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Abstract—This paper describes the results of the IEEE BigData
2023 Keystroke Verification Challenge1 (KVC), that considers the
biometric verification performance of Keystroke Dynamics (KD),
captured as tweet-long sequences of variable transcript text from
over 185,000 subjects. The data are obtained from two of the
largest public databases of KD up to date, the Aalto Desktop and
Mobile Keystroke Databases, guaranteeing a minimum amount
of data per subject, age and gender annotations, absence of
corrupted data, and avoiding excessively unbalanced subject dis-
tributions with respect to the considered demographic attributes.
Several neural architectures were proposed by the participants,
leading to global Equal Error Rates (EERs) as low as 3.33%
and 3.61% achieved by the best team respectively in the desktop
and mobile scenario, outperforming the current state of the art
biometric verification performance for KD. Hosted on CodaLab2,
the KVC will be made ongoing to represent a useful tool for the
research community to compare different approaches under the
same experimental conditions and to deepen the knowledge of
the field.

Index Terms—Keystroke dynamics, behavioral biometrics, bio-
metric verification, KVC, challenge

I. INTRODUCTION

Keystroke Dynamics (KD) refers to the typing behavior
exhibited by individuals and is commonly categorized as a
behavioral biometric trait, akin to voice [1], signature [2], [3],
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gait [4]–[6], touch gestures [7], [8], and others. The imple-
mentation of keystroke dynamics verification systems is cost-
effective, as it requires no additional hardware beyond what is
already present in personal computers, laptops, smartphones,
or tablets. Potential applications range from authenticating a
user’s identity while composing an email or taking an online
test in free-text format [9], [10], to identifying malicious users
across multiple accounts based on their typing style in free-
text format [11], or serving as an additional biometric secu-
rity layer alongside traditional knowledge-based passwords in
fixed-text format [12], among other uses.

A broad classification of Keystroke Dynamics (KD) can be
carried out based on two criteria: (i) the type of acquisition
device (keyboard), categorized as desktop or mobile, often
kept distinct due to variations in the posture or typing activity
of individuals; (ii) with respect to the text format, which can
be free, fixed, or transcript. In the first scenario, the typed
text differs across various samples, resulting in sparser, more
unstructured data with a higher incidence of typing errors, as
opposed to the fixed-text scenario that seeks to simulate, for
example, an intruder entering the victim’s password. Lastly,
the transcript text (considered in this study) can be charac-
terized as a hybrid format, wherein subjects are instructed to
read, memorize, and type a provided text.

In this scenario, we propose a novel experimental frame-
work to benchmark KD for biometric verification in the form
of the Keystroke Verification Challenge (KVC), hosted on
CodaLab. Upon the submission of the results, the CodaLab
platform returns several metrics (Sec. V) that quantify the
recognition performance of biometric systems. The KVC,
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which will be made ongoing, is structured into two different
tasks (desktop and mobile). To simplify the participation, a de-
velopment and an evaluation dataset with a list of comparisons
per task are provided to the participants, together with two
Python scripts for loading the datasets, launching the training,
and generating the scores to be submitted on CodaLab for
evaluation.

II. THE DATA

The proposed experimental framework relies on the two
most comprehensive and extensive public databases of
transcript-text keystroke dynamics available to date, collected
by the User Interfaces3 group at Aalto University in Finland.
These databases are gathered in a desktop4 [13] and mobile5

[14] acquisition environment, encompassing approximately
168,000 and 60,000 subjects, effectively capturing the chal-
lenges associated with widespread application usage. Each
acquisition session involves a transcript text sentence (with
variable content, though not entirely free-text). The data are
captured through a web application in an unsupervised manner,
reflecting real-world scenarios. Participants are instructed to
read, memorize, and type English sentences on their devices,
randomly chosen from a set of 1,525 sentences. Subject
metadata, such as age and gender, are self-reported during the
data acquisition process.

III. CHALLENGE SET UP

This section provides a general outline of the challenge
setup. For a more in-depth exploration of the dataset character-
istics and a benchmark of the proposed evaluation framework,
please consult [15].

Starting from the raw databases, a data preprocessing step
is undertaken to organize them into a suitable format for
Keystroke Dynamics (KD) analysis. The raw data obtained
include the timestamp of the moment a key is pressed, the
timestamp of the moment the key is released, and the ASCII
code of the key. Following the exclusion of certain subject data
with insufficient acquisition sessions (fewer than 15 sessions
per subject), the two downloaded databases are restructured to
yield four datasets:

• Desktop Dataset:
1) Development set: 115,120 subjects provided in a

single .npy file that contains a Python nested dic-
tionary (subject IDs: session IDs: data). Average
session length: 48.65 (σ = 18.50) characters typed.

