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Abstract—Detecting system anomalies based on log data is
important for ensuring the security and reliability of computer
systems. Recently, deep learning models have been widely used
for log anomaly detection. The core idea is to model the log
sequences as natural language and adopt deep sequential models,
such as LSTM or Transformer, to encode the normal patterns
in log sequences via language modeling. However, there is a
gap between language modeling and anomaly detection as the
objective of training a sequential model via a language modeling
loss is not directly related to anomaly detection. To fill up the
gap, we propose LogGPT, a novel framework that employs
GPT for log anomaly detection. LogGPT is first trained to
predict the next log entry based on the preceding sequence. To
further enhance the performance of LogGPT, we propose a novel
reinforcement learning strategy to finetune the model specifically
for the log anomaly detection task. The experimental results
on three datasets show that LogGPT significantly outperforms
existing state-of-the-art approaches.

Index Terms—anomaly detection, log data, generative language
model

I. INTRODUCTION

Effectively detecting abnormal events in online computer
systems is critical to maintaining the security and reliability
of the systems. Logs, which are a fundamental component
of modern computer systems, serve as a critical source of
information for system monitoring, debugging, and security
auditing as they record the system status, offering valuable
insights into system performance and potential issues. Anoma-
lies in log data often signify system faults, security breaches,
or operational failures, making their detection a crucial task
[1]–[6].

However, the task of anomaly detection in log data is
challenging due to the nature of high dimensionality, large
volume, and complex structure. Machine learning models have
been extensively employed for anomaly detection in log data.
Traditional models, such as Principal Component Analysis
(PCA) [7], Isolation forest [8], and one-class Support Vector
Machines (OCSVM) [9] have been widely used. However,
these models often require manual feature engineering or
assume linear relationships among log entries, which makes
them less effective in handling the dynamic nature of log data.

Recently, deep learning models have emerged for log
anomaly detection, such as LSTM-based models like DeepLog
[1], LogAnomaly [10], and OC4Seq [11], and BERT-based
models like LogBERT [2]. One commonly used strategy is to
borrow the idea of language modeling in the natural language

processing field to capture the sequential pattern of log data. In
this paper, we call this group of log anomaly detection models
log language model-based approaches. Particularly, the log
language model is first trained to predict the next or masked
log entries given the normal sequences. Then, the anomalies
can be detected if the observed log entry is not in the top-K
list predicted by the log language model. The rationale is that
if a log sequence follows normal patterns, the log language
model should be able to predict the next or masked log entries.
Therefore, when an observed log entry is not in the top-K list
predicted by the log language model, it means that the log
entry has a low ratio to be in this specific position given the
context, indicating the abnormality.

Although empirical studies have demonstrated the effective-
ness of leveraging language models for log anomaly detection,
the current models still face some limitations. The traditional
LSTM-based log language models, such as DeepLog, often
fail to fully capture long-term dependencies in log sequences.
Therefore, the recently developed models usually adopt the
Transformer structure [12] to model the long log sequences,
such as LogBERT [2]. However, the masked log language
model adopted in LogBERT may not be able to capture the
natural flow in log sequences. More importantly, there is a
gap between log language modeling and anomaly detection.
Technically, the log language model is usually trained to
correctly predict the next log entry, while the current log
anomaly detection models label the anomalies if the observed
log entry is not in the Top-K list predicted by the log language
model. In other words, there is a gap in the objective between
the training phase and the testing phase for log anomaly
detection.

Inspired by the training strategy for large language models,
to fill up the gap, we introduce LogGPT, a novel framework
for log anomaly detection that leverages the Generative Pre-
trained Transformer (GPT) model. LogGPT still harnesses
the power of generative log language models to capture the
intricate patterns and dependencies in log data. Specifically,
LogGPT is pre-trained to predict the next log entry given the
preceding sequence (prompt). More importantly, we further
fine-tune LogGPT via reinforcement learning. Specifically,
LogGPT employs a novel reward mechanism based on whether
the observed log entry is within the Top-K predicted log entries
from the log language model. If the observed log entry is
found within the Top-K predictions, LogGPT will receive a
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positive reward; otherwise, it will receive a negative reward.
Reinforced by this reward signal, we expect that for the normal
sequences, LogGPT can ensure the log entry is within the Top-
K predictions.

