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Abstract—The unprecedented rate at which synchrotron radia-
tion facilities are producing micro-computed (micro-CT) datasets
has resulted in an overwhelming amount of data that scientists
struggle to browse and interact with in real-time. Thousands of
arthropods are scanned into micro-CT within the NOVA project,
producing a large collection of gigabyte-sized datasets. In this
work, we present methods to reduce the size of this data, scaling
it from gigabytes to megabytes, enabling the micro-CT dataset
to be delivered in real-time. In addition, arthropods can be
identified by scientists even after implementing data reduction
methodologies. Our initial step is to devise three distinct visual
previews that comply with the best practices of data exploration.
Subsequently, each visual preview warrants its own design
consideration, thereby necessitating an individual data processing
pipeline for each. We aim to present data reduction algorithms
applied across the data processing pipelines. Particularly, we
reduce size by using the multi-resolution slicemaps, the server-
side rendering, and the histogram filtering approaches. In the
evaluation, we examine the disparities of each method to identify
the most favorable arrangement for our operation, which can
then be adjusted for other experiments that have comparable
necessities. Our demonstration proved that reducing the dataset
size to the megabyte range is achievable without compromising
the arthropod’s geometry information.

Index Terms—Computed tomography, Three-dimensional dis-
plays, Data visualization, Real-time systems, Rendering (com-
puter graphics), Data reduction

I. INTRODUCTION

Synchrotron radiation micro-computed tomography (micro-
CT) is an imaging technique that produces high-resolution
three-dimensional (3D) images non-destructively. These im-
ages are composed of two-dimensional (2D) trans-axial pro-
jections of an object [[I, 2]. This enables the examination
of intricate biological and synthetic materials with submicron
resolution [3]]. At the KIT Imaging Cluster, the experiments
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of the NOVA project employ hard X-rays to examine arthro-
pods and deposit them in an extensive storage system with
datasets of several gigabytes in magnitude [4} |5]. However,
using traditional tools to navigate the vast data collection is
laborious. Although a single dataset may not meet the big
data criteria, the cumulative effect of thousands of datasets
is overwhelming scientists’ capacity to browse and interact
with them in real time. Given the unprecedented rate at which
synchrotron radiation facilities produce data, the need for an
efficient visual exploration system has become more pertinent
and pivotal than ever before.

A tomographic workflow starts with the X-ray intensity
projections of the samples being recorded continuously at
various angles and hence produces a sequence of images in
the sinogram domain. These images are then reconstructed
into volumetric data by using algorithms such as filtered back
projections [1} [6]. In the post data acquisition stage, the final
volumetric data will be used by scientists to perform further
analysis. Particularly, the analysis of volumetric biological
imaging data often requires isolating individual structures from
the volumetric data by segmentation [7]-[9]. This research
represents the first comprehensive study to produce low-
latency arthropod visual previews during data acquisition.

By generating visual previews of micro-CT datasets during
data acquisition, scientists can quickly identify the type of
arthropods visually without manual dataset labeling, thus
facilitating the process of data identification. Therefore, an
effective data browsing platform must resolve two primary
challenges: perceptual scalability and data responsiveness.
Perceptual scalability alludes to scientists’ ability to recognize
the sample, post executing data reduction techniques. More
precisely, the smaller datasets must conserve the geometric
structure of the arthropods. To ensure data responsiveness, it
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Fig. 1. Classification of visual outputs based on the data exploration process which narrows down the data using top-down methodology, integrated within
the NOVA data portal. The visual outputs in the three previews, namely list preview, data preview and interactive preview, are represented by the red boxes.
Usually, users start by clicking on the dataset in the list preview. Subsequently, they are directed to the data preview page. If they wish to examine the dataset
in a 3D view, they can simply click on the image within the data preview, which will then lead them to the interactive preview page.

TABLE I
OVERVIEW OF THE DATA PROCESSING PIPELINE FOR THE VISUAL PREVIEWS. THE GREY BOX REPRESENT THE ACTIVE PROCESS WITHIN EACH PREVIEW.