2) Evaluation set: data from 15,000 subjects, provided
in a single .npy file that contains a shallow Python
dictionary (sessions IDs: data). Average session
length: 48.77 (σ = 18.64) characters typed.

• Mobile Dataset:
1) Development set: 40,639 subjects provided in a sin-

gle .npy file that contains a Python nested dictionary

3https://userinterfaces.aalto.fi/
4https://userinterfaces.aalto.fi/136Mkeystrokes/
5https://userinterfaces.aalto.fi/typing37k/

(subject IDs: session IDs: data). Average session
length: 48.59 (σ = 21.84) characters typed.

2) Evaluation set: data from 5,000 subjects, provided
in a single .npy file that contains a shallow Python
dictionary (sessions IDs: data). Average session
length: 47.98 (σ = 20.93) characters typed.

The proposed experimental framework adheres to an open-
set learning protocol, i.e., the subjects in the development and
evaluation sets are distinct. Although an explicit validation set
is not provided, it can be derived from the development set
according to different training approaches. The demographic
distribution of the datasets presented in the competition is
detailed in [15].

The evaluation sets are separated by scenario (desktop and
mobile), and they are provided in the form of two shallow
Python dictionaries containing independent sessions. Such data
are accompanied by the respective lists of pairwise compar-
isons to be carried out. Two Python script files are provided
to load the data, and run the comparisons, generating a text
file with the scores of each comparison, ready to be submitted
to CodaLab for scoring.

IV. EXPERIMENTAL PROTOCOL

The design and implementation of the evaluation protocol
outlined in this section constitute a significant novelty intro-
duced in this work.

Both tasks (desktop and mobile) follow a similar structure
and are tailored for a biometric verification protocol. In
essence, a score ranging from 0 to 1, indicative of a single
comparison between two biometric samples, will be generated
(1: same identity, 0: different identities). This poses a binary
classification problem, as there is no need to determine the
specific identity to which a given biometric sample belongs
(identification). Within this experimental framework, a bio-
metric sample corresponds to an acquisition session.

The total number of 1 vs 1 session-level comparisons is as
follows:

• Task 1 (Desktop): 2,250,000 comparisons, involving
15,000 subjects not included in the development set.

• Task 2 (Mobile): 750,000 comparisons, involving 5,000
subjects not included in the development set.

For each subject, there are 5 enrolment sessions and 10
verification sessions, resulting in 50 1vs1 comparisons. These
are averaged over the 5 enrolment sessions, producing 10
genuine scores per subject. Similarly, 20 impostor scores per
subject are generated. The impostor sessions are categorized
into two groups: 10 similar impostor scores, where the verifi-
cation sessions are randomly chosen from subjects within the
same demographic group (same gender and age group); and
10 dissimilar impostor scores, where the verification sessions
are all randomly selected from subjects of different gender and
age intervals.

Based on the described evaluation design, we consider two
cases for evaluating the system:

• Global distributions: this case corresponds to dividing
all scores into two groups, genuine and impostor scores,
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regardless of which subject they belong too. This case
corresponds to having a fixed, pre-determined threshold,
implying a simpler deployment of the biometric system.
In order to assess the performance of the biometric
system, this choice means setting one single threshold
for all comparisons to obtain a decision.

• Mean per-subject distributions: the optimal threshold is
computed at subject-level, considering the 30 verification
scores as described above. This choice corresponds to
providing the system with more flexibility, so that it
can adapt to user-specific distributions [16], [17]. In
a real-life use case, this would require processing the
subject’s enrolment samples to establish a threshold. It
is important to highlight that this does not require re-
training or fine-tuning the biometric system using subject-
specific data. Then, all metrics computed per-subject are
averaged considering all subjects in the evaluations set
to obtain the values displayed. Generally, the verification
performance of the system benefits from considering a
different threshold per user.

V. THE METRICS

Over the years, various metrics have been proposed for
biometric verification. The commonality among these metrics
is their reliance on (normalized) scores typically generated
through pairwise comparisons of biometric samples for bio-
metric verification. To ensure a fair comparison between
systems, different metrics are computed within the challenge.
These include the global Equal Error Rate (EER) (%), mean
per-subject EER (refer to Sec. IV), global False Non-Match
Rate (FNMR) at 1% False Match Rate (FMR), FNMR at 10%
FMR, and AUC (Area Under the ROC Curve). Additionally,
Detection Error Tradeoff (DET) curves are provided. A brief
explanation of the various metrics is provided below.