The contributions of this paper are threefold. First, we
propose LogGPT, a novel framework for anomaly detection
in log data, which utilizes the generative log language model
to capture the patterns of normal log sequences by training
to predict the next log key given the previous sequence. This
novel approach effectively addresses the limitations of both
traditional machine learning models and deep learning models
like DeepLog [1] and LogBERT [2], providing a more robust
and effective solution for log anomaly detection. Second, we
introduce a Top-K reward metric specifically designed for fine-
tuning the log language model for anomaly detection. This
reward metric gives a positive reward if the actual log key
is in the Top-K predictions, and a negative reward otherwise,
thereby guiding the model to focus on the most relevant parts
of the log sequence and enhancing the accuracy of anomaly
detection. Third, we conduct extensive experiments to validate
the effectiveness of LogGPT in detecting anomalies in log
data. Experimental results demonstrate that LogGPT outper-
forms state-of-the-art methods, underscoring its potential as a
powerful tool for anomaly detection in log data.

II. RELATED WORK

Log anomaly detection, a critical task for ensuring system
security and reliability, has received extensive research. The
methods for log anomaly detection can be broadly categorized
into two phases: traditional machine learning models and deep
learning models.

In the early phase, traditional machine-learning models were
the primary tools for log anomaly detection. Models such
as Principal Component Analysis (PCA) [7], Isolation forest
[8], and one-class Support Vector Machines (OCSVM) [9]
were commonly used. Although these models are capable
of identifying outliers in the log data, these models have
several limitations. First, the traditional machine learning
models usually require manual feature engineering, which is
labor-intensive and might not capture the complex patterns in
log data. Furthermore, these models struggle with capturing
complex patterns in log sequences.

The advanced deep learning models have significantly im-
proved the performance of log anomaly detection. In partic-
ular, Long Short-Term Memory Networks (LSTMs), known
for their ability to model sequential data, have proven to be
effective for log anomaly detection, such as DeepLog [1]
and LogAnomaly [10]. DeepLog functions by predicting the
next log key based on the preceding sequence, identifying
anomalies when the actual next log key significantly deviates
from the prediction. On the other hand, LogAnomaly models
a log stream as a natural language sequence and develops
template2vec to extract the semantic information hidden in log
templates. Therefore, LogAnomaly can detect both sequential
and quantitative log anomalies simultaneously. However, these
models come with their own set of limitations. A primary

Fig. 1: Log key extraction from HDFS dataset messages via
Log Parser. The message with a red/blue underscore indicates
the detailed computational event for each log key separately.

challenge with LSTM is that this type of recurrent architecture
struggles to encode very long or complex sequences due
to its relatively simple structure. This issue is particularly
pronounced in log anomaly detection, where the sequences
can be quite long and complex.

To address the limitations of LSTM-based models, re-
searchers have turned to the use of Transformer [13], which is
a more powerful model to capture the long-term dependencies
in the sequences, such as LogBERT [2] or CAT [14]. Log-
BERT is a self-supervised framework that learns the patterns
of normal log sequences based on BERT [13]. Specifically,
LogBERT takes normal log sequences with random masks
as inputs and is trained to predict the randomly masked log
entries. After training, LogBERT can encode the patterns of
normal log sequences. One limitation is that the masked log
language model may not always capture the natural flow of
log sequences in some contexts. Moreover, the performance
of LogBERT is sensitive to the mask ratio, a hyperparameter
controlling how many tokens will be replaced with MASK
tokens during both the training and testing phases. In this
work, we propose LogGPT, which leverages the GPT model
to learn patterns in normal log sequences by predicting the
next log entries in a sequence, and further proposes a novel
reinforcement learning mechanism to enhance the performance
for anomaly detection.

III. PRELIMINARY

In this section, we provide a detailed overview of two
key components for log anomaly detection, log sequence
preprocessing and log language model.

A. Log Sequence Preprocessing

The first step of log anomaly detection is to preprocess
the log messages because it is hard to capture the sequential
pattern from the raw text-based log messages. The major line
of research in log anomaly detection is to first adopt a log
parser, such as Drain [15], to extract the template from the



log messages, as shown in Figure 1. Each template usually
indicates one type of log message, called a log key.

After getting the log keys, the sequence of raw log messages
can be transformed into a sequence of log keys. In this case,
the log keys are similar to the vocabulary in natural language,
while the sequence is like a sentence consisting of a sequence
of log keys. Therefore, a language model can be leveraged to
model the log sequences.

