
A posteriori Trading-inspired Model-free Time Series Segmentation

Mogens Graf Plessen

Abstract— Within the context of multivariate time series
segmentation this paper proposes a method inspired by a
posteriori optimal trading. After a normalization step time
series are treated channel-wise as surrogate stock prices that
can be traded optimally a posteriori in a virtual portfolio
holding either stock or cash. Linear transaction costs are
interpreted as hyperparameters for noise filtering. Resulting
trading signals as well as resulting trading signals obtained
on the reversed time series are used for unsupervised labeling,
before a consensus over channels is reached that determines
segmentation time instants. The method is model-free such
that no model prescriptions for segments are made. Benefits of
proposed approach include simplicity, adaptability to a wide
range of different shapes of time series, and in particular
computational efficiency that make it suitable for big data.
Performance is demonstrated on synthetic and real-world data,
including a large-scale dataset comprising a multivariate time
series of dimension 1000 and length 2709. Proposed method is
compared to a popular model-based bottom-up approach fitting
piecewise affine models and to a state-of-the-art model-based
top-down approach fitting Gaussian models, and found to be
consistently faster while producing more intuitive results.

I. INTRODUCTION

Analysis of multivariate time series data is relevant in
every engineering field. An ongoing increase in sensors
employment simultaneously implies a rise in measurement
data generation. Once a multivariate data point is measured
it can either be processed isolatedly or in combination with a
sequence of previous measurements. Given such a sequence
a natural task is to segment it. The problem addressed in
this paper is to partition multivariate time series data into
segments such that different segments exhibit different and
characteristic behavior.

The importance of time series segmentation stems from
the fact that it is essential to manage large amounts of
multivariate data, and that it can form the foundation for
further upstream time series analysis tasks such as clustering,
compression or forecasting. Note that the problem of time
series segmentation is closely related to, and often inter-
changeably implied by a variety of problems labeled in the
literature as “changepoint detection”, “breakpoint detection”
or “event detection”. For example, segment boundaries can
be interpreted as changepoints or breakpoints where charac-
teristic behavior changes.

Algorithms for time series segmentation can be classified
according to four criteria. First, the number of segments is ei-
ther prescribed by a hyperparameter choice, or, alternatively,
optimized in addition to the time instants defining the seg-
mentation. Second, each segment may be fitted by a specific
segment model (e.g., a piecewise affine or Gaussian model),
or, alternatively, no specific model fit may be prescribed.
For the former case, it can be further differentiated between

Independent research, mgplessen@gmail.com

0

10

20

x
1
(t
)

0
5

10
15

x
2
(t
)

−20
−10

0
10
20

x
3
(t
)

0 20 40 60 80

τ1 τ2 τ3 τ4 τ5

t

Fig. 1. Problem sketch. Given a multivariate time series (blue) suitable
segmentation time instants (red dashed) are sought. In this paper, a method
inspired by a posteriori optimal trading is proposed that identifies local
maxima and minima channel-wise for each {xi(t)}Tt=0,∀i = 1, . . . , nx

and for their reversed time series, before a unifying consensus over all
channels is reached resulting in time instants {τk}K̂k=1. For example, for
nx = 3 and a uniformly-weighted consensus over all three channels the
result is obtained as illustrated, eventhough the third channel’s local maxima
and minima are phase-shifted with respect to the other two channels.

MAIN NOMENCLATURE
Symbols
bi(t) Binary state for channel i at time t.
b⋆i (t) Optimal binary state for channel i at time t.
ϵi Transaction cost level for channel i.
ϵmin, ϵmax Minimum and maximum constraint on ϵi.
γ• Hyperparameters for APTS, • ∈ {mult, close, plat}.
nx Dimension of multivariate time series.
q⋆(t) Optimal binary consensus state at time t.
{τk}K̂k=1 Identified list of segmentation time instants.
{τflip

k }K̂flip

k=1 Segmentation obtained on reversed time series.
ui(t) Binary control for channel i at time t.
x(t) Multivariate time series data point at time t.
xi(t) Data point for channel i at time t.
x̃i(t) Data point after normalization.
zi(t) Four-dimensional state vector.
K̂ Identified number of segments.
Kmax Maximum permissible number of segments.
T Length of multivariate time series.
Functions
Fnormalize(·) Mapping from {xi(t)}Tt=0 to {x̃i(t)}Tt=0.
F trade(·) Mapping from {x̃i(t)}Tt=0 to {b⋆i (t)}Tt=0.
F consensus(·) Mapping from {{b⋆i (t)}Tt=0}

nx
i=1 to {q⋆(t)}Tt=0.

F terminate(·) Mapping from {b⋆i (t)}Tt=0 and Kmax to a binary.
Fmerge(·) Mapping for merging of {τk}K̂k=1 and {τflip

k }K̂flip

k=1 .
F epsilon(·) Mapping for determining transaction cost level ϵi.
Abbreviations
BU Bottom-Up Algorithm [1].
GGS Greedy Gaussian Segmentation Algorithm [2].
APTS A Posteriori Trading-inspired Segmentation.

ar
X

iv
:1

91
2.

06
70

8v
2

 [
st

at
.M

L
]

 9
 N

ov
 2

02
3

the cases of (i) fitting the same model class to all segments
but with different parameters, or (ii) fitting each segment
by a model selected from a set of different model classes.
Third, for the algorithm type it can be differentiated between
batch offline or recursive online computation. Fourth, for
the machine learning type it can be distinguished between
supervised and unsupervised methods. For surveys on the
topic see [3]–[5]. Supervised methods require a training
phase to learn a classifier [6]–[8]. For example, a binary
classifier distinguishes a “transition state” (changepoint) and
a “within-state”. See also [9] for evolutionary time series
segmentation using pattern templates. In contrast, unsuper-
vised methods deal with unlabeled data. There exists a
large variety of approaches, ranging from subspace [10],
to probabilistic [11], segment-fitting [12], kernel-based [13],
deep learning-based [14], graph-based [15] and density ratio
methods [16], [17]. For a method assuming a fixed number
of segments see, e.g., [18]. A variety of different segment
model classes have been proposed, including also a model-
free approach working with a dissimilarity matrix for single
pattern change detection within the remote sensing domain
[19], Fourier transforms [20], wavelets [21], piecewise affine
representations [1], [22], and multivariate Gaussians [2].