A false match (FM) is defined as a comparison decision
indicating a match for a biometric probe and a biometric
reference that are from different biometric capture subjects,
while a false non-match (FNM) is defined as a comparison
decision indicating a non-match for a biometric probe and a
biometric reference that are from the same biometric capture
subject and of the same biometric characteristic. The rates
associated with FMR (FNMR) correspond to the proportion
of completed biometric non-mated (mated) comparison trials
resulting in a false match (non-match) [18].

Equal Error Rate (EER): The EER describes the point in
which the FMR and FNMR curves intersect. The two rates
typically have opposite trends with respect to the threshold
setting (in the case of genuine scores closer to 1, and impostor
scores closer to 0, as the threshold of a biometric system
increases, the FMR will drop and the FNMR curve will rise).

False Non-Match Rate at X% False Match Rate (FNMR @
X% FMR): We consider X = 1%, 10%. This also corresponds
to a point on the DET curve. This metric expresses a trade-off
between security and usability [19]. In fact, while from the
point of view of security the priority is avoiding intrusions,
denying the access to the genuine subject a large number

of times would generate frustration and highly impacts the
usability of the system. In this case, the threshold is set to
X = 1%, 10% of FMR (rejection of 99%, 90% of impostor
attempts, respectively), aiming to minimize the FNMR.

Area Under the Receiver Operating Characteristic (ROC)
Curve (AUC): The ROC curve is the plot of the TMR (True
Match Rate) against FMR, at various threshold settings. A true
match corresponds to the case of a genuine subject recognized
as such. By definition, the TMR and the FNMR sum to 1. A
perfect classifier has an Area Under the ROC Curve (AUC)
of 1.

Detection Error Trade-off (DET) curve: The DET curve
plots FMR against FNMR, at various threshold settings, typ-
ically on a non-linear scale. As the threshold decreases, the
amount of false matches (impostor subjects classified as gen-
uine) increases, and the number of false non-matches decreases
(genuine subjects classified as impostor). The closest the DET
curve to the bottom left corner, the better the biometric system
will be. The intersection of a DET curve with the line y = x
corresponds to the EER.

VI. THE BIOMETRIC SYSTEMS PROPOSED

A summary of the biometric systems participating in the
challenge and the main results are shown in Table I. The
challenge ranking is created and displayed in the Table for
each task based on the global EER (%). The LSIA team is
the winner of both tasks. In the remainder of this section,
the biometric verification systems proposed by all teams are
presented. Results according to different metrics are presented
and discussed in Sec. VII.

A. Team: LSIA

The LSIA team is composed of one member from Labora-
torio de Sistemas de Información Avanzados (LSIA), Univer-
sidad de Buenos Aires (Argentina).

1) Model architecture: Among the architectures proposed
by the LSIA team, the best performance in terms of EER
is achieved by a dual-branch (recurrent and convolutional)
embedding model for distance metric learning. The same
architecture is adopted for both tasks.

The recurrent branch comprises two bidirectional GRU lay-
ers (512 units), while the convolutional branch features three
blocks of 1D convolution, each with an increasing number of
filters (256, 512, and 1024, with kernel size equal to 6) and
utilizes global average pooling. Temporal attention serves as
the first layer of both branches. Scaled dot-product attention
is applied between the recurrent layers, and channel attention
follows each convolutional layer. The outputs of both branches
are concatenated, and the final embedding vector is produced
by three dense layers. Batch normalization and dropout are
employed after each processing layer.

Sample similarity is measured, as is customary in distance
metric learning, using the Euclidean distance between their
respective embeddings.

The choice of architecture is motivated by the observation
that keystroke timings result from a combination of two



TABLE I: High-level comparison of the proposed keystroke biometric verification systems. D stands for desktop, M stands for mobile.

Desktop Mobile

System Architecture Loss Function Global
EER (%)

Position Global
EER (%)

Position

LSIA CNN+RNN with attention mechanism Custom 3.33 1 3.61 1
VeriKVC CNN ArcFace 4.03 2 3.78 2

Keystroke Wizards GRU (D), Transformer (M) Triplet 5.22 3 5.83 5
U-CRISPER GRU-Based Siamese Network Triplet 6.19 4 8.76 6

YYama Transformer+CNN Contrastive + Cross-entropy 6.41 5 4.16 3
Challenger∗6 Transformer Triplet 6.79 6 5.19 4

BioSense CNN with attention mechanism Cross-entropy 10.85 7 11.83 7

factors: a partially conscious decision process involving what
to type and an entirely unconscious motor process pertaining
to how to type [20]. The convolutional branch is expected to
excel at identifying common, short sequences, while the recur-
rent branch is expected to capture the user’s time-dependent
decision process. Empirical testing confirms that a dual-branch
model outperforms a purely recurrent or purely convolutional
model with an equivalent number of trainable parameters.

