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Abstract—Energy consumption in buildings accounts for a
significant portion of the global energy use. Consequently, un-
derstanding building energy use is important. Data over the past
decade show that the energy intensity (Joules/sqft) of commer-
cial buildings has decreased. While some of the improvements
(decrease in energy use) are easily measurable such as the use of
more energy efficient lighting, impact of other modifications such
as changes to the operation of the HVAC system or changes in the
usage pattern of the building potentially due to external events
are difficult to quantify. Simply comparing energy consumption
prior and post change is not accurate as energy use is impacted by
many factors including external weather conditions. In this paper,
we present a case study to quantify the impact of external events
on the energy consumption of a medium-sized office building. We
adopt an approach based on counterfactual analysis. Towards this
end, we first build two models based on Linear Regression and k-
Nearest Neighbors to predict the daily energy use given different
input features related to the weather. We determine the statistical
features of the weather that are most predictive of energy use.
We then use the models to determine a counterfactual baseline
and thereby to accurately estimate the impact of the events. The
results of the counterfactual analysis provide new insights on
the impact of the events on energy consumption. The update to
the building cooling system resulted in more energy savings than
direct yearly comparison reveals. On the other hand, the tests of
a MPC-based controller for the HVAC system saved less energy
than determined by the direct yearly comparison. Finally, the
results show that there no gains in terms of energy savings due
to remote work during the COVID-19 pandemic. An increase in
airflow setting in the HVAC system corroborates this finding and
further validates the underlying model and the counterfactual
analyses.

Index Terms—Building Energy Usage, Counterfactual Analy-
sis, Linear Regression, k-Nearest Neighbor, Weather Conditions

I. INTRODUCTION

The data released by the Energy Information Administration
(EIA) in 2015 showed that energy consumed by residential
and commercial buildings accounts for 40% of total energy
consumption in the United States [1]. The data is similar for
the European Union (EU) whereas globally it is 32% and
increasing [2]. Consequently, with the perspective of reducing
environmental and financial costs, there are significant efforts
to study building energy consumption and identify methods to
optimize energy usage.

Commercial buildings can be broadly categorized into four
types [3] namely hotels, offices, retail, and mixed develop-
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ments. They all have different characteristics to fulfill the
purposes of the facilities. They can be further categorized
by the size of the building. The energy usage in a building
is determined by many factors, such as ambient weather
conditions, building structure and characteristics, the operation
of the HVAC systems, lighting, occupancy, and behavior of the
occupants. As such optimizing the energy usage of a building
is a complex task that must satisfy various constraints. For
example, the Occupational Safety and Health Administration
(OSHA) Regulations require that building operations maintain
the temperature and other factors in the office building within
a certain range to ensure a workable environment for the
employees [4]. Setting temperature set-points for the HVAC
system to minimize energy consumption while meeting the
constraints is complex due to inherent physical characteristics
of the building including the latent heat [5].

From a building operation perspective, it is important to
estimate the impact on building energy usage due to building
updates or external events that impact the building occupancy
and/or usage pattern. An accurate estimate can guide building
operations and/or subsequent updates. However, accurately
estimating the impact is challenging. Simply looking at the
difference in energy usage prior and post event is not accurate
as the energy usage is impacted by various other factors
including the ambient weather conditions. In this paper, we
present a case study of Building 59 (aka Wang Hall) in
Lawrence Berkeley National Laboratory to accurately estimate
the energy use impacts due to updates on the building’s
HVAC system and due to external events including COVID-19
pandemic, wildfires, and others, which all took place between
2018 and 2020.

Even as Building 59 is a relatively new building (operational
in 2015), there is curated data on building energy usage only
since early 2018 [6], [7]. As such there is no significant histor-
ical data to estimate the distribution of the energy use prior to
the events. Furthermore, the consecutive events of the HVAC
update and changes to occupancy due to remote work due to
COVID-19 make it hard to determine the individual impacts.
We adopt a counterfactual analysis approach. Specifically, we
first develop a model to predict the energy use of the building
given the ambient conditions. For a given event, we then use
the model to counterfactually estimate the energy usage if
the event had not occurred. Comparing this estimate with the
actual usage due to the event gives an accurate estimate of the



benefit (or loss) due to the event.