Formally, after preprocessing, the log messages with the
same template are represented by a log key k ∈ K, where K
indicates the set of log keys extracted from the log messages.
Then, a log sequence is organized as ordered log keys, denoted
as S = {k1, ..., kt, ..., kT }, where T indicates the length of the
log sequence.

B. Log Language Model

We use DeepLog [1] to illustrate the concept of the log lan-
guage model. DeepLog leverages Long Short-Term Memory
networks (LSTMs) for log language modeling. The primary
objective of DeepLog is to learn a probabilistic model of
normal execution from log data and then detect anomalies as
significant deviations from normal patterns.

DeepLog is trained on D = {Si}Ni=1 consisting of normal
log sequences. The LSTM network in DeepLog is trained to
predict the next log key in a sequence based on the preceding
sequence. Formally, given a sequence of log keys S1:T =
{k1, ..., kt, ..., kT }, where kt indicates the log key at the t-th
position. DeepLog trains an LSTM to model the conditional
probability p(kt+m+1|St:t+m) for t = 1, 2, ..., T − m − 1,
where m indicates the window size. Particularly, DeepLog
adopts a sliding window with size m to split the sequences
into a set of small windows and predict the next log key given
the previous m log keys. The LSTM is trained to maximize the
likelihood of the next log key given the preceding sequence,
which can be formulated as the following objective function:

L(θ) = − 1

N

N∑
i=1

T−m−1∑
t=1

log p(kit+m+1|Si
t:t+m), (1)

where θ denotes the parameters of LSTM.
During the anomaly detection phase, given a new sequence,

DeepLog still splits the sequences into small windows and
employs the trained LSTM model to predict the next log key.
The LSTM model predicts a probability distribution over all
possible log keys in K, ranking them based on their likelihood
of being the next key in the sequence. Then, an abnormal
sequence will be labeled as abnormal if the observed log key
does not appear in the Top-K prediction list multiple times
across all sliding windows in that sequence.

The concept of Top-K predictions is introduced to account
for the inherent uncertainty and variability in log sequences.
Even in normal operations, there can be multiple valid “next”
log keys as the systems usually have multiple normal patterns.
Therefore, during the anomaly detection phase, instead of
predicting a single ‘most likely’ next log key, the model
identifies the Top-K most probable next log keys. As long as

the observed log key is in the Top-K list, we could consider
the sequence normal.

The value of K, a tunable hyperparameter, determines the
strictness of the model for anomaly detection. A smaller K
results in a stricter model that allows fewer possibilities for the
next log key, usually leading to high recall and low precision,
while a larger K results in a more flexible model that considers
a broader range of log keys as normal, usually resulting in high
precision and low recall.

IV. LOGGPT

In this section, we introduce LogGPT, a novel log anomaly
detection model based on GPT. Similar to DeepLog, LogGPT
detects the log anomaly by examining whether the observed
log key is in the Top-K prediction list. Because GPT is a
more powerful structure compared to LSTM used by DeepLog,
LogGPT does not need to further split the sequence into
multiple small windows. Instead, LogGPT is trained to predict
the next log key given the previous sequence, which intrinsi-
cally can capture the long-term dependence of log sequences.
Moreover, besides leveraging the powerful GPT structure, we
also propose a novel reinforcement learning strategy to further
improve the performance of log anomaly detection.

The design of LogGPT is inspired by the training process
of large language models, where the training process consists
of two primary stages: pre-training and fine-tuning, as shown
in Figure 2.

In the pre-training stage (Figure 2a), a generative log
language model fθ(·) is trained on a corpus of normal log
sequences D, which allows the model to learn the underlying
patterns and structures of normal system behavior. After pre-
training, LogGPT is capable of generating log sequences based
on a given part of the log sequences.

The fine-tuning stage (Figure 2b) is designed to further
refine the model’s ability to distinguish between normal and
abnormal log sequences. In this stage, we employ reinforce-
ment learning techniques to finetune the pre-trained LogGPT.
Borrowing the terminology from the large language model,
we define a set of prompts P = {Si

1:t}Ni=1, where Si
1:t ⊆ Si

1:T

and Si
1:T ∈ D. These prompts are fed into the LogGPT to

generate the following sequence Ŝi
t:T step by step. We propose

a novel reward, called the Top-K metric, to fine-tune LogGPT
for anomaly detection.

