matrix is sparse, employing the conjugate gradient
method to solve the graph Laplace learning problem
results in a time complexity of O(N̂

√
κ), where N̂

represents the count of non-zero elements in the graph
Laplacian matrix, and

√
κ denotes the condition number.

We have the upper bound for N̂ as 2KN , where K is
the number of nearest neighbors.

Considering these factors, for large N and if preconditioning
techniques can keep the condition number of the graph Lapla-
cian matrix small, our automated KG construction algorithm

should operate with a time complexity of

O(N logN +NndImax + 2KN
√
κ) = O(N logN +Nn),

where the number of clusters practically depends on N .

D. Remarks

In the process of generating the entire KG, there are several
points to be considered:

• Although the keywords are extracted from clusters of
text blocks, we do not take into account the previous
clustering results when establishing the relationship be-
tween keywords and text blocks. This is because the same
keyword may be included in multiple clusters.

• When constructing the relationship between keywords,
we did not incorporate the embedding vectors of the
keywords into the graph for the graph Laplace learning
process. There are two reasons for this decision: first, we
do not need to update the graph structure when selecting
different keywords; second, empirically speaking, the
embedding vectors of the keywords tend to be quite
distant from the embedding vectors of the text blocks.
Therefore, including them in the initial label data for
Laplace learning might be meaningless.

Our approach considerably outperforms these conventional
methods in both keyword extraction and relationship construc-
tion. The primary shortcoming of traditional techniques is their
reliance on a fixed set of words, leading to a significant loss
of related information and often producing overly localized
insights. In terms of keyword extraction, our method leverages
the capabilities of LLMs, allowing for the refining of keywords
that are more central to the topic at hand, rather than merely
being high-frequency terms. When it comes to relationship
construction, our strategy is grounded in a macroscopic algo-
rithm on graphs of all text blocks. This approach encompasses
the information from the entire knowledge base of text blocks,
providing a more comprehensive perspective compared to
relationships derived from local distances.

III. HYBRID SEARCH: INCORPORATING KG AND LLM

In this section, we propose a hybrid search approach, based
on the KG generated according to Section II. For a given query,
the search results using this hybrid search strategy include not
only the text blocks that are semantically related to the query
but also additional associative information sourced from the
KG. This supplementary data serves to provide more detailed
and in-depth reasoning for further analysis by the model.
The incorporation of a KG allows us to capture complex
relationships between different entities, thereby enriching the
contextual understanding of the query.

In our proposed hybrid search approach, we have devised
a multi-stage search process that incorporates both direct text
block search as well as keyword-based searching guided by
the KG. This process is detailed in Algorithm 3. Initially, we
perform the initial search by computing the text blocks that are
closest to the given query embedding vector. Then, we turn
to the KG and identify the keywords that are closest to the

Algorithm 3 hybrid search Algorithm
Input: Query q, embedding vector v(q), Parameters

(st0, s
k
1 , s

t
1, s

k
2 , s

t
2)

Output: Set Xfinal containing text blocks related to q, and Set
Kfinal containing keywords related to q

1: Step 1: Vector Similarity Search
2: Find the closest st0 text blocks in X to v(q)
3: X0 ← set of closest st0 text blocks
4: Step 2: Similar Keyword Search
5: Find the closest sk1 keywords in K to v(q)
6: K1 ← set of closest sk1 keywords
7: For each k in K1, find the closest st1 text blocks in X
8: X1 ← merged set of closest st1 text blocks for each k in
K1

9: Step 3: Keyword Adjacency Search
10: For each k in K1, find sk2 strongest connected keywords

according to W k

11: K2 ← merged set of sk2 strongest connected keywords for
each k in K1

12: For each k in K2, find the closest st2 text blocks in X
13: X2 ← merged set of closest st2 text blocks for each k in
K2

14: Xfinal ← X0 ∪ X1 ∪ X2

15: Kfinal ← K1 ∪ K2

16: return Xfinal,Kfinal

query, along with text blocks associated with these keywords.
Lastly, we identify additional keywords that have the strongest
association with the previously identified ones, based on the
weight matrix in the KG, and accordingly search for related
text blocks. The algorithm returns not just a set of text blocks
that are highly relevant to the query, but also a set of keywords
that are closely connected to the query.