A model used for this counterfactual study is sometimes
called a baseline [8]. Due to the large number of variables that
affect building energy uses, there are considerable challenges
in building an effective baseline model [8], [9]. For example,
we might need to compare hourly energy use during the
same season or month from different years and most time-
series modeling approaches are not able to provide such fine-
granularity prediction across an extended period of time. Fur-
thermore, the daily cycle of temperature changes and delayed
response from HVAC system (due to heat capacity of the
building) are challenging for effective modeling. Fortunately,
in this study, we could use aggregated electricity usage. By
choosing to model the total daily electricity usage, we are
able to circumvent most of these challenges [9]. This allows
us to treat weather information and electricity usage from each
day as an independent data record. A number of published
studies suggested the total electricity usage of a building to be
a linear function of the average outdoor temperature [9]. In this
work, our dataset contains a number of additional measures
of ambient weather conditions. Our main objective in model
creation is to develop ways to make use of a subset set of non-
co-linear weather features and show that these features could
be used to improve modeling accuracy.

The key contributions of this paper are the following:

1) We develop two models based on Linear Regression and
k-Nearest Neighbors to predict the daily building energy
use given the ambient weather conditions. We determine
the subset of ambient weather features that are most
predictive of energy usage.

2) We design a counterfactual analysis to determine the
true gain (or loss) in energy use due to HVAC System
Update, Remote Work during the first year of the COVID-
19 pandemic, Wildfires, and Model Predictive Control
(MPC) Testing.

3) The results show that the HVAC System Update resulted
in more gains in energy savings than the direct yearly
comparisons reveal. The result also shows that the bene-
fits in terms of energy savings due to Remote Work during
COVID-19 were not significant. Increased airflow settings
in the HVAC system corroborate this finding. Finally, the
energy savings due to MPC Testings were less than the
direct comparison revealed.

This paper is organized as follows. Motivation, research
goals, and approach are described in Section II. The data
we use for this paper is explained in Section III. Section IV
describes methods and experimental settings. Results are dis-
cussed in Section V. Section VI outlines related works. The
paper is concluded in Section VII.

II. MOTIVATION

The data released by EIA [1] in 2018 (based on the Com-
mercial Buildings Energy Consumption Survey (CBECS))
show that even though the total floor space in commercial
buildings has increased, the energy consumption has not. The
comparison is based on the 2012 CBECS data. This implies

that the energy consumption per square foot (energy intensity)
has decreased which is attributed to increased building energy
efficiency. This is due to improvements in building operations,
materials, and design, as well as heating, cooling, and lighting
technologies. For example, the use of highly efficient LED
lighting in commercial buildings has grown from 9% in 2012
to 44% in 2018. While the impact of energy-efficient LED
lighting on the overall building energy consumption is easily
quantified, that is often not the case for other updates to the
building or changes in the energy use due to external events.

The target of this study is Building 59 which is an office
building at Lawrence Berkeley National Laboratory located in
Berkeley, California, U.S.A. [7]. Building 59 is a medium-
sized four-floor building with mechanical systems and super-
computer facilities on the first and second floors, and office
floors on the third and fourth floors. The dataset is of the office
portion of the building [7]. The office has the North wing
and the South wing. Underflow Air Distribution and HVAC
system are used for both heating and cooling in the building,
and automated Logic WebCTRL building management system
is used for the control. The climate around the area is mild,
where the temperature varies between around 5°C' to 25°C.
September is the hottest month, and January is the coldest
month on average.

The daily energy use depends on many factors including
ambient weather conditions, HVAC operational control, and
occupancy. Changes in building energy consumption occur
when changes are made to the operation and control of
the HVAC system for example, changing to an MPC-based
controller to control the HVAC system. Building energy
consumption is also impacted by the usage pattern of the
building or external events such as wildfires that may impact
the ambient weather and/or the operation of the building. The
goal of this study is to accurately quantify the impact of these
events on the building energy use.

A. Events of Interest

Over the period for which the data was collected, there were
four major events [7] which are described below.

1) HVAC System Update: The update of Building 59 took
place in 2019 winter, with the aim to reduce energy usage.
The update includes, but is not limited to, installing the
screen for the elevator shaft. Two other changes that
were aimed primarily at the National Energy Research
Scientific Computing Center (NERSC) supercomputer
facility and had a secondary impact including a) a new
Heat pump water heater that harvested heat from the
datacenter’s Cooling Water loop and b) A Cooling Water
Booster Pump which provides the extra needed loop
pressure to get acceptable Cooling Water flow up to the
4 roof-top units (RTUs).