2) Training: For training the model, only the development
sets provided by the organizers are used. These sets are
preprocessed to generate five attributes: the integer key code
(ASCII), for which the network learns a small-dimensional
embedding, and four normalized timing features, using a scale
of seconds. These are the interval between key press and
release events, called the Hold Time (HT), the latency between
successive key press events, called Inter-Press Time (IPT), also
known as Flight Time (FT), and two synthetic features (SHT
and SFT) meant to capture variations in the user’s typing style
compared to the general population [21].

A novel loss function is used to minimize the EER of a
keystroke dynamics verification system using one-shot eval-
uation with a uniform global detection threshold across all
users. This function extends the SetMargin loss of Morales et
al. [22] to sets of sets (rather than pairs of sets) and includes
an additive penalty term to encourage the model to embed all
classes within hyperspheres with similar average radii.

A learning curriculum of increasing difficulty is adopted to
train the model. Each batch consisted of 15 samples from 40
different users, totaling 600 samples per batch. In each batch
of epoch i, the first user is paired with its i nearest neighbors
based on the proximity of its embedding centers.

The tools and frameworks used to train the model included
Keras 2.6.0 and TensorFlow 2.12.0, running in Python 3.10.10,
and making use of an NVIDIA A100 80GB GPU. The
synthetic timing features are generated using the KSDSLD
tool, which is publicly available at [23].

B. Team: VeriKVC

The VeriKVC team is composed of two members from two
different companies, respectively Verigram LLC (Singapore),
and Citix (Kazakhstan).

1) Model Architecture: The system architecture proposed
by the VeriKVC team relies on a Convolutional Neural Net-
work (CNN) design, due to its capability to effectively capture

spatial features in web behavior data. The CNN model is
tailored to process session data and extract significant patterns
and features. The same architecture is adopted for both tasks.

In addition to the chosen architecture, feature engineering
techniques are employed to preprocess the behavior data.
One such technique involves encoding the timing differences
of events using both sine and cosine functions [24]. This
normalization helps to account for the varying time scales
of events and maintain the relevance of timing information.
Furthermore, the difference between the end and start times
of events is processed using cosine functions to scale it within
the range of -1 to 1. These features extracted by the attention
mechanism are essential in providing the model with a better
understanding of the temporal aspects of web behavior data.

In response to the potential risk of overfitting, various
randomization techniques are utilized for a data augmentation
process during training. These techniques introduce variability
into the training data, preventing the model from memorizing
the training set and promoting its generalization to unseen
data. By enhancing the model robustness through data aug-
mentation, its ability to handle diverse real-world scenarios
effectively is ensured.

2) Training: To train the model, the number of epochs
was set to 5000 with a batch size of 512. This extended
training duration allows the model to learn complex patterns
and improve its overall performance. The AdamW optimizer
[25] with learning rate of 0.01 and gradient clipping and cosine
annealing scheduler [26] is chosen. This allows the network
to learn basic features quickly and spend more time on tuning
more subtle features. In terms of loss function, ArcFace [27] is
selected as the most effective choice for the model. This loss
encourages the model to learn distinct feature representations
for each individual, which is crucial for subject verification
tasks.

The VeriKVC team believes in the importance of open col-
laboration and knowledge sharing. The code of the described

6Having used the raw data of the Aalto Databases, from which the KVC
datasets are obtained, it is likely that some of the subjects in the evaluation
set were also used for the pre-training, lifting the open set learning protocol
restriction, according to which the development and evaluation sets should
not have any subject in common. A dedicated scenario, called Unrestricted, is
included in the KVC accounting for the option of pre-trained models. Being
this the only team that participated in this form, it is included in the general
rankings, but with a special mark ∗.



solution is available online on the GitLab page7, where it is
possible to review the proposed implementation, facilitating
transparency and enabling others to replicate and build upon
their work.

C. Team: Keystroke Wizards

The Keystroke Wizards team is composed of members of
the Regensburg University of Applied Sciences (Germany).
This is one of the two teams from the same institution8.

1) Model Architecture: In the desktop task, the proposed
model is based on a Recurrent Neural Network (RNN) com-
bined with a triplet loss function, following the approach in
[11]. In contrast, in the mobile task, the proposed model is
based upon the models proposed in [28], [29], and [30], which
all use Gaussian Range Encoding (GRE) as well as triplet loss.

The desktop model employs a Multi-Layer Gated Recurrent
Unit (GRU) RNN with 11 input features: HT, HT of the
following key, IPT, time from first key press to following
key release, Inter-Key Time (IKT), Inter-Release Time (IRT),
rollover duration, rollover count, hold-to-rollover ratio, ASCII
code, and ASCII code of following key. The rollover-duration
feature describes for how long both keys of the key pair are
pressed concurrently. The rollover-count describes how often
both keys are pressed at the same time. The hold-to-rollover-
ratio describes the ratio of the total hold times to the total
rollover times of the session. These features are chosen based
on data analysis, correlation analysis, and scatter plots.