3D
Conversion

Raw Data
(Slices)

Visual
Previews
List Preview
Data Preview
Interactive Preview

is necessary that the datasets are available to users in real-
time, regardless of their hardware requirements. Hence, we
need to achieve a minimal latency between the server and the
client. Two methods are available: first, the dataset can be
rendered on the server-side, and then the resulting image can
be transmitted to the client. Second, the server-side dataset
can be reduced and then transmitted as a reduced volumetric
dataset to the client [LT]). The first method requires high
hardware capability on the server-side, whereas the second
approach would delegate the volume rendering responsibility
to the client.

This paper will detail the implementation of data processing
techniques that allow for a reduction in data size while
retaining the geometrical structure of arthropods. The primary
contributions we offer are:

(1.) Given the vast array of visual representations proposed
in the literature, we first analyze the characteristics of visual
outputs in a traditional data exploration system, leading us to
identify three distinct visual outputs (Section 2).

(2.) We present data reduction methods that are based on the
three visual outputs that can reduce the size from gigabytes to
megabytes. A significant emphasis was placed on maintaining
the geometry of the arthropods in the presented methods (Sec-
tion 3). Notably, the ITS method, the optimal image approach
and the histogram filtering introduce innovative approaches
that are unique within this research domain.

(3.) Our assessment of the different methods mentioned en-
compasses both visual and analytical approaches (Section 4).

Slicemaps
Conversion

Server-side
Rendering

Thresholding
+ Container Removal

Histogram
Filtering

II. DESIGN CONSIDERATIONS OF VISUAL PREVIEWS

Using visual previews enables domain experts to narrow
down and identify relevant data they are interested in. The
preview terminology denotes a reduced version of the initial
data that keeps its geometrical information [12]. To search a
specific dataset, skilled data seekers were reported to follow
the Visual Information Seeking Mantra, which recommends
starting with an overview, then zooming in and filtering,
and finally requesting details only when necessary. This data
searching pattern is deemed to be the sure path to discovery.

Our adoption of this concept results in three distinct per-
spectives, with the list view showing an overview of all
datasets, the data view detailing the chosen dataset, and the
interactive view providing a comprehensive visualization of
the dataset (refer to Figure [T). The final visual outputs are
denoted by the red boxes. Below, we outline each design
consideration for every preview.

List Preview. The resultant visual output is a thumbnail
image representing the dataset. Considering the arthropod’s
three-dimensional nature, what is the most optimal method for
generating a two-dimensional image that accurately represents
the arthropod? What is the optimal viewing angle for creating
an image snapshot? What is the metric that could automate the
process of image generation? Through the answering of these
questions, we shall produce a diminutive two-dimensional
image that portrays the contour of the arthropods.

Data Preview. The data preview offers a thorough repre-
sentation of the designated data, featuring an enlarged visual
depiction. This preview should have more information than



the list preview while having a rather small data size. One
idea that could be interesting is to retain the outer geometry
information while discarding the internal volume, resulting in a
hollow dataset. Potentially, we could include object movement
to augment object recognition.

Interactive Preview. The entire volumetric data will be
loaded when using the interactive preview. In order to attain a
visualization response in real-time, a preliminary dataset fea-
turing a crude resolution is initially loaded, which is then fol-
lowed by the primary dataset [[10]. The characteristic enables
users to choose a region of interest for further examination.

III. METHODS

Within this section, we will explore approaches to reduce
the primary dataset while complying with the design consider-
ations stated in Section [lI} An overview of the data processing
methods employed to generate the final visual output of the
previews is presented in Table [ The reconstructed micro-
CT dataset constitutes the initial state, where 2D images are
stacked together to create a volumetric series. Henceforth, we
will refer to them as slices. Prior to starting the data processing
pipeline for every visual preview, the slices are converted
into a 3D object representation that will be subjected to data
reduction operations. Within our context, the transformation
of the slices is performed by converting them into either
slicemaps [10, |13]] or a 3D file format, such as OBJ-format.
Subsequently, the data will undergo data reduction processes
before being transferred to the final visual outputs.