To estimate the maximum number of tokens returned by the
hybrid search, we consider the maximum number of tokens T
for a single text block and l2 for a single keyword. The total
number of keywords retrieved will be sk1 + sk1 · sk2 , and the
total number of text blocks will be st0 + sk1 · st1 + sk1 · sk2 · st2.
Therefore, the maximum number of tokens Mtokens QA can be
calculated as:

Mtokens QA = sk1 ·l2 ·(1+sk2)+T ·(st0+sk1 ·st1+sk1 ·sk2 ·st2). (5)

In practical applications, the actual number of tokens ob-
tained through the search often falls below the theoretical
maximum. This is because there is substantial overlap between
the text blocks and keywords discovered via different search
methods. Subsequently, the retrieved information is incorpo-
rated into the prompt to enhance the LLM’s response to the
original query. For details on prompt construction, one may
refer to Task 3 in Table I. A specific prompt example is
provided in the Appendix. Importantly, an adaptive approach
can be employed during the prompt construction to ensure
that the maximum token limit for the LLM is not exceeded.
Text blocks can be added sequentially until the token limit is
reached.

IV. EXPERIMENTS AND RESULTS

In this section, our primary goal is to demonstrate through
experiments that our proposed AutoKG approach provides
significantly better responses while maintaining a comparable
efficiency, compared with the retrieval-augmented generation
(RAG) method based on semantic vector similarity [13],
[14]. Our approach that combines AutoKG and hybrid search
extracts more valuable information for the model than RAG
which relies on semantic vector similarity search.

Unfortunately, we encountered challenges in identifying a
suitable dataset to conduct these experiments. We attempted to
utilize the WikiWhy dataset [42], which is designed to evaluate
the reasoning capability of models. The dataset comprises
approximately 9,000 entries. Each entry contains a paragraph
of content, spanning between 100 to 200 words. Based on this
content, every entry provides a ”why” question along with its
corresponding cause-effect relationship and explanation. When
we employ the hybrid search based on AutoKG or the semantic
vector similarity search of RAG, we can easily retrieve the
content corresponding to the given question and instruct the
model to answer based on that content. In both methods,
the model’s responses are almost identical. Since the 9,000
entries are relatively independent of each other, cross-entry
data retrieval provided by our method doesn’t significantly
contribute to answering the questions.

As a consequence, we adopt qualitative approaches rather
than employing numerical metrics to evaluate the experimental
performance of our method. First, we provide a simple exam-
ple to explain why our AutoKG with hybrid search approach
has benefits compared to methods based on semantic vector
similarity search. Next, we present a detailed example based
on all 40 references of this article and the associated subgraph
from the KG used during the query. Finally, we compare
the efficiency of hybrid search and semantic vector similarity
search from both theoretical and experimental perspectives.

A. A Simple Example: Why We Need KG?

Consider a simple knowledge base that contains text blocks
detailing a day in the life of an individual named Alex,
along with related information. The core narrative is that after
leaving his home in the morning, Alex goes to Cafe A to
buy a coffee and then takes a bus to Company B for work.
Interspersed within the knowledge base are numerous pieces
of granular information such as conversations Alex had with
the barista at the cafe, the coffee order details, dialogues on the
bus, as well as conversations at his workplace, and so forth.

The point of interest here is how a model would answer
the question: “Was it raining this morning when Alex left his
home?” under the assumption that there is no direct answer
to this question and no content about the weather in the
knowledge base. We aim to compare the responses given
the support information retrieved using our method versus
that retrieved through semantic similarity search. Within the
knowledge base, there are two indirect pieces of information
hinting at the weather conditions:

1) Related to Cafe A: “Many people were chatting and
drinking coffee in the square outside Cafe A.”

2) Related to Company B: “The car wash located downstairs
of Company B was bustling with business today.”

Both these snippets subtly suggest that it was not raining.
Given that the question is primarily about Alex and the

weather, the information retrieved from the knowledge base
through semantic similarity vector search would only be about
Alex (as there is no direct information about the weather).
The search results would primarily outline his movements
throughout the day. Even with an increase in search entries,
it would mostly retrieve additional miscellaneous details, like
his coffee order and dialogues. Unfortunately, these details do
not contain any hints to infer the day’s weather.