Within this context the motivation and contribution of this
paper is to present a simple and fast method that (i) does not
assume a fixed number of changepoints, (ii) does not assume
any specific segment model, (iii) is used for batch computa-
tion, (iv) is an unsupervised algorithm, (v) parallelizable, (vi)
library-free in the sense that no specific internal optimisation
routine (such as, e.g., a least-squares solution or factorizaton)
is required, (vii) exhibits simple-to-select hyperparameters,
and (viii) is scalable to large multivariate time series data.
The fundamental approach is based on ideas from a posteriori
optimal trading [23]. After a normalization step time series
are treated channel-wise as surrogate stock prices that can
be traded optimally a posteriori in a virtual portfolio holding
either stock or cash. Linear transaction costs are therefore
interpreted as hyperparameters for noise filtering. Resulting
trading signals as well as resulting trading signals obtained
on the reversed time series are then used for unsupervised
labeling, before a consensus over channels is reached that
determines segmentation instants. To the author’s knowledge
this approach has not been presented in the literature.

The remaining paper is organized as follows. The mul-
tivariate time series segmentation problem is formulated
mathematically in §II. The proposed solution is presented in
§III. Numerical results are evaluated in §IV and compared to
a bottom-up method [1] and to a recent top-down Gaussians-
fitting method [2] on synthetic as well as real-world datasets
[24], before concluding with §V.

II. PROBLEM FORMULATION

A multivariate time series of finite length is defined as
x(t) ∈ Rnx , ∀t = 0, . . . , T . Here, x(T) ∈ Rnx represents
the data point measured last. Time-indices do not need to
be uniformly spaced. Instead, data points are only assumed
to be ordered. Indices do not necessarily need to represent
time instants, but could also denote space indices (e.g., with
space along a road as the dependent variable), unitless indices

or other indexing. In general, units can vary channel-wise,
whereby notation xi(t), ∀i = 1, . . . , nx is employed.

The problem addressed is to partition the multivariate time
series, {xi(t)}Tt=0, ∀i = 1, . . . , nx, into K̂ + 1 segments
defined by changepoints or ordered time instants, {τk}K̂k=1,
with 0 < τ1 < · · · < τK̂ < T such that different segments
exhibit different and characteristic behavior. Rather than
constraining a fixed number of segments, K̂ shall here also
be identified in addition to the segmenting time instants. A
batch offline algorithm is developed. In this paper, no specific
model shall be prescribed for any time series segment to
not artificially limit the solution space. This is in contrast
to model-based approaches such as, e.g., [1] and [2], where
piecewise affine and Gaussian models are fitted as part of
their segmentation logics, respectively.

III. PROBLEM SOLUTION

A. A Posteriori Trading-inspired Segmentation Algorithm

This paper builds on [23] where a posteriori optimal
trading over multiple assets subject to constraints for di-
versification was discussed. Within the context of multi-
variate time series segmentation the proposed method can
be interpreted as virtual or surrogate channel-wise optimal
trading on normalized time series data and the reversed time
series data subject to linear transaction costs that represent
hyperparameters for noise filtering, before determining a
consensus based on the trading signals for all channels to
obtain K̂ and {τk}K̂k=1. Details are outlined in the following.

First, a normalization is carried out in order to obtain
channel-wise positive time series data. As will be further
discussed, positivity is a prerequisite for proposed segmenta-
tion logic. The following linear transformation is employed,
x̃i(t) = xi(t) + x̃offset

i ,∀t = 0, . . . , T,∀i = 1, . . . , nx, with
x̃offset
i = |mint∈{0,...,T} xi(t)|+1. The bias ensures positivity.

In the following, the mapping from {xi(t)}Tt=0 to {x̃i(t)}Tt=0

shall be abbreviated by Fnormalize({xi(t)}Tt=0).

Second, channel-wise surrogate wealth dynamics are intro-
duced that model a virtual portfolio holding either a virtual
cash position or the “stock” modeled by the channel-wise
normalized time series. A four-dimensional state vector is
defined, zi(t) = [ni(t), ci(t), bi(t), wi(t)], with ni(t) ≥ 0
the number of shares held at time t, ci(t) ≥ 0 the cash
position, bi(t) ∈ {−1, 1} a binary state indicating full
investment in cash or stock, and finally wi(t) ≥ 0 denoting
total wealth at time t. In contrast to regular stock trading
for our surrogate setup the number of shares, ni(t) ≥ 0,
is real-valued. At t = 0 the state vector is initialized with
zi(0) = [0, x̃i(0)

1−ϵi
, − 1, x̃i(0)

1−ϵi
], where ϵi ∈ [0, 1) is

interpreted as a linear transaction cost. This initialization
implies an initial cash position sufficient to buy one share
when accounting for transaction cost and is defined this way
to avoid adding new hyperparameters. Introducing a control

variable, ui(t) ∈ {−1, 1}, state transition dynamics are,

zi(t+1) =




0

ci(t)

−1
ci(t)

 , if ui(t) = −1,


ci(t)(1−ϵi)

x̃i(t)

0

1

ni(t+ 1)x̃i(t+ 1)

 , if ui(t) = 1,

(1)

for zi(t) ∈ {zi(t) ∈ R4 : bi(t) = −1}, and

zi(t+ 1) =




0

ni(t)x̃i(t)(1− ϵi)

−1
ci(t+ 1)

 , if ui(t) = −1,


ni(t)

0

1

ni(t)x̃i(t+ 1)

 , if ui(t) = 1,

(2)

for zi(t) ∈ {zi(t) ∈ R4 : bi(t) = 1}. Combinedly, (1)-(2)
model all four possible transitions between full cash and full
stock investment subject to linear transaction costs.