The mobile model is a hybrid Transformer with a Channel
Module and a Temporal Module, incorporating Multi-Scale
CNN and GRU layers. In addition to desktop features, they
use trigram features, capturing the timing of the first and third
key presses. The mobile model integrates GRUs for temporal
data and CNNs for spatial data. It features multi-head attention
and Gaussian range positional encoding.

2) Training: Both models are trained with the Triplet Loss
function. The desktop model utilizes a PyTorch-based archi-
tecture featuring batch normalization, GRU layers, dropout,
and linear layers. Training parameters include 160 epochs,
128 batches per epoch, 1024 sequences per batch, a sequence
length of 70, and 80% data for training. The mobile model is
trained with 160 epochs, a sequence length of 50, and 80%
training data.

The hardware used for model training and evaluation con-
sists of a GeForce RTX 3090 graphic card, an AMD Ryzen 9
5950X 16-core processor, and 64 GB of RAM.

D. Team: U-CRISPER

The U-CRISPER team is composed of members from the
Regensburg University of Applied Sciences (Germany). This
is one of the two teams from the same institutions9.

7https://gitlab.com/vuvko/kvc
8Team members: Leon Schmitt, Daniel Wimmer, Christoph Großmann,

Joerdis Krieger, and Florian Heinz.
9Team members: Ron Krestel, Christoff Mayer, Simon Haberl, Helena

Gschrey

1) Model Architecture: Four essential time-based features
are derived: HT, IKT, IPT, and IRT. These features are stan-
dardized by removing the mean and scaling to unit variance.
Any missing value is substituted by the mean. The ASCII
codes, normalized by dividing them by 255, are also used.
The raw data also contain upward and downward outliers,
which could potentially introduce confusion into the model.
To address this issue, an in-depth analysis of the data point
distribution is conducted. As a result, extreme outliers are
clipped to a predefined boundary, enhancing the model’s gen-
eralization. The adopted model architecture is a GRU-Based
Siamese Network, utilizing Gated Recurrent Units (GRU) to
adaptively capture temporal dependencies [31]. Therefore, the
design fits well for handling keystroke sequences. Two GRU
layers, each with a hidden size of 64 and a dropout rate of 0.2
in between, process an input sequence (70 by 5) and a Linear
Layer with a prior Rectified Linear Unit (ReLU) activation
generates an embedding vector of dimension 64.

2) Training: For effective training, the Triplet Loss function
[11] is used. Each comparison is carried out at session level:
one session is used as an anchor, one as a positive from
the same user, and one as a negative from a different user.
The model processes each session, generating embeddings
compared by the Triplet Loss function, which minimizes the
anchor-positive distance and maximizes the anchor-negative
distance.

An hyperparameter optimization is conducted by using Op-
tuna’s Tree-structured Parzen Estimator (TPE) [32], resulting
in the following model configuration: 200 epochs, 70-length
input sequences, batch size of 512 (150 for training, 40 for
validation), Adam optimizer (LR: 0.001, betas: 0.9, 0.999,
epsilon: 1e-08), and Triplet Loss (margin: 1.5, p-value: 2.0).

E. Team: YYama

The YYama team is composed of one member from the
Division of Radiology and Biomedical Engineering, The Uni-
versity of Tokyo (Japan).

1) Model Architecture: The proposed “dual-network” ap-
proach combines an embedding model for feature extraction
and a classifier model for verification, aiming to improve the
biometric verification performance.

The development dataset is randomly split into 80% for
training and 20% for validation. The feature extraction stage
included five conventional variables (HT, IKT, IPT, IRT, and
ASCII code) [11], [28], plus two new variables (differential
in consecutive HTs and ASCII codes). These features are
standardized and normalized to maintain consistency across
the dataset.

The same architecture is used for both tasks. The embedding
model architecture is a simplified transformer-based design
featuring 1D CNN layers followed by a transformer encoder
and a max pooling operation, concluding with a fully con-
nected layer. In contrast, the classifier model is a straightfor-
ward 1D CNN-based architecture that took paired outputs from
the embedding model to determine if they originate from the
same user.

https://gitlab.com/vuvko/kvc


2) Training: The training settings are consistent across both
tasks, with the embedding model using the Adam optimizer
and a fixed learning rate of 0.001, trained for 2,000 epochs for
mobile and 1,000 epochs for desktop. The batch size during
training is 2,048, with a total of 16 batches supplied to the
models per epoch. Therefore, the total number of data pairs
per epoch was 32,768. The loss function is contrastive loss
with a margin of 1 for the embedding model. Simultaneously,
the classifier model’s embeddings are trained using the binary
cross-entropy loss function with the same learning rate as the
embedding model.