A. Thresholding

The goal is to isolate specific regions of interest within
the 3D volume, such as different tissue types, voids, or
materials. In our context, we want to extract the arthropods
from the surroundings. The process of thresholding aids in
distinguishing between these regions through the application
of binary classification to each voxel (3D pixel) based on its X-
ray attenuation value. Tan Jerome et al. demonstrated the use
of a real-time local noise filter and Otsu thresholding to reduce
over-thresholding [14]]. This filter is integrated into the GPU
shader and will be used throughout our work. Therefore, we
will use the Otsu threshold technique to determine the optimal
threshold value. Additionally, a novel algorithm for threshold
selection, named iterative threshold selection (ITS), has been
formulated using a greedy algorithm approach. Below, we
describe each of these algorithms.

Otsu thresholding. The Otsu thresholding technique exe-
cutes a conceptual sweep line to determine the most suitable
threshold based on a criterion function that measures the
statistical separation between the foreground and background
classes. The criterion function entails the minimization of the
ratio of between-classes variance and total variance (Equa-

tion [T).

05(T) = wo(T)oj(T) + wi(T)oi(T), (D

w

where wy and w; are the weights which represent the proba-
bilities of the two classes separated by the threshold T'. Let o3

Totsu, — O, Ootsu < O;
for T'syeep from 0...255 do
R, < histogram[0:Teepl;
Ry, < histogram[Teep:255];
W, <« density(R,), W < density([p);
U, < Mean(R,), Uy < Mean(R});
0 Wy x Wy x (Ug — Up)?;
if 0 > 0,15, then
Ootsu < O,
Totsu <~ Tsweep;
end

end
Algorithm 1: Otsu thresholding

and 0% show the variances of the two types. The Otsu threshold
is used to establish the lower limit of the intensity range
(Algorithm [I)). Starting from the initial grey value, Ts,, = 0,
the histogram is partitioned into two regions, and the threshold
that optimizes the between-class variance is chosen.
Iterative threshold selection (ITS). The iterative threshold
selection (ITS) method bears resemblance to greedy algo-
rithms [[15]]. It aims to achieve a global minimum by computing
the average intensities of the foreground and background
clusters. The ITS method comprises five sequential stages,
in which the second till fourth steps are reiterated until a
threshold value converges (refer to Algorithm [2| for details).
In the first step, the algorithm selects a starting threshold, rep-
resented by T;; from the interval of [0,255]. As the histogram
distribution is concentrated in the middle of the dynamic range,
the middle threshold can be considered a suitable initial point.
Next, the histogram is partitioned into two regions, namely
R; and R, determined by the chosen threshold 7;; (Step 2).
In the third step, the mean intensity values for each region,
denoted as p1 and po, are computed. The fourth step requires
an update to the threshold, which is determined by calculating
the average of both mean intensities as Tj; = (p1 + p2)/2.
Finally, Steps 2 through 4 are reiterated until the mean values
w1 and po remain constant in consecutive iterations (Step 5).

Et — Tstm‘t;
[ Tetart 5
while » # 0 do
R, <« histogram[0:T7;];
Ry < histogram[T;;:255];
11 < Meanlntensity(R,,);
o <— Meanlntensity(Rp);
Tymp = (H1 + p2)/2;
74— |1 — Tompl;

/—Tit <~ Ttmp;

// Ty converges if r=20

end
Algorithm 2: Iterative threshold selection (ITS)

B. Container Removal

At the data acquisition stage, a cylindrical container made of
3D printing is used to house the biological samples. Therefore,



the geometry of the container is scanned along with the
collected data. An approach that can be feasible is to define the
geometry of the container holding the sample and eliminate it
from the data. Despite the uncomplicated cylindrical geometry
of the sample container, the main obstacle lies in accurately
determining the position and radius of said geometry. As a
response, we make use of the Hough Circle Transform [16] to
recognize a circle from the top slice image. As the samples are
at the base of the container, we assume that the aforementioned
images delineate the geometry information. Lastly, we discard
the information of the image that are outside of the determined
circle, and apply this operation to every image slice.