Third, in a causal setting x̃i(t + 1) is not known at time
t. However, in the batch setting it is available, which is
equivalent to perfect one step-ahead knowledge a posteriori.
Therefore, and due to the fact of a positive x̃i(t) by above
discussion there always exists a wealth-maximizing trading
trajectory from t = 0 to T as a function of transaction cost
level ϵi ≥ 0 such that wi(T) is channel-wise maximized.
This trajectory can be computed efficiently as follows.

Starting from zi(0) defined above, at t = 1 two possible
states can result which differ by binary bi(1) ∈ {−1, 1}.
Let these two states be denoted by z

(−1)
i (1) and z

(1)
i (1),

respectively. Then, by Bellman’s principle of optimality [25]
and with the purpose of deriving the wealth-maximizing trad-
ing trajectory the following recursion can be implemented
for all t ≥ 1. When x̃i(t + 1) becomes available, z(−1)

i (t)

and z
(1)
i (t) branch out to a total of four different states

according to (1)-(2). These are pruned to two by selecting
the wi(t+1)-maximizing solutions for each bi(t+1) = −1
and bi(t + 1) = 1 such that z

(−1)
i (t + 1) and z

(1)
i (t +

1) are obtained, respectively. Their corresponding optimal
parent states are further recorded, which shall be denoted
by z

(−1),parent
i (t) and z

(1),parent
i (t). This recursion is repeated

until t = T . Given z
(−1)
i (T) and z

(1)
i (T) let b⋆i (T) = −1 if

w
(−1)
i (T) > w

(1)
i (T), and b⋆i (T) = 1 otherwise. Now, using

the list of optimal parent states, {z(−1),parent
i (t)}T−1

t=1 and
{z(1),parent

i (t)}T−1
t=1 , the optimal wealth-maximizing trading

trajectory can be obtained by backpropagation, resulting
in {b⋆i (t)}Tt=0. In the following, F trade({x̃i(t)}Tt=0, ϵi) shall
abbreviate the mapping from {x̃i(t)}Tt=0 to {b⋆i (t)}Tt=0 as a
function of transaction cost level ϵi > 0.

So far, it was discussed how to transform time series
data {xi(t)}Tt=0 to {x̃i(t)}Tt=0, before computing binary
{b⋆i (t)}Tt=0 as a function of scalars ϵi ≥ 0. Note that
all of these steps can be parallelized channel-wise for all
i = 1, . . . , nx. It remains to discuss (i) how to reach
consensus over all nx channels in order to produce final
segmentation instants, {τk}K̂k=1, and (ii) how to appropriately
select hyperparameters ϵi.

Here, it is proposed to reach consensus from a weighted
average defined as follows,

q⋆(t) =

nx∑
i=1

ηipib
⋆
i (t), ∀t = 0, . . . , T, (3)

with weights ηi ∈ [0, 1] such that
∑nx

i=1 ηi = 1, p1 = 1 and

pi = arg max
pi∈{1,−1}

T∑
t=0

|b⋆1(t) + pib
⋆
i (t)| , ∀i = 2, . . . , nx.

(4)
Several comments are made. First, as a special case and
treated as the default below, uniform weighting implies
ηi = 1

nx
. Alternatively, non-uniform weights may be used

for trading-off importance of different sensor channels. (For a
financial analogy, consider stock indices that weight different
components according to their market capitalizations.)

Second, the introduction of binary pi ∈ {−1, 1} is
motivated by a symmetry argument. Suppose two channels
with time series that are mirrored with respect to the time-
axis, i.e., x2(t) = −x1(t). Then, b2(t) = −b1(t) follows.
Consequently, for q⋆(t) =

∑nx

i=1 ηib
⋆
i (t) with ηi = 1

nx

the result q⋆(t) = 0 is obtained. However, this clearly is
undesired. This can be seen by considering, for example,
a sawtooth function for x1(t), and x2(t) = −x1(t). Then,
no changepoints at all would be identified eventhough these
clearly exist. Therefore, the solution in (3) is proposed, which
resolves the symmetry issue. The reference prescription pi =
1 for i = 1 is arbitrary. Any other i ∈ {2, . . . , nx} would also
serve. Note that the introduction of pi only affects consensus
finding over all channels. The optimal trading trajectories
for individual channels are still determined independently
from each other. As a detail, by defining binary bi(t) ∈
{−1, 1}, rather than the more conventional bi(t) ∈ {0, 1}, (4)
can be evaluated by simple multiplication. By construction
q⋆(t) ∈ [−1, 1]. Then, {τk}K̂k=1 is computed as the ordered
list of time instants at which q⋆(t) crosses the threshold-
level 0 either from below or above. For multivariate time
series segmentation this differentation is sufficient. Since
zi(0) is initialized in a surrogate cash position and for a
larger number of positive than negative pi, the time instants
listed in {τk}K̂k=1 alternatingly indicate the start of an up-
trending (weightedly averaged over all channels) and a down-
trending multivariate time series segment, respectively. In the
following, F consensus({{b⋆i (t)}Tt=0}

nx
i=1) shall abbreviate the

consensus mapping from {{b⋆i (t)}Tt=0}
nx
i=1 to {τk}K̂k=1.