Model performance is evaluated using the global EER,
and the best models for mobile and desktop are selected
based on the lowest EER. The dual-network approach yields
lower EERs than conventional approaches based on Euclidean
distance: 5.65 vs. 13.07 locally and 6.41 vs. 14.35 on the
leaderboard for desktop tasks, and 3.09 vs. 7.47 locally and
4.16 vs. 9.75 on the leaderboard for mobile tasks.

The hardware used was equipped with an Intel Core i9-
10900k processor clocked at 3.70GHz and an NVIDIA RTX
3090 graphics card with 24GB of VRAM.

The experimental environment was set up on Ubuntu 22.04
LTS with Python 3.10.11. The libraries used included PyTorch
2.0.1, OpenCV 4.8.0.76, NumPy 1.24.3, and scikit-learn 1.3.0.

F. Team: Challenger

The Challenger team is composed of three members from
the National University of Singapore, and one member from
the University of Moratuwa (Sri Lanka).

1) Model Architecture: Starting from the raw data, some
features are extracted considering digram and trigram features.
The time intervals between various events to create features
are also used. The combination of these time intervals and
ASCII codes yields a total of 10 keystroke features. ASCII
code is normalized to the range [0,1] and time based features
are represented in seconds.

While deep learning techniques like RNNs and LSTMs
excel in behavioral biometrics, Transformer architectures
have gained prominence. However, applying Transformers to
keystroke data faces challenges due to limited data and mul-
timodality. To address this, a Spatio-Temporal Dual Attention
[30] method for improved attention and feature extraction
across time and modalities is employed. The proposed model
is based on a variation of the Vanilla Transformer encoder
named Spatio-Temporal Dual Attention Transformer, that is
based on a framework named BehaveFormer [24], [30]. In
this framework, the raw data are preprocessed to extract
additional features. Then, the Transformer architecture with
Dual Attention modules are used to extract more discrim-
inative features from KD. Then, the Spatio-Temporal Dual
Attention Transformer uses a single transformer with two
attention mechanisms: one over the temporal axis and one
over the channel axis. This allows the model to focus on
the relevant keystroke features over time, extracting unique
behavioral patterns for individual users. The GRE is used as
the positional encoding. Moreover, it uses a 2D convolution

network instead of the feed forward network in the transformer
blocks, to analyze the input data over time and across different
channels.

2) Training: To give the model a better starting point than
the randomly assigned weights, an initial model is pre-trained
which is a good generalized starting point for the keystroke
verification task, providing a solid base for the further training
on the data provided by the organizers. For the pre-training,
keystroke data from these datasets are used: Aalto Databases
[13], [14], HMOG [33], and HuMidb [34]. The Triplet Loss
function is used for training. Two different models with the
same architecture are trained for the two tasks. The models
were trained with a batch size of 512 and for 1050 epochs for
the desktop model and 2500 epochs for the mobile .

G. Team BioSense

The BioSense team is composed of members from the
NASK – National Research Institute (Warsaw, Poland).

1) Model Architecture: A model of a neural network with
Keycode Attention, named Anabel-KA, is developed. Keycode
Attention refers to the self-attention [24] module, in which
the attention matrix is computed from the sequence of ASCII
codes for the keyboard buttons pressed by the users, and values
in the attention function are derived from the time intervals
between pressing and releasing keys in the sequence. Q and
K (in the equation of scaled dot product attention below) are
a result of the keycode extraction function FKB and V is a
result of the time-interval extraction function FT .

Att(Q,K, V ) =softmax(
QKT

√
dk

)V

where Q = K = FKB(X), V = FT (X)

Feature extraction FKB from the keycodes is made by a
set of 2D convolutions with kernels of size 3, as authors
of other methods described in the literature [35], [36] show
the feasibility of analyzing 3-element groups of keys for the
keystroke biometrics. Typing dynamics in the proposed model
are represented by the sequence of HTs and IKTs. Such values
are processed by the time extractor module FT which is also
built using 2D convolutions of size 3 and stride 1. In both
cases, the time extractor and the keycode extractor, the number
of convolution filters is chosen to be 64. Input sequences are
normalized and the length is arbitrarily set to 66, as the median
length of the inputs in the KVC database is equal to 48 for
mobile and desktop entries. Longer sequences are cut and
shorter ones are padded with zeros. Extension of the model
with the method for handling longer sequences is planned to be
added in the future. Embeddings generated by the Anabel-KA
have a length of 256. The Keycode Attention is implemented
with the multi-head attention module with 8 heads.