On the other hand, employing AutoKG with a hybrid search
approach yields different results. During the KG generation
process, we extract keywords such as Alex, Cafe A, and
Company B. With the hybrid search, the initial step uses
the input question to retrieve the keyword Alex. Then, the
adjacency search identifies Cafe A and Company B as related
keywords. Subsequently, text blocks are sought based on these
keywords, resulting in the identification of implicit weather-
related information. This example illustrates the utility of
the hybrid search. Semantic similarity alone can lack cross-
topic connections. It tends to retrieve many minor details
within the scope of a given question. When searching with the
KG constructed using the AutoKG method, the breadth and
diversity of the retrieved information is enhanced. Moreover,
prior work has easily substantiated GPT-4’s capability to
reason effectively with provided clues [35], [36].

From the dialogue record with GPT-4 in the Appendix, it
is evident that GPT-4 can accurately infer that it did not rain
today when given clues about today’s weather. However, when
only provided with information about Alex from the semantic
similarity vector search, it cannot make any predictions about
today’s weather.

B. An Example with Article References

We present a concrete example utilizing content from the
42 references cited in this paper. The resulting KG is interac-
tively queried using the hybrid search method outlined above.
Both the KG generation and subsequent querying processes
were performed using the gpt-3.5-turbo-16k model, chosen to
minimize cost. The 40 references, once segmented, comprise
5,261 text blocks, each less than 201 tokens in length. For the
keyword extraction process, as per Algorithm 1, the parameters
are: n = 15, c = 15, l1 = 10, l2 = 3,m = 300. For
Algorithm 2, we use the parameters n1 = 5 and n2 = 35.
The entire KG construction consumes 137,516 tokens, which
is less than the theoretical maximum of 181,280 tokens given
by Eq. 1. This calculation of the theoretical maximum does
not account for the fixed total length of tokens pertaining to
task information and additional requirement parts.

The constructed KG comprises 461 nodes (extracted key-
words) with its adjacency matrix containing 40,458 non-zero
elements. The node with the highest degree in the graph

is connected to 289 neighbors. There are 353 nodes whose
degree is less than 92, which is 20% of the maximum possible
degree of 460. The entire process of KG construction took
approximately ten minutes. All computations, excluding calls
to the OpenAI API, are carried out on a CPU with an Intel
i9-9900. Both keyword extraction and KG construction take
approximately five minutes each. For the subsequent hybrid
search described in Algorithm 3, we use the parameters
(st0 = 15, sk1 = 5, st1 = 3, sk2 = 3, st2 = 2) and ensure, through
an adaptive approach, that the input prompt remains under
10,000 tokens in length. The maximum length of response
is set as 1024. As an illustrative example, when querying:
“Please introduce PaLM in detail, and tell me about related
applications.”, the temporary KG structure during the hybrid
search is shown in the Figures 2 and 3. Both images represent
subgraphs of the same KG, with the input query depicted
in blue nodes. The image on the left (Figure 2) showcases
only the keyword nodes (in green), while the image on the
right (Figure 3) includes the additionally retrieved text blocks
(in pink nodes). The edges displayed are those connecting
similar keywords directly retrieved from the query (shown
as inner circle nodes in the left figure) as well as edges
connecting these similar keywords to the keywords obtained
via adjacency search (connecting the inner and outer circles
in the left figure). While there may be existing edges be-
tween the outer circle keywords, they are omitted from the
visualization for clarity. The model has a lengthy response
which is shown in the Appendix. For those interested in further
exploration, all pertinent code and test cases are available at
https://github.com/wispcarey/AutoKG.

C. Efficiency Analyzation

Given the flexibility in regulating the volume of retrieved
information, both the proposed method and the RAG approach
can, in theory, support knowledge bases of any size. This
means they can encompass any number of text blocks, each
subject to the maximum token limit. As outlined in Sec-
tion II-C, the efficiency of the AutoKG method for automated
knowledge graph construction is O(N logN) when the num-
ber of text blocks N is large.

The constructed keyword KG contains M keywords where
M < N (empirically, M ≈ 0.1N). During the hybrid search
process, with parameters (st0, s

k
1 , s

t
1, s

k
2 , s

t
2), the overall time

complexity for the search is:

O((st0 + sk1 · st1 + sk1 · sk2 · st2)N) +O((sk1 + sk1 · sk2)M). (6)

For the semantic vector similarity search method to retrieve
the same volume of text blocks, the time complexity is:

O((st0 + sk1 · st1 + sk1 · sk2 · st2)N). (7)

From the above, it’s evident that the time complexity of our
hybrid search approach is the same as that of the semantic
vector similarity search. For sufficiently large N , both com-
plexities tend towards O(N).