A. Generative Log Language Model

LogGPT utilizes GPT-2 [16] for modeling the log se-
quences, which is based on Transformer decoder [12] that
utilizes a self-attention mechanism to capture dependencies
between log keys in the log sequence. LogGPT is trained to
predict the next log key given the preceding log keys. The
objective function for pretraining the LogGPT is defined as
follows:

L(θ) = − 1

N

N∑
i=1

T−1∑
t=1

log p(kit+1|Si
1:t), (2)



(a) Pre-training (b) Fine-tuning

Fig. 2: Framework of LogGPT.

where θ denotes the parameters of LogGPT, N is the number
of log sequences and T is the length of each sequence,
p(kit+1|Si

1:t) indicates the probability of log key at the t+1-th
position predicted by LogGPT given the sequence Si

1:t.
Specifically, to derive p(kit+1|Si

1:t), the structure of LogGPT
can be defined as:

hi
t = Transformer Decoder(Si

1:t) (3a)

p(kit+1|Si
1:t) = Softmax(hi

tW), (3b)

where hi
t ∈ Rd indicates the hidden representation derived

from the Transformer decoder [12], [16], and W ∈ Rd×|K|

is the parameter of the language model head that maps the
hidden representation to a probability distribution of all log
keys in K.

By training the model to predict the next log key in
normal log sequences, LogGPT encodes the normal system
behavior. After pre-training, GPT-2 is capable of generating
a log sequence Ŝi

t+1:T = {k̂it+1, ..., k̂
i
T } based on a given

part of the log sequence Si
1:t. This capability is crucial for

the subsequent fine-tuning stage, where the model is further
refined to distinguish between normal and anomalous log
sequences.

B. Reinforcement Learning for Log Anomaly Detection

In the context of LogGPT, we employ reinforcement learn-
ing to fine-tune the pre-trained GPT-2 model for the task of
log anomaly detection. The reinforcement learning paradigm
is particularly suitable for our task as it allows the model to
learn from its predictions and adjust its behavior based on
the feedback received, thereby enhancing its ability to detect
anomalies. In the context of our framework, we define the
following elements.
State: The state, denoted as S̃i

1:t = Si
1:t, is initially defined as

the given part of a log sequence. As the model generates the
log sequence Ŝi

t+1:T based on the given part, the state evolves
dynamically. Specifically, for each step j where t + 1 ≤ j ≤

T − 1, the state S̃i
1:j becomes the concatenation of the given

part of the log sequence Si
1:t and the generated part of the

log sequence Ŝi
t+1:j , denoted as S̃i

1:j = {Si
1:t, Ŝ

i
t+1:j}. The

sequence S̃i
1:j is further transformed to a hidden representation

h̃i
j by the Transformer decoder shown in Equation 3a.

Action: An action is defined as sampling a log key from the K
log keys with the highest probabilities predicted by LogGPT,
denoted as aij+1 ∼ Top-K(p(k̂ij+1|S̃i

1:j)).
Policy: A policy takes the form of LogGPT and is defined by
its parameters. Specifically, given the current part of the se-
quence until the j-th position, the policy outputs a probability
distribution over the action space, represented as πθ(a

i
j+1|h̃i

j),
where θ indicates the parameters of LogGPT.
Reward: The reward function provides feedback to the policy
based on the quality of its actions. We propose a novel
reward function to evaluate the predicted log key for anomaly
detection, called the Top-K metric.

At each step, the Top-K metric checks whether the observed
next log key is within the Top-K predicted log keys. If this
is the case, the model receives a reward of 1; otherwise, it
receives a reward of -1. Given a part of log sequence Si

1:t,
after an action is taken, the reward function is formulated as:

rj+1 =

{
1, if kij+1 ∈ Top-K(p(k̂ij+1|S̃i

1:j))

−1, if kij+1 /∈ Top-K(p(k̂ij+1|S̃i
1:j))

. (4)

Here, kij+1 refers to the actual next log key, and p(k̂ij+1|S̃i
1:j)

denotes the probability distribution predicted by LogGPT over
the action space given the current state.