C. Server-side Rendering (Optimal Image Snapshot)

Within this section, our proposed method will be presented
to identify the most optimal viewpoint of a 3D dataset. This
will be achieved by projecting the final 3D view space into
a 2D image. The term “optimal” pertains to the perspective
that encompasses the highest amount of information in a
two-dimensional image. The method is advantageous because
of the high-quality of the rendered image, which is directly
derived from the raw 3D data.

In order to determine the optimal 2D image, we employ
the Shannon entropy criterion [[17]] as our comparison metric,
given that the Shannon entropy indicates the image with
the most information. The Shannon entropy, denoted as H,
provides a statistical measure of randomness that is used to
characterize the texture of the rendered image formally.

m—1
H=—-"Y pilog, (pi), ©)
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where p; contains the normalised histogram counts of the
image. Greater entropy value implies increased information
content in the generated image, enabling domain experts to
identify the data more accurately.

D. Histogram Filtering

In order to streamline the data processing pipeline for
the data preview, it is possible to decrease the dataset size
by discarding the internal volume and retaining solely the
external geometry data. The methodology postulates that the
grey values of the surrounding artefacts, which may be air or
the sample container, are represented by the top 3 slices of
the volume. The validity of the assumption can be asserted
since the object occupies only the lower portion of the sample
container and does not fill up the entire space within it. From
this point forward, we dispose the histogram bins containing
undesirable grey values. The procedure of removing unwanted
bins from the original data histogram is illustrated in Figure 2}
Consequently, only the sample characteristics were retained,
albeit at the expense of finer details. The outcome indicated a
surface that lacked intricate details and appeared rough.
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Fig. 2. The data in its original form is presented in the left column, with the
histogram distribution depicted in blue. Row A displays the surface rendering
of the oribatid mite dataset (Table [[l} A), while row B shows the volumetric
dataset’s histogram. Row C, on the other hand, provides a zoomed-in view of
the respective histogram distribution. The histogram distribution of the first
three cross-section images (indicated in orange) that are artefacts is displayed
in the middle column. The right column shows the resulting surface rendering
of the filtered data (histogram distribution is shown in purple colour), where
the unwanted bins are extracted from the original data.

TABLE I
THE INFORMATION OF DATASETS USED IN THE EVALUATIONS.

Label  Type Image Resolution  Total Slices  Size

A Oribatid mite 1536 x 1536 1152 2.89GB
B Box mite 1536 x 1536 1152 2.72GB
C Gammasid mite 2016 x 2016 2016 8.19GB
D Pseudoscorpion 2016 x 2016 1692 6.88 GB
E Tachinid fly 1968 x 1968 1456 2.21GB

IV. EVALUATIONS AND DISCUSSIONS

It can be observed from the three distinct visual previews
that each data processing pipeline has its own design con-
siderations, leading to differing approaches. Our attention is
directed towards the two foremost challenges, namely per-
ceptual scalability and data responsiveness. To address these
challenges, we must decrease the dataset size to maintain data
responsiveness while still achieving arthropod recognition. In
this section, we will examine the visual outputs post the
application of the data reduction method.

A. Comparing Otsu and ITS Thresholding Approaches

The fundamental variation between the two approaches
resides in the number of iterations. Regarding Otsu thresh-
olding, the algorithm consistently carries out a comprehensive
scan throughout the entire dynamic range, from (0 to 255
range) for an 8-bit data. On the contrary, the ITS method
ceases its operation after discovering the global minimum,
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Fig. 3. The visual results of datasets when applying threshold values
calculated by the Otsu and iterative threshold selection (ITS) methods. The
red colour shows the values that are under- or over-thresholded. The green
colour shows the optimal threshold for each particular dataset.

which frequently entails a significantly reduced number of
iterations. The comparison of the two thresholding approaches
has been conducted using the datasets described in Table
The resulting visual outcomes are presented in Figure |3| The
Otsu and ITS methods are providing identical threshold values
for the first three datasets (Table A, B, and C), thus em-
phasizing the shape of the samples. Despite this, the final two
datasets (Table|ll} D and E) encountered difficulty in extracting
biological specimens due to the restricted distribution of the
histograms, resulting in the failure to obtain an optimal value.
Given that Otsu and ITS methods rely on discrete threshold
values, a minor shift within the narrow dynamic range pro-
duces a significant alteration in variance spreads (Otsu) or
mean intensities (ITS). The container used in the sample was a
contributing factor to the overall volume histogram, which, in
turn, affected the analysis of the global histogram. Thus, the
elimination of the sample container before the thresholding
scan may result in an enhanced and precise analysis of the
histogram.