2) Training: For training, an additional classification layer
is used with a number of outputs equal to the number of
classes and softmax function applied. When evaluating, the
similarity between keystroke sequences is computed using the
Euclidean distance between their embeddings. Training is done



TABLE II: Comparison of the results achieved in the Desktop and Mobile tasks considered in KVC.

Desktop

Position Team Global
EER↓ (%)

FNMR↓ @1%
FMR (%)

FNMR↓ @10%
FMR (%) AUC↑ (%)

Mean
Per-Subject
EER↓ (%)

1 LSIA 3.33 11.96 0.51 99.48 0.77
2 VeriKVC 4.03 18.79 1.05 99.07 1.32
3 Keystroke Wizards 5.22 27.98 1.62 98.79 1.78
4 U-CRISPER 6.19 35.24 2.68 98.37 2.44
5 YYama 6.41 36.96 2.88 98.28 2.54
6 Challenger∗11 6.79 39.36 3.52 98.09 2.8
7 BioSense 10.85 54.59 12.0 95.86 5.17

Mobile

Position Team Global
EER↓ (%)

FNMR↓ @1%
FMR (%)

FNMR↓ @10%
FMR (%) AUC↑ (%)

Mean
Per-Subject
EER↓ (%)

1 LSIA 3.61 17.44 0.6 99.28 1.03
2 VeriKVC 3.78 18.39 0.95 99.04 1.35
3 YYama 4.16 24.41 0.72 99.09 1.66
4 Challenger∗11 5.19 32.89 1.55 98.69 2.17
5 Keystroke Wizards 5.83 41.58 1.93 98.34 2.66
6 U-CRISPER 8.76 67.15 6.68 96.54 5.07
7 BioSense 11.83 60.48 14.43 94.83 5.75

with the cross-entropy loss function. For the purpose of the
experiments, a cross-validation with 10 folds is employed,
with 500 subjects excluded from the dataset for validation
in each fold. The maximal number of epochs is set to 60,
the final model is selected based on the maximal value of
the validation metric, which is the AUC. The batch size is
128 and optimization is done with the Adam algorithm, the
training procedure starts from the warm-up learning rate of
0.01 and changes gradually after every 10 epochs. The code
of the Anabel-KA is available online10.

VII. EXPERIMENTAL RESULTS

Table II presents the biometric verification results according
to the different tasks and metrics. Each row shows a different
system, sorted by their ranking in the challenge. As can be seen
in the table, three teams achieve better results in the desktop
task in comparison with the mobile task (LSIA, Keystroke
Wizards, BioSense), while the remaining four (VeriKVC, U-
CRISPER, YYama, Challenger) perform better in the mobile
task. Consequently, the KVC results do not reflect the typical
lower variability associated with the desktop task due to
a more constrained acquisition scenario (i.e., in contrast to
mobile devices, subjects are more likely to be sitting down
and in a still position while typing on a desktop keyboard).
Nevertheless, the best result is achieved in the desktop task
with a global EER of 3.33%.

The best performing team of both tasks, LSIA, achieves a
global EER of 3.33% and 3.61% respectively in the desktop
and mobile task, with a solid gap with respect to the second
best team of both tasks, VeriKVC, especially in the desktop
task (3.33% vs. 4.03%). It is interesting to point out that both
teams use more sophisticated loss functions in comparison
with other teams. In fact, the LSIA team adopts an extension

10https://github.com/nask-biometrics/anabel-ka
11Please check footnote 6.

of the SetMargin loss [22] with an additive penalty term
combined with a learning curriculum of increasing difficulty,
whereas the VeriKVC team applies the Additive Angular
Margin Loss (ArcFace) [27]. Such approaches outperform
current state-of-the-art performance on the same KVC exper-
imental conditions, evidencing the importance of optimal loss
functions for training [15]. Moreover, the performance gap
between these two teams might be given by the complexity
of the model architecture adopted, i.e., the LSIA team uses
a dual-branch (recurrent and convolutional) embedding model
for distance metric learning, whereas the VeriKVC uses an
attention module as feature extractor followed by a CNN.
More in-depth analyses combining the two architectures could
be carried out in the future to shed light on which are the most
impactful aspects in learning discriminative features.

Another interesting aspect to point out is related to the fact
that the ranking in both desktop and mobile tasks is consistent
across the two evaluation scenarios considered, i.e., global
EER and mean per-subject EER. The adoption of per-subject
EER is generally associated with better results as different
thresholds are considered per subject, allowing the system to
better adapt to each subject. It is also important to remark that,
in terms of the mean per-subject EER, the system developed
by the LSIA team achieves results under 1% in the desktop
task (0.77%), and very close in the mobile task (1.03%).