2) Remote Work: Like most workplaces, a majority of
office workers started remote work in late February
and early March of 2020 as a result of the COVID-19
pandemic. As the building hosts NERSC which is an
important user facility and also some of the key engineers



managing the ESnet, a small number of people took turns
to be in the office. In order to mitigate any exposure to
COVID-19, precautions were taken including minimizing
the number of occupants in the building at any time and
increasing the airflow.

3) Wildfires: The 2018 wildfire season was the deadliest and
most destructive wildfire season on record in California.
In November 2018, strong winds aggravated conditions in
another round of large, destructive fires across the state.
This new batch of wildfires included the Woolsey Fire
and the Camp Fire. These fires significantly impacted the
external environment with many days of thick haze and
the building occupancy as many worked remotely.

4) MPC Controller Testing: In late 2020 over a period of
approximately 2 months a new MPC-based controller for
the HVAC system was tested [10].

B. Research Goal and Approach

The goal of this research is to accurately estimate the
impacts on the building’s energy consumption due to the
above four events. The naive estimate by taking the difference
between the energy usage pre- and post/during- event is not
accurate. This is because the energy usage is dependent on
other parameters including ambient weather conditions and
the occupancy which vary pre- and post- event. In this paper,
we adopt counterfactual analysis (aka hindcast) to estimate the
energy impact of the events. Given the data prior to the event,
we build a model that can predict the building energy use
given the ambient weather conditions. We then use the model
to estimate (counterfactually) what the energy use would have
been had the event not occurred. This gives a more accurate
baseline to estimate the impact of the event.

III. BUILDING 59 DATA

Building 59 is an all-electrical building. The data is based on
300 sensors [7]. The dataset includes energy use data, ambient
weather data, indoor environmental data, HVAC operational
data, and occupancy data. Sampling frequencies of data range
from 1 minute to 15 minutes. There are some missing portions
of data due to different reasons including measurement errors.
Missing data is filled using one of the three methods: simple
linear interpolation for smaller gaps, k-nearest neighbors algo-
rithm for small gaps, and matrix factorization for large gaps.
It is collected, processed, and cleaned by Na et al. [7].

Figure 1 shows the yearly EUI (Energy Use Intensity) for
the three years for which the data was collected: 2018, 2019,
and 2020 [7]. The components namely HVAC, lighting, and
miscellaneous (MELs) are also shown. MELSs include, but not
limited to, plug loads and elevators. As the data shows there
are significant yearly differences both at the aggregate level as
well as at the component level. Specifically, while the HVAC
system is the largest consumer, the biggest yearly difference
was in MELs.

The daily energy use over a month (July 2018) is shown
in Figure 2. Again the data shows that the HVAC system
is the main consumer of energy accounting for 73.84% of
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Fig. 1: The EUI (Energy Use Intensity) of the Office Portion
of Building 59 in 2018, 2019, and 2020.

the total energy use. The lighting and MELs account for
4.43% and 21.72% of the total, respectively. Figure 3 shows
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Fig. 2: The daily energy use for July 2018
components. HVAC is the main consumer.

and the key

the maximum, minimum, and mean of the daily outdoor
temperature and outdoor relative humidity during July 2018.

IV. METHODS AND EXPERIMENTS

We conduct a counterfactual analysis to accurately deter-
mine the impact of different events on the energy use. The
overview of this method is shown in Figure 4. An important
point to note here is that ambient weather conditions change
and we want to make a comparison of energy use before and
after the event with that change in consideration. To perform
this, we train a machine learning (ML) model to predict the
energy use based on ambient weather conditions. We then
estimate the counterfactual energy use with the post-event
ambient weather conditions as input. This give us the energy
that would have been used had it not been for the event and
provide an accurate baseline to estimate the impact of the
event.
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maximum, minimum, and mean of daily outdoor relative humidity
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Fig. 4: The illustration of our method. We use the data from
time period A to train the model. We use the model and the
weather conditions of time period B to make a counterfactual
prediction of energy use for time period B. The actual energy
used in time period B is compared with the predicted energy
use to estimate the change in the energy use. The naive
comparison is comparing the energy use in time periods A
and B.