The Top-K metric promotes better generalization and ro-
bustness of LogGPT in anomaly detection. By encouraging
the model to predict a set of likely next log keys rather than
a single most likely log key, the Top-K metric helps LogGPT
learn a more nuanced representation of the normal log patterns.
This approach recognizes that log data may contain inherent
variability even for the normal log sequences, and a broader
range of acceptable candidates can still reflect normal system



TABLE I: Statistics of the Datasets. The number in the
parentheses indicates the unique log keys in the training set.

Dataset # of Unique
Log Keys

# of Log
Sequences

Avg. Seq.
Length

Training
Data

Testing Data
Normal Anomalous

HDFS 48 (15) 575,061 19 5,000 553,223 16,838
BGL 396 (160) 36,927 58 5,000 28,631 3,296

Thunderbird 7,703 (904) 112,959 166 5,000 67,039 40,920

behavior. The Top-K metric, therefore, enhances the precision
of anomaly detection by aligning the model’s predictions with
the complex nature of log data.

C. Policy Update

We adopt Proximal Policy Optimization (PPO) [17] for
the policy update. PPO is a type of policy gradient method
that optimizes the policy directly by maximizing the expected
reward and can further maintain the stability of the learning
process and prevent harmful updates. The objective function
of PPO is defined as follows:

J(θ) = Eπθ

 N∑
i=1

T−1∑
j=t

πθ(a
i
j+1|hi

j)

πθold(a
i
j+1|hi

j)
rj+1

 , (5)

where πθ is the new policy, πθold is the old policy, and rj+1

is the reward for an action.
The policy πθ is updated by performing gradient ascent on

the objective function J(θ):

θ ← θ + α∇θJ(θ), (6)

where α is the learning rate.
The policy update process is repeated for a number of

iterations until the policy converges or a maximum number
of iterations is reached. The Top-K metric encourages the
model to recognize the inherent variability in normal log data
by rewarding predictions that include the actual next log key
within a broader set.

D. Anomaly Detection

After fine-tuning, LogGPT is deployed to detect abnormal
log sequences. Given a new log sequence S1:T , LogGPT
iteratively predicts the next log key kt+1 given the preceding
subsequence S1:t for 1 ≤ t ≤ T − 1.

For each predicted log key, the model generates a set of Top-
K predicted log keys. This set represents the K most likely log
keys at the current position. The actual next log key is then
compared to this set. As long as one actual log key is not in
the set of Top-K predicted log keys, the whole log sequence
will be flagged as anomalous.

V. EXPERIMENTS

A. Experimental Setup

Datasets. We evaluate LogGPT on three log datasets, namely
HDFS, BGL, and Thunderbird. Table I shows the statistics of
three datasets. For all the datasets, we randomly select 5000
normal log sequences as the training dataset.

• HDFS (Hadoop Distributed File System) [7]: This dataset
is derived from Hadoop-based map-reduce jobs that were

run on Amazon EC2 nodes. The anomalies within this
dataset are identified through a manual labeling process
based on a set of predefined rules. The log sequences are
constructed based on the session ID present in each log
message, resulting in an average sequence length of 19.
The HDFS dataset consists of 575,061 log sequences, out
of which 16,838 have been labeled as anomalous.

• BGL (BlueGene/L Supercomputer System) [18]: The
BGL dataset originates from a BlueGene/L supercom-
puter system, located at the Lawrence Livermore National
Labs (LLNL). It includes both alert and non-alert mes-
sages, with the alert messages being treated as anomalies.
Log sequences are formed using a time sliding window of
1 minute, yielding an average sequence length of 58. The
BGL dataset contains 36,927 log sequences, with 3,296
of them classified as anomalous.

• Thunderbird [18]: This dataset is collected from another
supercomputer system. The dataset used in this study
comprises the first 20,000,000 log messages from the
original Thunderbird dataset that compose 112,959 log
sequences, with 40,920 of them marked as anomalous.
Log sequences are created using a time sliding window
of 1 minute, leading to an average sequence length of
166.

Baselines. We compare LogGPT with a variety of baseline
methods, consisting of both traditional machine learning mod-
els and deep learning models:

• PCA (Principal Component Analysis) [19]: This tech-
nique constructs a counting matrix based on the frequency
of log key sequences. It then reduces this matrix into a
lower-dimensional space to identify anomalies.

• iForest (Isolation Forest) [8]: iForest is an unsupervised
learning algorithm, which also adopts a counting matrix
as input. It isolates anomalies instead of profiling normal
data points. It represents features as tree structures and
anomalies are detected as instances with short average
path lengths on the constructed isolation trees.