The visual outcomes on the datasets after the execution
of the container removal approach are showed in Figure []
The shape of the samples in the datasets for the previous
Pseudoscorpion and the tachinid fly (Table[[l} D and E) shows
the significance of excluding the sample container. The Otsu

No threshold Otsu Iterative selection
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Fig. 4. The visual results of cropped datasets when applying threshold values
calculated by the Otsu and iterative threshold selection (ITS) methods. The
red colour shows the values that are under- or over-thresholded. The green
colour shows the optimal threshold for each particular dataset.
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Fig. 5. The performances of the Otsu and the iterative threshold selection
methods on a series of datasets described in Table [
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and ITS methods were able to extract sample shapes more
effectively after omitting sample container details from the
histogram. However, the Pseudoscorpion dataset (Table
D) remains a difficult task for the ITS method, while the
Otsu approach exhibits robustness, even when confronted
with a narrow histogram distribution. Considering the current
dynamic range of the data, which is limited to 8-bit image, the
Otsu thresholding method is deemed more reliable and thus,
a superior thresholding method that should be implemented
across all datasets. If datasets with higher dynamic range are
available, the ITS method may be a more suitable alternative.

In order to attain a more comprehensive comparison of both
algorithms on distinct datasets, we must initially convert the
raw slices into slicemaps based on the 5123 scheme. The
performance of each method is assessed by computing the
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Fig. 6. The performances of the finding the optimal 3D view point along
Z-axis rotation using datasets described in Table [II]

average of ten computation runs on a MacbookPro having
a 64 bit Quad-Core Intel(R) Core i7 CPU at 2.60 GHz and
16 GB of DDR3 memory. Figure [3 illustrates the average
computation time for each dataset. The Otsu threshold ex-
hibits a significantly prolonged computation time owing to the
comprehensive scanning of the dynamic range of the image.
The ITS approach relied exclusively on the convergence of the
iterations and, using these datasets, the threshold converges
after roughly ten iterations, enabling the ITS approach to
execute 20 times faster than the Otsu method.

To evaluate the performance of the image snapshot ap-
proach, we chose five 3D datasets and performed Z-axis
rotations to ascertain the highest entropy value in order to
evaluate the system’s effectiveness (Table [[). It should be
noted that the datasets are in 3D file format, which have been
directly converted from the raw slices. The aggregate time
taken for every process is documented in Figure [f] Empirical
evidence suggests that, on average, the system requires 3.21s
to identify the most informative 3D image via Z-axis rotation.
The software for server-side rendering can be expanded to
serve as a component for image streaming to distributed
clients.

V. CONCLUSION

The unprecedented rate at which synchrotron radiation
facilities are producing micro-CT datasets has resulted in an
overwhelming amount of gigabyte-sized data that scientists
struggle to browse and interact with in real-time. Within this
work, we have established three distinct previews that conform
to the best practices of data exploration. In the experiments
of the NOVA project, arthropods are scanned into micro-CT
resulting in thousands of datasets, with each in the gigabyte
range in size. Our demonstration proved that reducing the
dataset size to the megabyte range is achievable without
compromising the arthropod’s geometry information. In order
to optimize data responsiveness, we have developed individual
data processing pipelines for each aforementioned visual pre-
view. The techniques we have presented are suitable for our
particular use case and are modular, enabling customization for
other experiments with comparable needs. Concerning future
work, the methods displayed could be incorporated into a
software framework to be helpful for the community. This has
the potential to draw in more users and to subject the methods
to further testing with additional micro-CT datasets.
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