A. Calculating Energy Use

To calculate the energy use we use the sampled values of
instantaneous power (in kW) drawn by the various subsystems,
sampled every 15 minutes. The data is available separately for
the North and South wings of the building. As mentioned
before, the various subsystems are categorized into three
broad groups - HVAC System, Lighting, and Miscellaneous
Electrical (MELSs). For any subsystem, the energy use per hour
(in kWh) is given by

E[kWh] = P[kW] x T|[h] (1)

where E[kW h] is energy, P[kW] is power, and T'[h] is time in
hours. In our case, T is i as it is measured every 15 minutes.
The total energy use per day F is then given by
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Fig. 5: The energy use and the outdoor temperature during a
week in July 2018. The time lag in the external temperature
and energy use particularly visible in final diurnal cycle is due
to latent heat capacity of the building.

where ¢ is the sample index with 96 samples per day since the
sampling frequency is once every 15 minutes. The lighting
data is only provided for the South wing. As suggested in [7],
it is reasonable to assume that the energy use due to lighting
is very similar for both wings. So, the energy use of the South
wing lighting is multiplied by a factor of 2 in Eq. 2.

B. Latent Heat

Buildings are heated or cooled in response to the indoor
temperature change. While the indoor temperature is affected
by the outdoor temperature, there is a time lag as a result of
the latent heat capacity of the building. Consequently, there is
a time lag in the response of the HVAC system with respect
to the changes in outdoor temperature. As the HVAC system
is one of the main consumer of energy, there is a time lag
between the energy use and the highs and lows of the outdoor
temperature. This effect of latent heat is shown in Fig. 5.
While the above discussion is only based on the temperature,
in reality how the latent heat is dissipated is also impacted by
other ambient weather conditions including relative humidity
and solar radiation. In this paper, we consider the energy use
at the granularity of a day. As a result, the effect of latent heat
does not need to be one of the features in our analysis.
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C. Models

We considered two models - one based on Linear Regression
(LR) and the other based on k-Nearest Neighbors (KNN) [11].
In kNN, £ is the number of most closest points in the data over
which the average is taken, and it is a hyper-parameter. In this
paper we use Euclidean distance to measure the closeness. We
selected LR and kNN for this study because they are capable
of learning with a small amount of data. Since we use daily
energy use, we are limited to 30 or 31 data points. More
complex models such as Recurrent Neural Network (RNN),
Long Short-Term Memory (LSTM), and their variants require
a lot more data for training [11].

The explanatory/independent variable of the model is a
set of statistical features of daily ambient weather condi-
tions and the response/dependent variable is the daily energy
use. We picked ambient weather conditions as the explana-
tory/independent variables because they are the only features
that are independent of the HVAC operational control. The
data provides HVAC operational data [7], but these are not
independent and are impacted by the closed loop control
algorithm of the HVAC system. We consider the outdoor
temperature, dew point temperature, relative humidity, and
solar radiation for the ambient weather conditions. The 96
data points for each day are normalized so that each feature
will have equal weights in the model. We consider the daily
minimum, maximum, and average of each feature.

The data for the training set and evaluation set are chosen
depending on the type of event. The first category includes
events that change the behavior of energy consumption per-
manently or more precisely for the entire duration for which
the data is available. HVAC System Update and Remote Work
belong to this category. For these events, to analyze the stable
part of the data (i.e., after some time past the event), we
picked the summer months, as these events happened in winter
and spring. Specifically, since the HVAC System Update took
place in late 2018, the training set is 31 data points from July
2018 and the evaluation set is 31 data points from July 2019.
Similarly for Remote Work due to COVID-19 which started
in early 2020, the training set is 31 data points from July 2019
and the evaluation set is 31 data points from July 2020.

The second category include events that change the energy
use of the building temporarily only during the time period
during which the events occurred. Events in the category
are the Wildfires and MPC Testings. For these events, the
evaluation set consists of n data points, where n is the number
of days over which the event occurred. The training set is 30
data points corresponding to immediate 30 days prior to when
the event started. The days used as the training set and the
evaluation set for each event are summarized in Table I.