Based on the KG generated from the 40 references of this ar-
ticle, as described in Section IV-B, we perform a hybrid search

using parameters (st0 = 15, sk1 = 5, st1 = 3, sk2 = 3, st2 = 2).
The theoretical maximum number of text blocks that can be
searched using this configuration is 60. For comparison, we
conduct a semantic vector similarity search for 30 text blocks.
Using a query composed of 50 random characters, we carry
out both the hybrid search and semantic vector similarity
search methods and record the time taken for each (this
includes the embedding computation time). After repeating
the experiment 100 times, we calculate the average time taken.
The hybrid search method had an average duration of 0.0310
seconds, while the semantic vector similarity search took
slightly less, with an average time of 0.0305 seconds. This
experiment aligns well with our theoretical analysis of the
time complexity.

V. CONCLUSION

This paper addressed the inherent challenges faced by
semantic similarity search methods when linking LLMs to
knowledge bases. Our method, AutoKG, presents a refined
and efficient strategy for automated KG construction. In
comparison to traditional KGs, the innovative architecture
of AutoKG offers a lightweight and simplified version of
KG, shifting the focus from specific entities to more abstract
keywords and utilizing weighted undirected edges to represent
the associations between keywords. Based on the generated
KG, our approach harnesses these capabilities by presenting
the LLMs with a more interconnected and comprehensive
knowledge retrieval mechanism through the hybrid search
strategy. By doing so, we ensure that the model’s responses
are not only richer in quality but also derive insights from a
more diverse set of information nodes.

We tested AutoKG with a hybrid search in experimental
evaluations. Because of dataset limitations, our tests were
mostly qualitative. The outcome highlights the benefits of our
method compared to typical RAG methods with semantic sim-
ilarity search. In summary, AutoKG provides a valuable step
to combine knowledge bases with LLMs. It is computationally
lightweight and paves the way for more detailed interactions
in LLM applications. Moreover, our hybrid search and the
semantic vector similarity search have the same order of time
complexity.

Further analysis of the AutoKG approach requires the iden-
tification or creation of an appropriate dataset to evaluate its
integration with LLMs. Wang et al. [31] developed their own
dataset to evaluate a similar idea to ours. While the evaluation
criteria should resemble that of RAG, a more structurally
intricate and complex dataset is desired. Another avenue for
improvement revolves around keyword extraction. Currently,
the method leverages prompt engineering; however, future
work could explore fine-tuning larger models or even training
specialized models to achieve enhanced results.

ACKNOWLEDGMENT

The authors acknowledge the assistance of ChatGPT-4 in a
first draft of the exposition of the manuscript.

https://github.com/wispcarey/AutoKG

Fig. 2. Subgraph Visualization: Keyword Nodes Fig. 3. Subgraph Visualization: Keyword and Text Block Nodes

REFERENCES

[1] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[2] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[3] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer
learning with a unified text-to-text transformer,” The Journal of Machine
Learning Research, vol. 21, no. 1, pp. 5485–5551, 2020.

[4] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, et al., “Palm: Scaling
language modeling with pathways,” arXiv preprint arXiv:2204.02311,
2022.

[5] K. Tirumala, A. Markosyan, L. Zettlemoyer, and A. Aghajanyan, “Mem-
orization without overfitting: Analyzing the training dynamics of large
language models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 38274–38290, 2022.

[6] K. Zhou, J. Yang, C. C. Loy, and Z. Liu, “Learning to prompt for vision-
language models,” International Journal of Computer Vision, vol. 130,
no. 9, pp. 2337–2348, 2022.

[7] S. Welleck, I. Kulikov, S. Roller, E. Dinan, K. Cho, and J. Weston,
“Neural text generation with unlikelihood training,” arXiv preprint
arXiv:1908.04319, 2019.

[8] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang,
A. Madotto, and P. Fung, “Survey of hallucination in natural language
generation,” ACM Computing Surveys, vol. 55, no. 12, pp. 1–38, 2023.