• OCSVM (One-Class Support Vector Machine) [20]:
OCSVM is a variant of the Support Vector Machine
algorithm that is designed for anomaly detection tasks [9],
[21]. The model is trained on normal data and finds the
maximum margin hyperplane that separates the normal
data from the origin.

• LogCluster [22]: LogCluster is a density-based log clus-
tering approach that groups similar log messages together.
Anomalies are detected as log messages that do not
belong to any cluster or belong to small clusters.

• DeepLog [1]: DeepLog is a deep learning-based approach
for anomaly detection in log data. It uses a long short-
term memory (LSTM) network to model the log se-
quences and detect anomalies based on the prediction
errors.

• LogAnomaly [10]: LogAnomaly models a log stream
as a natural language sequence, which can detect both
sequential and quantitative log anomalies simultaneously.



TABLE II: Experimental Results on HDFS, BGL, and Thunderbird Datasets.

Method HDFS BGL Thunderbird
Precision Recall F-1 score Precision Recall F-1 score Precision Recall F-1 score

PCA 0.166±0.008 0.059±0.003 0.087±0.002 0.117±0.023 0.035±0.007 0.054±0.010 0.953±0.004 0.980±0.005 0.966±0.003

iForest 0.043±0.010 0.422±0.224 0.078±0.021 0.491±0.364 0.037±0.052 0.063±0.090 0.338±0.128 0.015±0.011 0.028±0.020

OCSVM 0.058±0.012 0.910±0.089 0.108±0.021 0.073±0.003 0.345±0.010 0.121±0.004 0.550±0.004 0.998±0.000 0.709±0.003

LogCluster 0.996±0.003 0.368±0.001 0.538±0.001 0.941±0.015 0.641±0.033 0.762±0.021 0.977±0.005 0.291±0.063 0.445±0.067

DeepLog 0.793±0.092 0.863±0.031 0.824±0.060 0.792±0.048 0.946±0.012 0.861±0.028 0.864±0.005 0.997±0.000 0.926±0.003

LogAnomaly 0.907±0.017 0.369±0.014 0.524±0.017 0.884±0.002 0.850±0.009 0.867±0.003 0.873±0.005 0.996±0.000 0.931±0.003

OC4Seq 0.922±0.059 0.758±0.227 0.808±0.157 0.441±0.045 0.352±0.044 0.391±0.041 0.901±0.046 0.823±0.232 0.845±0.177

LogBERT 0.754±0.142 0.749±0.037 0.745±0.082 0.917±0.006 0.892±0.006 0.905±0.005 0.962±0.019 0.965±0.008 0.963±0.007

CAT 0.102±0.022 0.422±0.082 0.164±0.034 0.177±0.122 0.210±0.184 0.190±0.148 0.751±0.072 0.516±0.124 0.607±0.120

LogGPT 0.884±0.030 0.921±0.066 0.901∗
±0.036 0.940±0.010 0.977±0.018 0.958∗

±0.011 0.973±0.004 1.000±0.000 0.986∗
±0.002

The asterisk indicates that LogGPT significantly outperforms the best baseline at the 0.05 level, according to the paired t-test.

TABLE III: Performance of LogGPT with or without rein-
forcement learning.

Metric Approach HDFS BGL Thunderbird

Precision LogGPT w/o RL 0.932±0.015 0.936±0.011 0.971±0.004

LogGPT 0.884±0.030 0.940±0.010 0.973±0.004

Recall LogGPT w/o RL 0.790±0.101 0.975±0.018 1.000±0.000

LogGPT 0.921±0.066 0.977±0.018 1.000±0.000

F-1 score LogGPT w/o RL 0.853±0.065 0.955±0.010 0.985±0.002

LogGPT 0.901∗±0.036 0.958±0.011 0.986∗±0.002

Significantly outperforms LogGPT w/o RL at the 0.05 level (paired t-test).

• OC4Seq (Multi-Scale One-Class Recurrent Neural Net-
works) [11]: OC4Seq is designed to detect anomalies in
discrete event sequences. Recognizing that an anomalous
sequence could be caused by individual events, subse-
quences of events, or the entire sequence, OC4Seq em-
ploys a multi-scale RNN framework to capture different
levels of sequential patterns simultaneously.