As shown in Figure 4, we also do a naive comparison for
each event. For the HVAC System Update, we compare the
energy use of 31 days in July 2018 to the energy use of 31 days
in July 2019. For the Remote Work, we compare the energy
use of 31 days in July 2019 to the energy use of 31 days in
July 2020. For the other events, we compare the energy use

Event

Training Set

Evaluation Set

HVAC System Update

2018/07/01 - 2018/07/31

2019/07/01 - 2019/07/31

Remote Work

2019/07/01 - 2019/07/31

2020/07/01 - 2020/07/31

First Wildfire
Second Wildfire

2018/10/12 - 2018/11/11
2020/07/24 - 2020/08/23

2018/11/12 - 2018/11/20
2020/08/24 - 2020/09/06

First MPC Testing
Second MPC Testing
Third MPC Testing
Fourth MPC Testing

2020/09/19 - 2020/10/19
2020/10/02 - 2020/11/01
2020/10/13 - 2020/11/12
2020/11/03 - 2020/12/03

2020/10/20 - 2020/10/27
2020/11/02 - 2020/11/06
2020/11/13 - 2020/11/19
2020/12/04 - 2020/12/14

TABLE I: Details of the data that was used for the test set
and the evaluation set for each event.

of n days during the event, and n days immediately prior to
when the event started.

D. Feature Selection, Parameter Selection, and Method Vali-
dation

We select features and a parameter and validate the method
using the data from June and July in 2019 and 2020. We chose
to use June and July because the weather is similar in those
two months. We did not consider August because there was a
wildfire in August 2020. We also did not pick May and June
because the weather is less similar than June and July.

The ambient weather features available in the dataset are air
temperature(°C), air dew point temperature(°C'), air relative
humidity(%), and solar radiation(W/m?). For all those four
features, we calculated the minimum, maximum, and mean
values per day. For LR, we searched for one best features
among the 12 features described above taking into account
the co-linearity among the features. We used the Variance
Inflation Factor (VIF) to determine the co-linearity among
the features. The result showed high co-linearity among all
the features except for minimum solar radiation. This is
unsurprising because the minimum solar radiation is zero (0) at
night. As such the solar radiation is not a good feature for the
model. For kNN, we searched the best feature combinations
among the following four: 1) minimum, maximum, and mean
of all outdoor environment features, 2) minimum, maximum,
and mean of temperature, 3) mean of all features, and 4)
means of temperature and humidity. The reason for choosing
the temperature and humidity as a combination is that they
had the highest correlation to energy consumption. We varied
the hyper-parameter k£ from 2 to 7. Therefore, there are 12
features to choose from for LR, and there are 24 combinations
of features (4 combinations of features and 6 options for k)
to choose from for kKNN. Among all those combinations, we
pick the best one each for LR and kNN and use it for all the
analyses.

The steps for feature and hyper-parameter selection are as
follows. First, we obtain the daily outdoor environmental data
and the daily energy use data of June and July 2019, which is
61 data points in total (30 days in June and 31 days in July).
We shuffle the data. Then we use the first half of the shuffled
data as a training set and the remaining half as a validation
set. We train the model using the first set and then use the
model to make a prediction on the second set. We compute
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Fig. 6: The standard deviations of the daily energy use for the
months used in the training and evaluation sets.

the Root Mean Square Error (RMSE) between the predicted
and the actual values on the second set of data points. We do
the same for the data of June and July of 2020, and obtain the
RMSE for each combination. Then, we find a model that has
the smallest average RMSE considering both 2019 and 2020
for each model and employ that combination for our analyses.

For LR, the results of feature selection are listed in Table
II. The feature selected for analysis is the maximum outdoor
temperature, as it has the smallest average RMSE among
all the features considered. For kNN, the results of feature
combination selection and hyper-parameter selection are listed
in Table III. We observe that the smallest average RMSE
is achieved with with £k = 3 and features consisting of the
mean temperature and mean relative humidity. So, we use this
combination for all the analyses in the next section.

We performed validation of the method by comparing two
similar sets of data which are created from the two months of
the same year, which is the same as the sets described above.
We consider the method to be effective when the difference
between the prediction and the actual energy use is smaller
than the standard deviation of the data itself. The standard
deviations of daily energy use of June and July in 2019 and
2020 are shown in Figure 6. We observe that the range of
RMSEs in Table II and Table III is similar or are smaller than
the standard deviations of the daily energy use in Figure 6. We
thus conclude that the method is validated and can be used for
our analysis.

V. RESULTS AND DISCUSSIONS

In this section, we present the results of our analysis of the
events outlined in Section II. As noted in Section IV we will
use the following metrics:

o Average Naive Difference: We take the daily difference
between energy use prior to the event with the energy use
post event. We then take the average over the number of
days. A positive (negative) value indicates energy saving
(loss).

o Average Counterfactual Difference: We take the daily
difference between energy use predicted by the coun-
terfactual model with the energy use post event. We
then take the average over the number of days. Again,
a positive (negative) value indicates energy saving (loss).