[9] F. Petroni, T. Rocktäschel, P. Lewis, A. Bakhtin, Y. Wu, A. H. Miller,
and S. Riedel, “Language models as knowledge bases?,” arXiv preprint
arXiv:1909.01066, 2019.

[10] T. Scialom, T. Chakrabarty, and S. Muresan, “Fine-tuned language
models are continual learners,” in Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, (Abu Dhabi,
United Arab Emirates), pp. 6107–6122, Association for Computational
Linguistics, Dec. 2022.

[11] G. Mialon, R. Dessı̀, M. Lomeli, C. Nalmpantis, R. Pasunuru,
R. Raileanu, B. Rozière, T. Schick, J. Dwivedi-Yu, A. Celikyil-
maz, et al., “Augmented language models: a survey,” arXiv preprint
arXiv:2302.07842, 2023.

[12] A. Asai, X. Yu, J. Kasai, and H. Hajishirzi, “One question answering
model for many languages with cross-lingual dense passage retrieval,”
Advances in Neural Information Processing Systems, vol. 34, pp. 7547–
7560, 2021.

[13] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[14] Y. Luan, J. Eisenstein, K. Toutanova, and M. Collins, “Sparse, dense,
and attentional representations for text retrieval,” Transactions of the
Association for Computational Linguistics, vol. 9, pp. 329–345, 2021.

[15] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying large
language models and knowledge graphs: A roadmap,” arXiv preprint
arXiv:2306.08302, 2023.

[16] H. He, H. Zhang, and D. Roth, “Rethinking with retrieval: Faithful large
language model inference,” arXiv preprint arXiv:2301.00303, 2022.

[17] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “Interleav-
ing retrieval with chain-of-thought reasoning for knowledge-intensive
multi-step questions,” arXiv preprint arXiv:2212.10509, 2022.

[18] W. Xiong, M. Yu, S. Chang, X. Guo, and W. Y. Wang, “Improving
question answering over incomplete kbs with knowledge-aware reader,”
arXiv preprint arXiv:1905.07098, 2019.

[19] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A survey on
knowledge graphs: Representation, acquisition, and applications,” IEEE
transactions on neural networks and learning systems, vol. 33, no. 2,
pp. 494–514, 2021.

[20] J. Zhang, B. Chen, L. Zhang, X. Ke, and H. Ding, “Neural, symbolic
and neural-symbolic reasoning on knowledge graphs,” AI Open, vol. 2,
pp. 14–35, 2021.

[21] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge,
A. Carlson, B. Dalvi, M. Gardner, B. Kisiel, et al., “Never-ending
learning,” Communications of the ACM, vol. 61, no. 5, pp. 103–115,
2018.

[22] B. Abu-Salih, “Domain-specific knowledge graphs: A survey,” Journal
of Network and Computer Applications, vol. 185, p. 103076, 2021.

[23] L. Zhong, J. Wu, Q. Li, H. Peng, and X. Wu, “A comprehensive
survey on automatic knowledge graph construction,” arXiv preprint
arXiv:2302.05019, 2023.

[24] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26,
2007.

[25] R. Grishman and B. M. Sundheim, “Message understanding conference-
6: A brief history,” in COLING 1996 Volume 1: The 16th International
Conference on Computational Linguistics, 1996.

[26] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information processing & management, vol. 24, no. 5,
pp. 513–523, 1988.

[27] J. Ramos et al., “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the first instructional conference on machine
learning, vol. 242, pp. 29–48, Citeseer, 2003.

[28] M. Mintz, S. Bills, R. Snow, and D. Jurafsky, “Distant supervision
for relation extraction without labeled data,” in Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the
AFNLP, pp. 1003–1011, 2009.

[29] L. Luo, Y.-F. Li, G. Haffari, and S. Pan, “Normalizing flow-based
neural process for few-shot knowledge graph completion,” arXiv preprint
arXiv:2304.08183, 2023.

[30] G. Wan, S. Pan, C. Gong, C. Zhou, and G. Haffari, “Reasoning
like human: Hierarchical reinforcement learning for knowledge graph
reasoning,” in International Joint Conference on Artificial Intelligence,
International Joint Conference on Artificial Intelligence, 2021.

[31] Y. Wang, N. Lipka, R. A. Rossi, A. Siu, R. Zhang, and T. Derr,
“Knowledge graph prompting for multi-document question answering,”
arXiv preprint arXiv:2308.11730, 2023.