For any given time series data the selection of a suitable
transaction cost level, ϵi, is a priori not obvious. Therefore,
an iterative approach is proposed. In the first iteration it is
set ϵi = 0, which is typically appropriate for data with high
signal-to-noise ratio. In the second iteration it is set ϵi =

ϵmin, where ϵmin > 0 is a hyperparameter. For all remaining
iterations it is set ϵnew

i = γmultϵi, where multiplier γmult > 1
is a hyperparameter and ϵnew

i denotes the transaction cost
level for the next iteration. Denoting iteration numbers by
j ≥ 0, the mapping to determine ϵi shall be abbreviated by
F epsilon(ϵi, ϵ

min, ϵmax, γmult, j) in the following.
The result {b⋆i (t)}Tt=0 clearly is a function of ϵi. Let

the number of switches, i.e., the number of changes where
b⋆i (t+ 1) ̸= b⋆i (t), be denoted by L(ϵi). This is bounded by
0 ≤ L(ϵi) ≤ T . Furthermore, L(ϵi) clearly is monotonously
decreasing for increasing ϵi. This follows from the state
transitions according to (1)-(2) and the wealth-maximizing
method to construct {b⋆i (t)}Tt=0. This monotonicity can be
exploited for defining a simple stopping criterion. If 0 <
L(ϵi) ≤ Kmax, then the channel-wise ϵi-iteration is stopped.
Here, Kmax > 0 defines a user-defined maximum permissible
number of segments. In addition, the pathological case must
be handled where L(ϵi) drops to zero during ϵi-iterations.
Then, the last ϵi-solution yielding L(ϵi) > 0 is returned. By
construction this always implies L(ϵi) > Kmax. Therefore,
for such cases an additional merging-routine is employed,
which is, however, introduced further below after the discus-
sion of also handling the reversed time series data. In the
following, the binary mapping for terminating ϵi-iterations
shall be abbreviated by F terminate({b⋆i (t)}Tt=0,K

max).
For the trading-inspired methodology the resulting trajec-

tory, {b⋆i (t)}Tt=0, clearly is a function of the ordering of
time series data. Therefore, to generalize the reversed time
series data is also treated, before results for both directions
are merged. Regarding reversed time series data treatment,
the same ϵi is employed that was found iteratively for the
original (non-reversed) time series. This selection is done for
computational efficiency and justified since absolute-valued
incremental changes are invariant with respect to data order-
ing. Resulting breakpoints shall be denoted by {τflip

k }K̂
flip

k=1.
Regarding final merging of {τk}K̂k=1 and {τflip

k }K̂
flip

k=1, three
comments are made. First, in case two breakpoints are
closer than a small hyperparameter, γclose > 0, the two
breakpoints are averaged. For perspective on the order of
magnitude, in numerical experiments it was selected γclose =
max(0.01T, 2). Second, for an efficient implementation of
the merging, one can exploit the fact that both lists {τk}K̂k=1

and {τflip
k }K̂

flip

k=1 are already ordered and increasing. Further-
more, for both it typically holds that K̂ ≪ T and K̂flip ≪ T .
For perspective, for the last experiment reported in this paper
it is K̂ = 9 and T = 2709. Third, after above method
of merging, the number of breakpoints may still exceed a
desired upper bound Kmax > 0. Then, closest breakpoints
with respect to their predecessor are iteratively removed until
the condition K̂ ≤ Kmax is satisfied for the merged list. In
the following, the full mapping implementing both merging
and removal of close breakpoints shall be abbreviated by
Fmerge({τk}K̂k=1, {τ

flip
k }K̂

flip

k=1, γ
close,Kmax).

Algorthim 1 summarizes above discussion. It is called
APTS (A Posteriori Trading-inspired Segmentation).

Three additional comments are made. First, the dominating
complexity of Algorithm 1 is linear in time series length

Algorithm 1: APTS

Subfunctions : Fnormalize(·), F trade(·), F consensus(·),
F epsilon(·), F terminate(·), Fmerge(·).

Hyperparam. : ϵmin, ϵmax, γmult, γclose, Kmax.

Data Input : {{xi(t)}Tt=0}
nx
i=0.

1 for i ∈ {1, . . . , nx} do
2 {x̃i(t)}Tt=0 ← Fnormalize

(
{xi(t)}Tt=0

)
.

3 ϵi ← 0, j ← 0.
4 while continue do
5 ϵi ← F epsilon(ϵi, ϵ

min, ϵmax, γmult, j).
6 {b⋆i (t)}Tt=0 ← F trade

(
{x̃i(t)}Tt=0, ϵi

)
.

7 if F terminate({b⋆i (t)}Tt=0,K
max) == True then

8 break.

9 j ← j + 1.

10 {τk}K̂k=1 ← F consensus({{b⋆i (t)}Tt=0}
nx
i=1).

11 {x̃flip
i (t)}Tt=0 ← Fnormalize

(
{xi(t)}0t=T

)
.

12 for i ∈ {1, . . . , nx} do
13 {b⋆,flip

i (t)}0t=T ← F trade
(
{x̃flip

i (t)}Tt=0, ϵi

)
.

14 {τflip
k }K̂

flip

k=1 ← F consensus({{b⋆,flip
i (t)}Tt=0}

nx
i=1).

15 {τk}K̂k=1 ← Fmerge({τk}K̂k=1, {τ
flip
k }K̂

flip

k=1, γ
close,Kmax).