The results are shown in Table IV. We discuss these results
with the actual and predicted energy usage in the following
paragraphs.

a) HVAC System Update: Figures 7 and 8, show the
actual energy use and counterfactually predicted energy use
using LR and kNN, respectively for the case of the HVAC
System Update. The results show that the counterfactual
prediction is always larger than the actual, implying that there
were savings in energy use due to the HVAC System Update.
The Average Counterfactual Difference for the HVAC System

HVAC System Update
3000

Counterfactual
2000 | ™ Actual

1000 +

o

Total energy usage [kWh]

12 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Fig. 7. Comparison Actual energy use and Counterfactual
predicted energy use by LR after HVAC System Update.
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Fig. 8: Comparison Actual energy use and Counterfactual
predicted energy use by kNN after HVAC System Update.

Update in Table IV shows the actual energy saving is more
than that determined by the Average Naive Difference. It is
also noteworthy that both the models, LR and kNN, show
similar gains.

b) Remote Work: Figures 9 and 10 show the actual
energy use and counterfactually predicted energy use using
LR and kNN, respectively for the case of Remote Work. The
results show that the predicted energy use is mostly lower
than the actual energy use. This implies that there was a loss,
i.e., more energy was consumed. The results of the Average
Counterfactual Difference for Remote Work in Table IV show
that the actual energy loss was significantly more than the
loss determined by the Average Naive Difference. The result
that the energy consumption was higher during Remote Work
due to COVID-19 is counter-intuitive considering that the
occupancy of the building was reduced to a very few number
of employees. The reason is that the operation of the HVAC
system such as air flow rate and fan speed was higher during
the COVID-19 Remote Work period than it was before. This
is also observed in Fig.11. This was likely done to minimize
COVID-19 infections.

c) Wildfires: Figures 12 and 13, show the actual energy
use and counterfactually predicted energy use using LR and
kNN, respectively for the first Wildfire. The trend for both
LR and kNN is the same. The number of days that the
counterfactual prediction was higher and the number of days



Feature June-July 2019 RMSE | June-July 2020 RMSE || Average of 2019 and 2020
temperature min 319.3 301.0 310.1
temperature mean 253.2 205.1 229.1
temperature max 236.8 191.8 214.3
dew point temperature min 416.7 316.3 366.5
dew point temperature mean 441.7 343.1 392.4
dew point temperature max 458.2 367.0 412.6
relative humidity min 302.5 220.5 261.5
relative humidity mean 316.9 239.5 278.2
relative humidity max 357.9 277.7 317.8
solar radiation min 433.8 331.0 3824
solar radiation mean 384.7 259.8 3223
solar radiation max 419.8 329.6 374.7

TABLE II: The results of feature selection for LR. The feature maximum temperature has the lowest RMSE.

Experimental setting k June-July 2019 RMSE | June-July 2020 RMSE || Average of 2019 and 2020
k=2 309.5 227.1 268.3
k=3 288.8 218.9 253.8
min max mean; temperature k=4 298.6 223.1 260.9
’ k=5 293.7 212.4 253.0
k=6 297.9 208.9 253.4
k=7 303.4 216.9 260.2
k=2 296.0 269.7 282.9
k=3 288.1 255.8 272.0
min max mean; all features k=4 279.6 2444 262.0
’ k=5 288.6 239.9 264.3
k=6 3114 253.8 282.6
k=7 321.6 259.3 290.4
k=2 316.9 219.0 267.9
k=3 299.7 217.4 258.6
mean: all features k=4 300.2 2243 262.2
’ k=5 298.1 235.9 267.0
k=6 315.6 2419 278.7
k=7 319.3 250.1 284.7
k=2 274.6 249.1 261.9
k=3 291.5 211.7 251.6
mean; humidity, temperature k=4 307.0 231.8 269.4
’ ’ k=5 308.0 234.5 271.3
k=6 316.8 239.2 278.0
k=7 315.2 253.1 284.1

TABLE III: The results of feature and parameter selection for KNN. The parameter £ = 3 and feature mean of humidity and

temperature has the lowest average RMSE.
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Fig. 9: Comparison Actual energy use and Counterfactual
predicted energy usage by LR during Remote Work.
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Fig. 10: Comparison Actual energy usage and Counterfactual
predicted energy usage by kNN during Remote Work.