[32] Y. Tian, H. Song, Z. Wang, H. Wang, Z. Hu, F. Wang, N. V. Chawla,
and P. Xu, “Graph neural prompting with large language models,” arXiv
preprint arXiv:2309.15427, 2023.

[33] M. Yasunaga, A. Bosselut, H. Ren, X. Zhang, C. D. Manning,
P. S. Liang, and J. Leskovec, “Deep bidirectional language-knowledge
graph pretraining,” Advances in Neural Information Processing Systems,
vol. 35, pp. 37309–37323, 2022.

[34] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[35] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,
Z. Ji, T. Yu, W. Chung, et al., “A multitask, multilingual, multimodal
evaluation of chatgpt on reasoning, hallucination, and interactivity,”
arXiv preprint arXiv:2302.04023, 2023.

[36] M. Agarwal, P. Sharma, and A. Goswami, “Analysing the applicability
of chatgpt, bard, and bing to generate reasoning-based multiple-choice
questions in medical physiology,” Cureus, vol. 15, no. 6, 2023.

[37] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, pp. 281–297,
Oakland, CA, USA, 1967.

[38] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[39] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, pp. 395–416, 2007.

[40] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 891–923,
1998.

[41] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proceedings of the
Twentieth International Conference on International Conference on
Machine Learning, ICML’03, p. 912–919, AAAI Press, 2003.

[42] M. Ho, A. Sharma, J. Chang, M. Saxon, S. Levy, Y. Lu, and W. Y. Wang,
“Wikiwhy: Answering and explaining cause-and-effect questions,” arXiv
preprint arXiv:2210.12152, 2022.

APPENDIX
DIALOGUES WITH LLM

Dialogue with GPT-4 for Section IV-A

If we only provide information retrieved from the semantic
vector similarity search, GPT-4 can not answer the question.
User:

Answer the question “Was it raining this morning when
Alex left his home?” with the following information: 1. After
leaving his home in the morning, Alex goes to Cafe A to buy
a coffee and then takes a bus to Company B for work; 2. Alex
bought an iced Americano at Cafe A; 3. Alex talked to the
staff at Coffee Shop A about whether they were planning to
open a branch; 4. Alex was criticized by his boss at Company
B for not completing work on time.
GPT-4:

Based on the provided information, there is no direct evi-
dence or indication about the weather condition when Alex left
his home in the morning. Therefore, the answer to the question
“Was it raining this morning when Alex left his home?” is
“The information provided does not specify.”

If we provide information about the clue of weather re-
trieved from the hybrid search based on AutoKG, GPT-4 can
complete reasoning and answer the question correctly.
User:

Answer the question “Was it raining this morning when
Alex left his home?” with the following information: 1. After
leaving his home in the morning, Alex goes to Cafe A to buy a
coffee and then takes a bus to Company B for work; 2. Many
people were chatting and drinking coffee in the square outside
Cafe A; 3. The car wash located down-stairs of Company B
was bustling with business today.
GPT-4:

Based on the provided information, it is likely that it was
not raining this morning when Alex left his home. The clue
is that “many people gathered in the square in front of
the Cafe A, drinking coffee and chatting,” which indicates a
pleasant outdoor environment, not typical of rainy weather.
Additionally, the car wash shop doing very well suggests it
might be a clear day since car washes tend to be less busy on
rainy days.

Dialogue with GPT-3.5 for Section IV-B

Input query:
Please introduce PaLM in detail, and tell me about related

applications.
Preprocess:

With the input query, information is retrieved from the
knowledge base through the hybrid search process based
on the KG. The prompt is reconstructed with the retrieved
information and sent to the gpt-3.5-turbo-16k model for the
final output.
LLM response:

PaLM, which stands for Pathways Language Model, is a
large-scale language model that has been developed to achieve
state-of-the-art results in few-shot learning across a wide
range of natural language processing (NLP) tasks. It is a dense
Transformer language model with 540 billion parameters and
has been trained on 780 billion tokens of high-quality, diverse
text.

The development of PaLM has been driven by the goal of
exploring novel architectural choices and training schemes in
order to create a large-scale, modularized system with broad
generalization capabilities across multiple modalities. PaLM
has been designed to be highly scalable, and it leverages
the scaling capabilities of the Pathways infrastructure, which
enables training a single model across thousands or tens of
thousands of accelerator chips in an efficient manner.