Final Result : {τk}K̂k=1.

and dimension, i.e., O (nxTNϵ). The maximum number
of ϵi-iterations, Nϵ > 0, in Steps 3-9 can be determined
analytically from the formula, ϵminγmultNϵ−1

< ϵmax.
Second, the necessity of a normalization method resulting

in channel-wise positive time series data is motivated by
counterexample. As part of (1), the wealth equation wi(t+

1) = ni(t+1)x̃i(t+1) = ci(t)(1−ϵi)
x̃i(t)

x̃i(t+1) occurs. Suppose
x̃i(t) < 0 and futher x̃i(t + 1) < x̃i(t). Then, a drop in
“stock” price from time t to t+1 would imply an increase in
wealth (due to the ratio of two negative numbers in wi(t+1)).
This scenario would be undesired since misleading. It is
avoidable by a normalization method rendering data positive.
(This excludes the standard z-normalization technique [26].)

Finally, an extension of APTS is discussed. By design
Algorithm 1 is particularly suitable to segment time series
with different local maxima and minima. However, by adding
a simple data pre- and post-processing step also time series
exhibiting channel-wise quasi-constant values for prolonged
periods of times (plateaus) can be handled efficiently. There-
fore, a small hyperparameter γplat ≥ 0 is introduced (e.g.,
γplat = 0.05) that is used after normalization in Step 2
for downsampling. Thus, a reduced time series is produced,
{x̄i(t)}T̄t=0 ∈ {{x̃i(t)}Tt=0 : x̃i(t) − x̃i(t − 1) > γplat,∀t =
0, . . . , T}. The same filtering step is also applied analogously
after Step 11 to the reversed time series. The effect is
removal of plateau-like data parts. Then, after processing via

F trade({x̄i(t)}T̄t=0, ϵi), the previously removed time periods
must be reinserted to recover the original time indexing and
produce an adjusted {b⋆i (t)}Tt=0 in Step 6, and analogously
in Step 13 for the reversed time series. This methodology
permits to accurately identify start and end times of plateau-
like segments in time series data.

B. Two Comparative Algorithms from the Literature

Before reporting numerical results, two comparative algo-
rithms from the literature are briefly discussed.

Based on the fundamental belief that underlying data
in each segment can be well approximated by piecewise
affine representations, according to [1] most time series
segmentation algorithms can be grouped into one of three
categories: sliding window-approaches (a segment is grown
until exceeding some error bound and starting a new seg-
ment), top-down-approaches (a time series is recursively
partitioned until a stopping criterion is met), and bottom-up-
approaches (starting from the finest possible approximation,
segments are merged until a stopping criterion is met). In
the same reference it is found empirically that the bottom-
up approach (BU) is most suitable. Therefore, BU according
to [1] is here used for comparison. For BU and for the
fitting of piecewise affine representations, local solutions
of either linear interpolation or linear regression (least-
squares) problems are required for each segment. In [1],
the latter approach is used for final experiments. Here, for
a Python implementation numpy’s linalg.lstsq-solver
is employed for the solution of least-squares problems. It
is worthwhile noting that the original reference exclusively
focused on one-dimensional time series data (i.e., nx = 1)
for empirical evaluation. In this paper, BU is altered for
handling of multivariate time series by straightforward exten-
sion. As stopping criterion, a desired number of segments is
prescribed. This number represents the only hyperparameter.
Thus, as soon as sufficiently many segments are merged
(starting from the finest possible approximation) BU stops.

In [2], a top-down algorithm labeled Greedy Gaussian
Segmentation (GGS) is proposed. Fundamental belief is that
underlying data in each segment can be explained as samples
from a multivariate Gaussian distribution with constant mean
and covariance for each segment. To determine breakpoints
(i.e., segment boundaries) a covariance-regularized maxi-
mum likelihood objective function is formulated,

max
τ1,...,τK

−1

2

K+1∑
k=1

(τk − τk−1)logdet(S(k) +
λI

τk − τk−1
)−

· · · − λTr(S(k) +
λI

τk − τk−1
)−1, (5)

with hyperparameter K indicating the number of
breakpoints, regularization hyperparameter λ > 0,
trace-operator Tr(·), empirical covariance S(k) =

1
τk−τk−1

∑τk−1
t=τk−1

(x(t) − µ(i))(x(t) − µ(i))T , empirical
mean µ(i) = 1

τk−τk−1

∑τk−1
t=τk−1

x(t), data x(t) ∈ Rnx and I
denoting the identity matrix. By alternatingly adding new
breakpoints and adjusting the position of all breakpoints
(5) is maximized until no change of any breakpoint further

improves the objective function that sums costs over all
segments. GGS requires selection of two hyperparameters.
These are the desired number of breakpoints, K > 0, and
the regularization parameter, λ > 0, to enforce positive
definite (invertible) estimated covariance matrices. Code
for GGS is publicly available and taken from the authors’
website to conduct below numerical experiments. Non-trivial
library routines required for the implementation of GGS
include numpy’s linalg.slogdet, linalg.inv and
linalg.cholesky-functions. For a fixed number of
breakpoints, K > 0, the complexity is O(KLn3

xT) flops,
where L is the average number of iterations required for
adjusting breakpoints. While an upper bound on L is
not known, it was observed empirically that it is modest
when K is not too large [2]. The cubic complexity in the
dimension of the multivariate time series nx is underlined.

IV. NUMERICAL RESULTS

A. Selection of Experiments and Evaluation of Results

Experimental data was selected with the purpose of com-
paring BU [1], GGS [2], and APTS on (i) a variety of
different shapes of time series data to analyze generalizability
of these methods, and (ii) on a large-scale example to
compare computational efficiencies. Therefore, in addition
to two synthetic examples eight samples from the publicly
accessible UCR time series archive [24] were selected.
This combination enabled testing on time series data with
piecewise-affine segments, half-circles, rising and falling seg-
ments with local maxima and minima, plateau-like segments,
strongly fluctuating data with different noise levels, impulse-
like data, noise-perturbed multivariate data, and large-scale
data with nx = 1000 channels and length T = 2709.