that the actual energy use was higher were about the same in
the first wildfire. For the second wildfire there were more days
when the actual energy use was higher. Comparing the Average
Counterfactual Difference and the Average Naive Difference
in Table IV, we find that the results are inconclusive. The
first wildfire has a positive average difference and both LR
and kNN give less savings than the Average Naive Difference.
The second wildfire shows markedly different results - gains
in the Average Naive Difference but loss with the Average
Counterfactual Difference for both the models. Also, the
magnitude of the difference is much smaller compared to the
other events. Overall, no conclusions can be drawn from the
results.

d) MPC Testings: Figures 14 and 15 show the actual
energy use and counterfactually predicted energy use using
LR and kNN, respectively for the first MPC Testings. We also
see that the results are consistent for the two models in all
MPC Testing. We observe that the counterfactual prediction is
mostly higher than the actual energy use implying energy gains



Event Average Counterfactual Difference | Average Naive Difference
LR kNN Naive Comparison
HVAC System Update 684.3 682.0 513.7
Remote Work -222.0 -211.7 -112.7
First Wildfire 64.8 70.6 160.2
Second Wildfire -242.8 -174.5 333.7
First MPC Testing 612.8 796.9 1086.9
Second MPC Testing 371.9 388.9 438.5
Third MPC Testing 285.1 243.0 465.3
Fourth MPC Testing 474.7 488.5 679.1

TABLE IV: The Average Counterfactual Difference (Predicted Counterfactual Energy Use — Actual Energy Use) and the
Average Naive Difference (Actual Energy Use before event — Actual Energy Use after or during Event) for each event. The
Building Update and the Remote Work were averaged over 30 days. For the other events, the average was taken over n days,
where n is the number of days in July (31) for Building Update and Remote Work, and the number of days during the event

for Wildfires and MPC Testings.
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Fig. 11: The supply air flow rate and supply fan speed over the entire date range. The data shows that both the supply air flow

rate

First Wildfire

and the supply fan speed were higher starting in Feb/March 2020 when COVID-19 started.
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Fig. 12: Comparison of Actual energy use and Counterfactual
predicted energy use during the first Wildfire by LR.
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Fig. 14: Comparison of Actual energy use and Counterfactual
predicted energy use during the first MPC Testing by LR.
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Fig. 13: Comparison of Actual energy use and Counterfactual
predicted energy use during the first Wildfire by kNN.

due to the use of the MPC controller. The Average Counterfac-
tual Difference shows that there were savings in energy in all
MPC Testings. In comparison to the Average Naive Difference,
there were less energy savings in counterfactually predicted
energy use for all the MPC Testings. The goal of the MPC

Fig. 15: Comparison of Actual energy use and Counterfactual
predicted energy use during the first MPC Testing by kNN.

controller was to optimize the efficiency of the HVAC system.
The study in [10] showed that the MPC saved approximately
40% of HVAC energy over the existing control. Overall our
results corroborate this prior study.



VI. RELATED WORKS

Analyses of energy use in different types of buildings have
been widely studied. These include comparison and applica-
bility of different machine learning (ML) models on building
energy prediction. There are a number of papers that use LR
or kNN to make predictions of energy use [12]-[19]. The
study in [12] built a LR model for electricity load prediction
for commercial and industrial buildings, including an office,
a bakery, and a furniture store. They studied the time of the
week and the outdoor temperature as explanatory features and
concluded that the time of the week was a more accurate
predictor. Prediction of daily energy use in an educational
building is reported in [13]. The study concluded that using
enthalpy and Cooling Degree Days as features improved model
accuracy.

A comparative analysis of different ML models including
kNN, Support Vector Machine (SVM), and other models
applied to two educational buildings is reported in [18]. The
study proposed a stacking model and compared it with other
models. A similar study comparing ML models including
kNN, ANN, and SVM to model energy use for a large
biomedical facility is reported in [19]. They conclude that
the error is reduced by more than 50% when ML models are
used to model energy use. Prediction based on kNN has been
shown to increase the accuracy on two commercial buildings
in [14]. A noteworthy study in [15] makes hourly predictions
of energy use in a community with different types of buildings
including an office, an exhibition center, and an auditorium
among others. The study in [16] applied a variant of kNN
to a group of small commercial and residential buildings to
make an accurate forecast of energy use and showed that it
gives highly accurate predictions. A kNN based approach to
optimize the operation of a chiller system to reduce carbon
emissions in medium and large-size buildings is reported
in [17]. The study found that the returned chilled water and
the outdoor temperature are the best explanatory features for
the model.