PaLM has demonstrated outstanding performance on vari-
ous NLP tasks. It has achieved breakthrough results on tasks
such as open-domain closed-book question answering, cloze
and completion tasks, common sense reasoning, in-context
reading comprehension, and more. It has also shown strong
capabilities in multilingual tasks and source code generation.
In fact, PaLM has outperformed the state-of-the-art on a suite
of multi-step reasoning tasks and has even surpassed the

average human performance on the recently released BIG-
bench benchmark.

The primary application of PaLM is research on language
models, including NLP applications such as machine transla-
tion and question answering. It is being used within Google for
research on a variety of open-ended text and code generation
tasks, including reasoning and code synthesis. PaLM has
also been evaluated for its translation capabilities across a
variety of language pairs and settings, particularly focusing
on English-centric language pairs.

It is important to note that PaLM is primarily designed
for research purposes and has not been extensively tested in
settings outside of research. Further analysis is required before
using PaLM for downstream applications. Additionally, ethi-
cal considerations and risks associated with large language
models, including potential misuse, have been discussed in
the context of PaLM.

In conclusion, PaLM is a highly scalable language model
that has achieved state-of-the-art results in few-shot learning
across a wide range of NLP tasks. Its applications include
research on language models, machine translation, question
answering, code generation, and more.

APPENDIX
PROMPT EXAMPLES

Task: Keyword Extraction
This prompt requires the following preset variables: 1.
’main topic’, a high-level topic(s) of the knowledge base; 2.
’l1’, the maximum number of extracted keywords; 3. ’l2’,
the maximum length of each keyword; 4. ’language’, the
language of output keywords; 5. ’previous keywords’, a list
of previously extracted keywords. Once the text blocks are
sampled from a certain cluster, we use the following prompt
for keyword extraction:
Prompt for Keyword Extraction:
You are an advanced AI assistant, specializing in analyzing
various pieces of information and providing precise
summaries. Your task is to determine the core theme in
the following series of *-separated information fragments,
which are delimited by triple backticks. Ensure your answer
focuses on the topic and avoids including unrelated content.
DO NOT write complete sentences.
You should obey the following rules when doing this task:
1, Keywords in your answer should related to the topic
’main topic’; 2, Your answer should include at most ’l1’
keywords; 3, Each keyword should be at most ’l2’ words
long; 4, avoid already appeared theme keywords, marked
inside ⟨⟩; 5, Write your answer in ’language’; 6, Separate
your output keywords with commas (,); 7, Don’t include any
symbols other than keywords.

Information:’ ’ ’text blocks’ ’ ’

Please avoid the following already appeared theme terms:
⟨’previous keywords’⟩
Your response:

Task: Incorporation between KGs and LLMs
For a given query q, we search for its related text blocks Xfinal
and keywords Kfinal according to the hybrid search algorithm
(Algorithm 3). Given a preset variable ’language’ for the
output language, we use the following prompt to provide
retrieved information from the KG and original knowledge
base:
Prompt for Query Response:
I want you to do a task, deal with a query, or answer a
question with some information from a knowledge graph.
You will be given a set of keywords directly related to a
query, as well as adjacent keywords from the knowledge
graph. Relevant texts will be provided, enclosed within triple
backticks. These texts contain information pertinent to the
query and keywords.
Please note, you should not invent any information. Stick to
the facts provided in the keywords and texts. These additional
data are meant to assist you in accurately completing the
task. Your response should be written in ’language’.
Avoid showing any personal information, like Name, Email,
WhatsApp, Skype, and Website in your polished response.

Keywords information (directly related to the query or
find via the adjacent search of the knowledge graph): Kfinal

Text information: ’ ’ ’ Xfinal ’ ’ ’

Your task: q
Your response:

	Introduction
	Automated KG Generation
	Keywords Extraction
	Graph Structure Construction
	Time Complexity Analyzation
	Remarks

	hybrid search: Incorporating KG and LLM
	Experiments and Results
	A Simple Example: Why We Need KG?
	An Example with Article References
	Efficiency Analyzation

	Conclusion
	References
	Appendix: Dialogues with LLM
	Appendix: Prompt Examples