Two methods for evaluation of results were considered:
(i) manually determining “ground-truth” segmentation in-
stants before evaluating an error metric, and (ii) a visual
approach where all results are explicitly plotted for subjective
inspection and evaluation by the reader. The first approach
has several disadvantages. These include that determining
a ground-truth is subjective to the selector’s preference.
Furthermore, summarizing performance by a single scalar
error metric may insufficiently capture actual segmentation
quality of algorithms. Therefore, the second visual approach
is taken, which is also appropriate given the typical unsuper-
vised nature of time series segmentation tasks. In addition,
computational solve times are reported for each experiment.

B. Selection of Hyperparameters

In order to demonstrate robustness of APTS and adaptabil-
ity to different shapes of data a single set of hyperparameters
is used throughout all experiments. This set is summarized
in Table I. For emphasis of handling of data with plateau-
like segments, results for Examples 4-6 are also reported for
γplat = 0.05, besides the default solutions for γplat = 0.

APTS does not define a specific number of segments by a
hyperparameter selection. Instead, an upper bound Kmax > 0
must be provided, before Algorithm 1 returns K̂ ≤ Kmax. In
contrast, without adding on-top iterative selection methods
BU and GGS require prescription of a desired number of

Symbol Value
ϵmin 0.01
ϵmax 1
γmult 2
γclose max(0.01T, 2)

γplat 0

Kmax 10

TABLE I. To demonstrate robustness of APTS and adaptability to various
time series data a single set of hyperparameters is used throughout all
Experiments 1-10. For special identification of plateau-like segments results
for Experiments 4-6 are additionally reported for γplat = 0.05.

0

10

20

x
(t
)

BU

0

10

20

x
(t
)

GGS

0 20 40 60 80

0

10

20

t

x
(t
)

APTS

Fig. 2. Example 1. Results for synthetic one-dimensional time series data
composed of piecewise affine segments. Vertical red dashed lines indicate
identified segmentation indices.

segments K > 0. Therefore, in order to compare BU, GGS
and APTS the following method is applied. First, APTS is
run. Then, BU and GGS are run with setting K = K̂. This
permits a comparison for the same number of segments.

BU does not require a hyperparameter selection beyond
K. In contrast, GGS additionally requires setting of the
regularization hyperparameter λ > 0 in (5). After empirical
testing, λ = 10−1 was determined for Examples 1-9 and
λ = 10−4 for Example 10. For the latter experiment λ had
to be reduced in order to produce solutions with larger K.
(The final result is obtained for K = 9.)

C. Numerical Results

All methods were implemented in Python. All experi-
ments were run on an Intel i7-7700K CPU@4.2GHz×8
processor with 15.6 GiB memory. Results for Examples 1-
10 are visualized in Fig. 2-13. Computational solve times are
summarized in Table II, and in Fig. 12 for Example 10.

Overall, APTS performs best and represents the most
versatile approach for the handling of different shapes of time
series data. While BU as expected appropriately segments the
piecewise affine time series in Fig. 2, BU fails for the time
series of Fig. 3 with half-circle shapes. GGS is found to not
be suitable for accurate identification of local maxima and

0
5
10
15

x
(t
)

BU

0
5
10
15

x
(t
)

GGS

0 20 40 60 80
0
5
10
15

t

x
(t
)

APTS

Fig. 3. Example 2. Results for synthetic one-dimensional time series data
composed of half-circles.

−2
−1
0
1

x
(t
)

BU

−2
−1
0
1

x
(t
)

GGS

0 100 200 300 400
−2
−1
0
1

t

x
(t
)

APTS

Fig. 4. Example 3. One-dimensional sample from dataset ’Yoga’ [24].

minima. Instead, GGS seems to be best suited for data of
varying amplitude or noise levels such as in the examples
of Fig. 6-7. However, for γplat > 0 these examples can
be solved equally good by APTS and much faster. In fact,
as Table II shows, APTS offers consistently smaller solve
times throughout all experiments in comparison to BU and
GGS. Furthermore, APTS is much better scalable to high-
dimensional data as Fig. 12 demonstrates.

It is also found that the characteristic of APTS to return a
solution for a prescribed upper bound K̂ ≤ Kmax, rather than
for a scalar prescribing an exact desired number of segments,
is not to be seen as a disadvantage. On the contrary, this
characteristic of APTS permits to solve all 10 examples with
a single set of hyperparameters, to tailor a suitable K̂ for any
given data, and thus to increase the degree of automation.

It is found that model-based approaches such as BU
[1] and GGS [2] are limiting, and not well generalizable
to different shapes of data. For instance, the segmentation

0

1

x
(t
)

BU

0

1

x
(t
)

GGS

0

1

x
(t
)

APTS

0 500 1,000 1,500

0

1

t

x
(t
)

APTS with γplat = 0.05

Fig. 5. Example 4. One-dimensional sample from dataset ’EthanolLevel’
[24]. Default APTS comes with γplat = 0. The effect of γplat = 0.05 is
shown in the bottom subplot.

300

400

500

x
(t
)

BU

300

400

500

x
(t
)

GGS

300

400

500

x
(t
)

APTS

0 20 40 60 80 100 120 140

300

400

500

t

x
(t
)

APTS with γplat = 0.05

Fig. 6. Example 5. One-dimensional sample from dataset ’Gun-
PointAgeSpan’ [24]. Default APTS comes with γplat = 0. The effect of
γplat = 0.05 is shown in the bottom subplot.