• LogBERT [2]: LogBERT is a BERT-based architecture
to capture the patterns of normal log sequences via a
log language model. LogBERT is trained to predict the
masked log keys on normal log sequences and detects the
abnormal log sequences based on the prediction errors.

• CAT (Content-Aware Transformer) [14]: CAT is a self-
attentive encoder-decoder transformer framework de-
signed for anomaly detection in event sequences. It
incorporates the semantic information of event content
by using a content-awareness layer to generate represen-
tations of each event. The encoder learns preamble event
sequence representations with content awareness, and the
decoder embeds sequences under detection into a latent
space where anomalies are distinguishable.

Implementation Details. We first employ Drain [15] to parse
raw log messages into log keys. For the baseline models, we
utilize the Loglizer [23] package to evaluate PCA, OCSVM,
iForest, and LogCluster for anomaly detection. DeepLog and
LogAnomaly are evaluated using the Deep-loglizer [24] pack-
age. For OC4Seq1, LogBERT2, and CAT3, we use the open-
source code provided by the authors separately.

As for LogGPT, we use a GPT model with 6 layers and 6
heads. The dimensions of the embeddings and hidden states
are set to 60. The learning rate is set to 1e-4 for the pre-training

1https://github.com/KnowledgeDiscovery/OC4Seq
2https://github.com/HelenGuohx/logbert
3https://github.com/mmichaelzhang/CAT

phase and 1e-6 for the fine-tuning phase. To accommodate
different datasets, we set the K in Top-K to 50% of the training
log keys. It means during the test phase if an observed log key
is not in the top 50% of the prediction list from the GPT, the
sequence will be labeled as an anomaly. This allows us to
maintain a high level of flexibility when dealing with datasets
of varying sizes and characteristics. The batch size for the
pre-training phase is set to 16, and we train the model for 100
epochs. The episode is set to 20 with early stop criteria to
prevent overfitting and ensure efficient training. The code for
LogGPT is publicly available4.

B. Experimental Results

Performance on Log Anomaly Detection. Table II illustrates
the results and standard deviation of LogGPT and various
baselines over 10 runs on the HDFS, BGL, and Thunderbird
datasets. The asterisk in the table indicates that LogGPT
significantly outperforms the best baseline for each dataset at
the 0.05 level, according to the paired t-test.

First, we can observe that PCA, iForest, and OCSVM
perform poorly on the HDFS and BGL datasets, as indicated
by their low F-1 scores. However, PCA’s performance is
notably better on the Thunderbird dataset, achieving a high
F-1 score. This inconsistency in performance across datasets
highlights the sensitivity of PCA to datasets.

LogCluster, specifically designed for log anomaly detection,
shows improved performance over other traditional machine
learning models, i.e., PCA, iForest, and OCSVM, on the
HDFS and BGL datasets but is outperformed by PCA on
the Thunderbird dataset. This pattern further emphasizes the
importance of dataset-specific characteristics in determining
the effectiveness of different methods.

Deep learning-based approaches, such as DeepLog,
LogAnomaly, OC4seq, LogBERT, and CAT, outperform tra-
ditional methods across all three datasets, which shows the
advantages of utilizing deep learning to capture complex
patterns in log sequences.

Our proposed model, LogGPT, stands out by consistently
achieving the highest F-1 scores across all three datasets, with
significant margins over all baselines.
Ablation Studies. To investigate the contribution of rein-
forcement learning (RL) to the performance of LogGPT, we

4https://github.com/nokia/LogGPT
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Fig. 3: Impact of the ratio of Top-K log keys.
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Fig. 4: Impact of the training size.

conducted an ablation study, comparing the performance of
LogGPT with and without the RL component. The results are
summarized in Table III.

First, we can notice that on both HDFS and Thunderbird
datasets, LogGPT significantly outperforms LogGPT without
the RL component, which demonstrates that the RL component
enhances the overall performance of LogGPT for log anomaly
detection. Especially, on the HDFS dataset, by finetuning the
GPT model with RL reward, the recall achieved by LogGPT
is improved with a large margin with a little sacrifice on
precision, leading to extensive improvement in the F-1 score. It
also shows that fine-tuning the log language model with Top-
K reward can identify more log anomalies. Meanwhile, on the
BGL dataset, we can also notice a slight improvement in F-1
of LogGPT compared to the one without the RL component.
Another interesting finding is that even the LogGPT without
the RL component already outperforms all baselines (shown
in Table II) in three datasets, which also shows the advantage
of leveraging the GPT model to capture the patterns of log
sequences.