The ranking is also consistent across the different metrics.
For example, examining different threshold operating points
(FNMR @1% FMR and FNMR @10% FMR), as well as the
AUC, it is possible to see that the separation between the
performance of different systems is clear.

Concerning the other teams, the performance achieved is
very satisfactory in both desktop and mobile tasks as well,
with global EER results between 5.22% (Keystroke Wizards)
and 10.85% (BioSense) for the desktop task and between
4.16% (YYama) to 11.83% (BioSense) for the mobile task.
Considering the variety of the architectures proposed (RNNs,

https://github.com/nask-biometrics/anabel-ka
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Fig. 1: DET curves including the results of all the biometric verification systems proposed in the KVC challenge for both
desktop and mobile tasks. The red dashed lines indicate the operational points 1% FMR and 10% FMR whereas the black
dashed line indicate the points where the FMR = FNMR.

CNNs, Transformers), it is possible to conclude that biometric
verification based on KD is a problem that can be tackled from
several directions with good results. In particular, approaches
based on distance metric learning (triplet and contrastive loss
functions) used by Keystroke Wizards, U-CRISPER, YYama,
and Challenger, seem to work better than cross-entropy loss
(BioSense).

For completeness, we include in Figure 1 a comparison of
the biometric verification systems in terms of the Detection
Error Tradeoff (DET) curves, for both desktop (Fig. 1a) and
mobile (Fig. 1b) tasks. In the graphs, three dashed lines are
marked: the black one represents the points where the FMR
= FNMR (i.e., the EER metric). In contrast, the two red lines
represent two operational points in which the errors at the
intersection with the DET curves are unbalanced. Specifically,
they respectively represent the score of FMR @1% FNMR,
and FMR @10% FNMR (also reported in Table II). These
tradeoffs are related to the threshold and the usability of the
system: by setting a threshold that would let in only 1% of
the impostor attempts, the amount of genuine users who are
denied the access is measured. The higher these values are, the
less usable the system would be, as false non-matches would
generate frustration in the legitimate subjects.

Considering the DET curves, it is possible to observe that in
the mobile task, three systems exhibit a change in the slope as
the FMR increases (VeriKVC, U-CRISPER, BioSense), while
a similar trend is visible in the desktop task only for VeriKVC.
Having fixed the FNMR (considering a horizontal line on the
DET curve graph), worse security of the system corresponds to
higher values of FMR. Consequently, such trends highlight the
deterioration of the biometric performance of a given system.
Such trend is especially accentuated in the case of VeriKVC
(based on a convolutional architecture), despite of being the
second best system in terms of EER.

In general terms, it can be observed that in comparison with
recent literature, the results achieved in the KVC outperform
the state of the art [15], proving the effectiveness of the dis-
criminative power of transcript text KD as behavioral biomet-
ric characteristic. In fact, almost all teams achieve EER values
lower than 10% for both tasks. From this perspective, the most
interesting metrics for future works could be represented by
FNMR @1% FMR as it can better separate the performance
of the systems for high-security scenarios. Moreover, perhaps
even considering the next operating point 0.1% FMR, reducing
the gap with other more popular physiological biometric traits
such as face, for example.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented the results of the Keystroke Verifi-
cation Challenge (KVC). Within this limited-time challenge,
current state of the art of KD-based biometric verification
were outperformed, reaching EER values as low as 3.33%
and 3.61% respectively in the desktop and mobile task by the
winner team, LSIA.

The challenge is hosted on CodaLab11 and it is meant to
be ongoing to represent a useful tool for the entire research
community. In fact, a sound experimental framework was de-
signed for the challenge, based on the two most complete and
large-scale public databases of free-text keystroke dynamics
up to date, collected respectively in a desktop and mobile
acquisition environment, including keystroke data from more
than 185,000 subjects overall. To this end, KVC aims to be
a dedicated and unified test bench to foster the design of
innovative solutions that achieve improved performance in
comparison with existing ones.

Regarding future work, we plan to extend the considera-
tions to other aspects of the developed systems, such as the

11https://codalab.lisn.upsaclay.fr/competitions/14063/

https://codalab.lisn.upsaclay.fr/competitions/14063/


biometric fairness of the systems, the number of parameters
in the models, deploying the proposed models in Continuous
Authentication (CA) schemes, and incorporating new evalu-
ation sets to assess the generalization ability of the models
across different acquisition scenarios and text formats. Fur-
thermore, the exploration of approaches based on generating
synthetic subject-specific data will be considered to evaluate
their suitability for the problem of behavioral biometrics-based
verification.
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