0

2

4

x
(t
)

BU

0

2

4

x
(t
)

GGS

0

2

4

x
(t
)

APTS

0 100 200 300 400

0

2

4

t

x
(t
)

APTS with γplat = 0.05

Fig. 7. Example 6. One-dimensional sample from dataset ’ACSF1’ [24].
The effect of γplat = 0.05 is further elaborated in Fig. 8.

297 300 303

-0.532

-0.527

t

APTS Zoom-in

295 300 305

-0.53
-0.49

t

APTS Zoom-in

Fig. 8. Example 6. (Left) The zoom-in on the APTS-solution of Fig. 7
illustrates that the breakpoint at t = 300 was identified for representing an
outlier that is slightly smaller than all other neighboring local minima. The
level of neighboring local minima is emphasized by the dotted horizontal
line. (Right) The zoom-in shows that there are three data points around each
local minimum. By setting γplat = 0.05 the outlier is filtered out and the
solution indicated in the bottom subplot of Fig. 7 is obtained.

0

2

x
(t
)

BU

0

2

x
(t
)

GGS

0 50 100 150 200 250

0

2

t

x
(t
)

APTS

Fig. 9. Example 7. One-dimensional sample from dataset ’Lightning7’
[24]. The breakpoint returned by APTS is exactly at the peak. BU does
not set its breakpoint exactly at the peak. GGS segments two regions of
different average amplitude levels.

0

5

10
x
(t
)

BU

0

5

10

x
(t
)

GGS

0 100 200 300 400 500 600 700
0

5

10

t

x
(t
)

APTS

Fig. 10. Example 8. One-dimensional sample from dataset ’SmallK-
itchenAppliances’ [24]. Only APTS identifies all six impulses correctly.
In contrast, for both BU and GGS in at least one case two breakpoints are
mapped closely to the same impulse.

Fig. 11. Example 9. A one-dimensional sample from dataset ’Yoga’ [24]
is perturbed by zero-mean Gaussian noise with standard deviation of 0.2 to
produce nx = 100 different time series.

produced by GGS for the example in Fig. 2 is not intuitive.
Likewise, BU produces unsuitable results in Fig. 3. It there-
fore appears that a model-free approach, such as APTS, is
the most suitable choice to cover a large variety of different
shapes of data. In a future extending hierarchical framework,
on-top of a segmentation returned by APTS different models
may be fitted to different segments.

For multivariate time series data the final segmentation
returned by APTS is equally valid over all channels. How-
ever, before reaching consensus separate segmentations are
obtained separately for each channel. This property may
be useful for extending upstream tasks such as time series
clustering. This is pointed out since this is in contrast
to GGS, where this property is absent and where only a
combined segmentation over all channels is returned.

0 200 400 600 800 1,000
0

200

400

600

800

1,000

nx

So
lv

e
Ti

m
e

(s
)

GGS
BU
APTS

Fig. 12. Large-scale Example 10. The full dataset ’HandOutlines’ [24] has
1000 channels and 2709 data points per channel. While keeping T = 2709
constant, BU, GGS and APTS were applied to subsets of the data with
nx ∈ {1, 10, 50, 100, 200, . . . , 1000}, while recording the solve times.
The y-axis is cut-off at 1000s solve time for clarity. See also Table II for
more detailed numerical results.

Fig. 13. Large-scale Example 10. Results for the full dataset ’HandOut-
lines’ [24] are displayed. There are nx = 1000 channels with T = 2709
data points for each channel.

Solve Times (s)
Ex. nx T BU [1] GGS [2] APTS
1 1 100 0.016 0.089 0.002
2 1 100 0.017 0.116 0.002
3 1 426 0.077 0.903 0.010
4 1 1751 0.369 2.293 0.040
5 1 150 0.026 0.161 0.003
6 1 400 0.073 0.081 0.025
7 1 272 0.048 0.017 0.012
8 1 720 0.135 0.405 0.039
9 100 426 5.267 24.75 1.267
10 50 2709 17.58 58.90 3.19
10 500 2709 172.0 7452.8 32.47
10 1000 2709 341.7 65847.5 64.4

TABLE II. Comparison of solve times in seconds. The last three rows show
results for the same Example 10, but for a different number of channels nx.
For GGS with nx = 500 and nx = 1000 solve times are equivalent to
more than 2h and 18h, respectively. APTS can solve the full dimensional
Example 10 with nx = 1000 in approximately the same time, 64.4s, as
GGS requires for its solution with nx = 50. See also Fig. 13. Default APTS
comes with γplat = 0. The solve times for Examples 4-6 with γplat = 0.05
were 0.249s, 0.003s, 0.059s, respectively.

V. CONCLUSION

A simple and scalable model-free algorithm for mul-
tivariate time series segmentation was presented. After a
normalization step time series are treated channel-wise as
surrogate stock prices that can be traded optimally a pos-
teriori in a virtual portfolio holding either stock or cash.
Linear transaction costs are interpreted as hyperparameters
for noise filtering. The resulting trading signals as well as the
resulting trading signals obtained on the reversed time series
are used for unsupervised labeling, before a consensus over
channels is reached that finally determines segmentation time
instants. Proposed algorithm is called A posteriori Trading-
inspired Segmentation (APTS) and was compared to a pop-
ular bottom-up approach [1] fitting piecewise affine models
and to a top-down approach fitting Gaussian models [2] on
a variety of different synthetic data as well as real-world
datasets from the UCR time series archive [24]. Overall,
APTS was found to be consistently faster while producing
more intuitive segmentation results.

There are two main avenues for future work. First, the
method may be extended for recursive online time series
segmentation, e.g., within a moving horizon framework.
Second, the method may serve as foundation for (i) further
upstream time series analysis tasks including clustering,
compression and forecasting [27] and (ii) for the organization
of unstructured data lakes [28].

REFERENCES

[1] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for
segmenting time series,” in IEEE International Conference on Data
Mining, pp. 289–296, 2001.