Parameter Analysis: Ratio of Top-K. LogGPT detects the
anomalies by examining whether the observed log key is
in the Top-K list predicted by GPT. Therefore, K is an
important parameter to determine the anomalies. We first
analyze the difference in the performance by tuning K for
anomaly detection. By default, K is set as 50% of unique log

keys. It means if the next log key falls into the top 50% of
unique log keys predicted by GPT, the sequence is normal.

The impact of different top-K ratios on the precision, recall,
and F-1 score for the HDFS, BGL, and Thunderbird datasets
is illustrated in Figure 3. On both HDFS and BGL datasets,
we have similar observations. With the increasing of ratios as
normal log keys, the recall keeps decreasing when the ratio is
greater than a threshold, such as 40% in HDFS and BGL. This
happens because when we have a large ratio, most of the keys
are considered normal. In this case, the recall will be low. On
the other hand, if the observed log key is predicted with an
extremely low probability at a specific position, with a high
chance, this log key is abnormal. Therefore, we can observe
the increase in precision along with the increase in ratios.

For the Thunderbird dataset, the precision increases as the
top-K ratio increases, while the recall remains almost constant,
with a slight decrease at higher top-K ratios. The F-1 score
increases steadily, reaching a peak at a specific top-K ratio.
The reason for this behavior can be attributed to the inherent
characteristics of the Thunderbird dataset. It is likely that the
normal data within the Thunderbird dataset has high variabil-
ity, which needs a broader range of acceptable continuations
in the log sequences to reduce the false positive. As the
top-K ratio increases, LogGPT becomes more selective in
flagging anomalies, thereby increasing precision by reducing
false positives.



Overall, a low top-K ratio tends to lead to high recall but
low precision, while a high top-K ratio leads to high precision
but potentially lower recall. The optimal top-K ratio varies
across datasets, reflecting the unique characteristics of each
dataset.
Scalability Analysis: Training Size. It is well known that
deep learning models usually require a sufficient number of
training samples. The impact of training size on the per-
formance of log anomaly detection models is critical. By
analyzing the F-1 scores of various models across different
training sizes, we can gain insights into their effectiveness and
efficiency. In this experiment, we compare LogGPT with other
deep learning-based baselines, across three datasets by varying
the training size. Figure 4 shows the experimental results.

The effect of the training size on the HDFS dataset reveals
distinct patterns across different models (shown in Figure 4a).
LogGPT demonstrates consistent performance across various
training sizes, highlighting its robustness and ability to gener-
alize well. OC4Seq shows a consistent increase in performance
with the training size, indicating that it benefits from more
extensive training data. DeepLog and LogAnomaly exhibit
fluctuations in performance, which may be attributed to the
sensitivity to training size. The decline in performance for
LogBERT and stability for CAT may reflect limitations in their
ability to leverage additional training data without changing
other hyper-parameters. The varying behaviors of these models
underscore the importance of carefully selecting the training
size based on the model’s characteristics.

We have similar observations on BGL and Thunderbird
datasets. First, with larger training sizes, the performance
of LogGPT, DeepLog, LogAnomaly, and LogBERT keep
improving, which shows that these models can benefit from
additional training data. Meanwhile, LogGPT can outperform
those baselines in most cases. However, the sharp decline for
OC4Seq and overall downward trend for CAT may indicate
overfitting or challenges in generalizing from larger training
sets.

Overall, LogGPT can achieve very good performance in
three datasets. More training samples can further boost the
performance of LogGPT.

VI. CONCLUSION

In this work, we introduced LogGPT, a novel approach to
log anomaly detection that builds upon GPT models, further
enhanced by a reinforcement learning strategy. Through mod-
eling log sequences as natural language, LogGPT innovatively
adapts GPT for log anomaly detection. More importantly,
recognizing the existing gap between language modeling and
anomaly detection, LogGPT integrates a fine-tuning process
guided by a novel Top-K reward metric for anomaly detec-
tion. Extensive experiments conducted across various datasets
demonstrated the effectiveness of LogGPT, showcasing signif-
icant improvements over existing state-of-the-art methods.
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