A number of recent works have studied the impact on
building energy use due to COVID-19 [20]-[23]. An approach
to measure the impacts of different stages of the COVID-
19 lockdown policy is proposed in [20]. They analyzed 451
residential building and found that the energy consumption
increased as the lockdown took place. Comparisons of en-
ergy use during pre- mid- and post- lockdown stages are
reported in [21]. The five-floor commercial building included
a basement floor that includes an exhibition, offices, and a
performance center which normally welcomed many tourists
every day. Unsurprisingly, the study found that the lockdown
caused a significant decrease in energy use. A clustering
based approach to evaluate energy use with open source
data is reported in [22]. The study concluded that impact
on building energy use during COVID-19 was different by
types of buildings, such as educational buildings, research
buildings, and residential buildings. A detailed analysis of the
impact of COVID-19 on office buildings across the United

States is explored in [23]. While the energy use increased
due to COVID-19 because of the new measures, the energy
use increased for zones that are above mid-humid climate and
others decreased.

Models based on LR have been used to analyze the impact
of COVID-19 on building energy use [3], [24], [25]. A study of
225 residential homes [24] shows that the energy use increase
correlates well with the time when people used to be out,
which is between 10 am. and 5 p.m. Also, they compared
the differences between the income categories. Interestingly,
they found that households with higher and the lowest incomes
showed higher change in energy use. The study in [3] reports
energy use of commercial buildings to measure the impact
of COVID-19. City-level analysis with both hourly and daily
predictions of different events such as COVID-19 lockdowns,
drought, and blackouts is reported in [25]. They used an LR
based counterfactual analysis to perform this study.

There are studies that estimate and/or analyze the effect of
building retrofit (update) [26]-[29]. Han et al. [26] use a data-
driven method to measure the effect of building retrofit on
office buildings and laboratories. They use LR for predicting
only outdoor environmental dependent features of energy and
used other models to predict the energy use which decreased
after the retrofit. Another study [27] estimates the energy saved
by building retrofits using data-driven models including LR
with simulated and actual data. An estimate of the energy
saving by a retrofit to the cooling system of an office building
with 25 floors is reported in [28]. An LR model using
occupancy, number of working days, Cooling Degree Days,
and their combinations as features is developed to make a
prediction of energy use. They found out that the effectiveness
of the feature was the largest with occupancy, then the number
of working days, and lastly the Cooling Degree Days. kNN
is also used in [29]. This study analyzed the difference in the
energy use before and after a retrofit to a chiller system using
the kNN algorithm. They found that the annual electricity
is reduced by about 17%. The results of our case study are
consistent with this prior work.

Overall, there are studies using one or more ML models to
analyze the energy use of a building, a community, or a city
by comparing before and after an event such as COVID-19
lockdowns, natural disasters, or building retrofits. However, to
the best of our knowledge, none of these studies have used a
counterfactual approach to accurately estimate the change in
energy use at a granularity of a day from actual data observed
from an office building.

VII. CONCLUSION

Accurately estimating the change in the energy use of a
building due to updates and/or external events is essential to
optimize energy use and reduce financial and environmental
costs. Besides the updates and/or external events, other
factors such as the weather affect energy consumption. In this
study, we developed a method to perform a counterfactual
analysis that considers the ambient weather conditions into
account. We developed two models one based on Linear



Regression and the other based on kNN and identified the
statistical features of the weather that were most predictive
of the energy use. For a given event, we employed the
models to make a counterfactual prediction of the energy
use, i.e., the prediction of the energy use had the event not
occurred. This provides an accurate baseline to estimate the
change in energy use as a result of the external events. We
considered the difference between the actual energy use and
the counterfactually predicted energy use to obtain the true
energy saving or loss. We considered four events, namely
HVAC System Update, Remote Work due to COVID-19,
Wildfires, and tests of MPC-based controller for the HVAC
system. The results show that the HVAC System Update and
MPC Tests saved energy, but Remote Work consumed more
energy due to the increased airflow of the HVAC system.
The impact of Wildfires was inconclusive. This study has
the potential to optimize building energy use taking different
measures into consideration. Our future work is to include
the occupancy data in the model. It could not be done in
this study because there were many missing values in the
occupancy data and the available data was not consistent. As
such the counterfactual analysis approach is applicable not
only for building energy use but also for other scenarios that
include data of measurement before and after a change.
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