[2] D. Hallac, P. Nystrup, and S. Boyd, “Greedy gaussian segmentation
of multivariate time series,” Advances in Data Analysis and Classifi-
cation, vol. 13, no. 3, pp. 727–751, 2019.

[3] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series: A
survey and novel approach,” in Data Mining in Time Series Databases,
pp. 1–21, World Scientific, 2004.

[4] S. Aminikhanghahi and D. J. Cook, “A survey of methods for time
series change point detection,” Knowledge and Information Systems,
vol. 51, no. 2, pp. 339–367, 2017.

[5] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline
change point detection methods,” Signal Processing, p. 107299, 2019.

[6] F. Desobry, M. Davy, and C. Doncarli, “An online kernel change
detection algorithm,” IEEE Transactions on Signal Processing, vol. 53,
no. 8-2, pp. 2961–2974, 2005.

[7] K. D. Feuz, D. J. Cook, C. Rosasco, K. Robertson, and M. Schmitter-
Edgecombe, “Automated detection of activity transitions for prompt-
ing,” IEEE Transactions on Human-Machine Systems, vol. 45, no. 5,
pp. 575–585, 2014.

[8] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation
mode from raw gps data for geographic applications on the web,”
in International Conference on World Wide Web, pp. 247–256, ACM,
2008.

[9] F.-L. Chung, T.-C. Fu, V. Ng, and R. W. Luk, “An evolutionary ap-
proach to pattern-based time series segmentation,” IEEE Transactions
on Evolutionary Computation, vol. 8, no. 5, pp. 471–489, 2004.

[10] Y. Kawahara, T. Yairi, and K. Machida, “Change-point detection in
time-series data based on subspace identification,” in IEEE Interna-
tional Conference on Data Mining, pp. 559–564, 2007.

[11] R. P. Adams and D. J. MacKay, “Bayesian online changepoint detec-
tion,” arXiv preprint:0710.3742, 2007.

[12] E. Fuchs, T. Gruber, J. Nitschke, and B. Sick, “Online segmentation of
time series based on polynomial least-squares approximations,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32,
no. 12, pp. 2232–2245, 2010.

[13] Z. Harchaoui, F. Vallet, A. Lung-Yut-Fong, and O. Cappé, “A reg-
ularized kernel-based approach to unsupervised audio segmentation,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 1665–1668, 2009.

[14] W.-H. Lee, J. Ortiz, B. Ko, and R. Lee, “Time series segmentation
through automatic feature learning,” arXiv preprint:1801.05394, 2018.

[15] H. Chen, N. Zhang, et al., “Graph-based change-point detection,” The
Annals of Statistics, vol. 43, no. 1, pp. 139–176, 2015.

[16] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, “Change-point
detection in time-series data by relative density-ratio estimation,”
Neural Networks, vol. 43, pp. 72–83, 2013.

[17] Y. Kawahara and M. Sugiyama, “Sequential change-point detection
based on direct density-ratio estimation,” Statistical Analysis and Data
Mining: The ASA Data Science Journal, vol. 5, no. 2, pp. 114–127,
2012.

[18] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, and H. T.
Toivonen, “Time series segmentation for context recognition in mobile
devices,” in IEEE International Conference on Data Mining, pp. 203–
210, 2001.

[19] A. Garg, L. Manikonda, S. Kumar, V. Krishna, S. Boriah, M. Stein-
bach, V. Kumar, D. Toshniwal, C. Potter, and S. Klooster, “A model-
free time series segmentation approach for land cover change detec-
tion,” in NASA Conference on Intelligent Data Understanding, 2011.

[20] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search
in sequence databases,” in International Conference on Foundations
of Data Organization and Algorithms, pp. 69–84, Springer, 1993.

[21] M. Sharifzadeh, F. Azmoodeh, and C. Shahabi, “Change detection in
time series data using wavelet footprints,” in International Symposium
on Spatial and Temporal Databases, pp. 127–144, Springer, 2005.

[22] X. Liu, Z. Lin, and H. Wang, “Novel online methods for time
series segmentation,” IEEE Transactions on Knowledge and Data
Engineering, vol. 20, no. 12, pp. 1616–1626, 2008.

[23] M. G. Plessen and A. Bemporad, “A posteriori multistage optimal
trading under transaction costs and a diversification constraint,” The
Journal of Trading, vol. 13, no. 3, pp. 67–83, 2018.

[24] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu,
S. Gharghabi, C. A. Ratanamahatana, and E. Keogh, “The UCR time
series archive,” IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 6,
pp. 1293–1305, 2019.

[25] R. Bellman et al., “The theory of dynamic programming,” Bulletin
of the American Mathematical Society, vol. 60, no. 6, pp. 503–515,
1954.

[26] D. Q. Goldin and P. C. Kanellakis, “On similarity queries for time-
series data: constraint specification and implementation,” in Interna-
tional Conference on Principles and Practice of Constraint Program-
ming, pp. 137–153, Springer, 1995.

[27] M. G. Plessen, “Integrated time series summarization and prediction
algorithm and its application to Covid-19 data mining,” in IEEE
International Conference on Big Data, pp. 4945–4954, 2020.

[28] A. M. Olawoyin, C. K. Leung, and A. Cuzzocrea, “Open data lake to
support machine learning on arctic big data,” in IEEE International
Conference on Big Data, pp. 5215–5224, 2021.

	Introduction
	Problem Formulation
	Problem Solution
	A Posteriori Trading-inspired Segmentation Algorithm
	Two Comparative Algorithms from the Literature

	Numerical Results
	Selection of Experiments and Evaluation of Results
	Selection of Hyperparameters
	Numerical Results

	Conclusion
	References

