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Abstract—The rapid advancement of quantum computing has
pushed classical designs into the quantum domain, breaking
physical boundaries for computing-intensive and data-hungry
applications Given its immense potential, quantum-based com-
puting systems have attracted increasing attention with the hope
that some systems may provide a quantum speedup. For example,
variational quantum algorithms have been proposed for quan-
tum neural networks to train deep learning models on qubits,
achieving promising results. Existing quantum learning architec-
tures and systems rely on single, monolithic quantum machines
with abundant and stable resources, such as qubits. However,
fabricating a large, monolithic quantum device is considerably
more challenging than producing an array of smaller devices.
In this paper, we investigate a distributed quantum system that
combines multiple quantum machines into a unified system. We
propose DQuLearn, which divides a quantum learning task into
multiple subtasks. Each subtask can be executed distributively
on individual quantum machines, with the results looping back
to classical machines for subsequent training iterations. Addi-
tionally, our system supports multiple concurrent clients and
dynamically manages their circuits according to the runtime
status of quantum workers. Through extensive experiments, we
demonstrate that DQuLearn achieves similar accuracies with
significant runtime reduction, by up to 68.7% and an increase
per-second circuit processing speed, by up to 3.99 times, in a
4-worker multi-tenant setting.

Index Terms—Distributed Quantum Computing, Quantum
Resource Management, Multi-node Quantum

I. INTRODUCTION

Over the past decade, deep learning systems and applica-
tions have seen remarkable advancements. Innovative algo-
rithms, enhanced computational power, and modern designs
have facilitated a wide range of use cases [15], [35] Large
language models and other deep learning-based applications
require considerable computational resources and are typically
trained, deployed, and maintained on cloud-based distributed
systems. Numerous studies have explored methods to optimize
systems for deep learning applications [19], [20], [34]. How-
ever, in the post-Moore’s Law era, the approaching physical
limits of semiconductor fabrication and the increasing size of
datasets raise concerns about the future of deep learning and
its potential constraints.

At the same time, the rapid advancement of quantum com-
puting and its potentially revolutionary promise has motivated
researching quantum machine learning designs. The immense
potential of quantum-based deep learning architectures and
applications has attracted growing interest from industry and
academia, hoping that some systems may provide quantum
speedup. QuClassi [29] and QuGan [28], for instance, utilize
a variational quantum algorithm structure, inducing parame-
terized circuits on quantum processors and optimizing on a
classical machine.

Despite rapid progress in the Noisy Intermediate-Scale
Quantum (NISQ) era, current quantum systems have not
yet achieved practical applicability in real-world scenarios.
Existing quantum deep learning models and quantum sys-
tems face several challenges. First, most current quantum
deep learning proposals rely on single, monolithic quantum
machines. However, fabricating a large, monolithic quantum
device is significantly more challenging than producing arrays
of smaller ones. Present quantum computer technologies such
as superconducting, trapped ion, and photonic quantum com-
puters demonstrate scaling promise [17], [26], [31]. However,
each technology suffers from both unique and generalized
issues such as superconducting qubits being susceptible to
decoherence, trapped ion processors being limited in qubit
scalability, and gate infidelities challenging all technologies.
Current quantum machine learning approaches primarily fo-
cuses on implementing algorithms with fewer qubits. Conse-
quently highlighting the challenge in leveraging multiple small
quantum computers for quantum deep learning models instead
of a single, monolithic device, which is left primarily unoccu-
pied. Additionally, public quantum computing platforms, such
as IBM-Q, use a single-tenant mechanism, where one user
occupies the entire machine while others wait in a queue. This
design compromises quantum resource efficiency if specific
applications do not fully utilize the available qubits.

To address these challenges, we investigate a distributed
quantum learning architecture, DQuLearn, which efficiently
utilizes quantum resources from multiple workers across the
entire system. DQuLearn breaks down a large quantum task
into smaller subtasks to accommodate low-qubit machines.
These subtasks are then distributed to individual workers for979-8-3503-2445-7/23/$31.00 ©2023 IEEE
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execution. The results loop back to classical machines and
are analyzed for the next training iteration. This distributed
design overcomes the limited resources of a single machine
and enables applications to leverage resources across multiple
quantum workers. Furthermore, our quantum-classical co-
Management modules dynamically manages the circuits from
clients and distributes the workload to the most suitable quan-
tum worker based on their runtime status. DQuLearn has been
evaluated with both controlled and uncontrolled computing
environments. We summarize the key contributions below.

• We propose DQuLearn, a distributed quantum learning
architecture that divides a training task into multiple
subtasks. These subtasks can be executed on different
quantum machines distributively, independent of each
other, leveraging resources across the entire system.

• We develop a distributed quantum system that combines
multiple quantum workers and supports multiple concur-
rent clients. It accepts computing tasks from clients and
selects the most suitable quantum worker based on their
runtime status.

• We evaluate our system using IBM-Q simulation back-
ends, an uncontrolled cloud environment provided by
IBM. Additionally, we conduct experiments on commer-
cial clouds within a controlled, multi-tenant computing
environment. The results demonstrate the effectiveness
achieved by DQuLearn along with significant improve-
ments in runtime reduction, by up to 68.7%, and pro-
cessing speed, by up to 3.9 times.

II. RELATED WORKS

Given the ever increasing data and model size in machine
learning, distributed learning has been studied aiming to
leverage computing resources across an entire cluster [4], [22].
Researchers developed programming frameworks and system
architectures [3], [9], [32] for distributed and parallel deep
learning applications. Such optimized designs considerably
enhance deep learning performance from a system perspective.
However, due to ever-growing data sizes, increased complexity
of model designs, and hardware limitations, achieving these
improvements poses an increasingly challenging task.

With great potential of processing complex problems be-
yond current capabilities at a fraction of the time, quantum-
based algorithms and applications have received great attention
recently as innovations in quantum machine learning [12],
[14], [25], [33] have been proposed to improve existing models
from various perspectives. However, these proposals either
focus on theoretical proofs that assume unlimited quantum
resources or primitive applications with a toy-like data set. A
significant hindrance lies in the fact that practical applications
of quantum computers require a large number of logical qubits,
demanding millions of physical qubits [5], [21], which is
simply unfeasible in the NISQ era. With the current devel-
opment in quantum frameworks, programming languages and
compilers [2], [6], [7], [10], [18], significant speed-ups in
prototyping quantum algorithms and applications are attained.

Unfortunately, none of the existing systems support distributed
quantum computing in a practical setting.

Due to limited quantum resources, many quantum algo-
rithms employ a quantum-classical design [8], [23], [24], [27],
[30]. For instance, variational quantum algorithms, widely
used in quantum chemistry and quantum deep learning, utilize
a quantum processor to simulate quantum dynamics and a
classical optimizer to improve the results. However, from a
system perspective, these applications mainly emphasize the
interaction between a single quantum machine and a single
classical node, typically lacking parallelization. Furthermore,
this single quantum-classical pair system fails to fully exploit
a multi-node quantum-classical system. Limited prior works
have investigated distributed quantum systems [11], [13], but
they did not take a quantum-classical system into consid-
eration. For example, authors in [11] propose a distributed
programming language that allows local quantum operations
and classical communication. It investigates the formal de-
scription and verification of distributed quantum systems.
Based on established distributed systems, QMPI [16] pro-
poses an extension of the classical Message Passing Interface
to enable high-performance implementations of distributed
quantum algorithms. In addition, it includes a quantum com-
munication model (SENDQ) to evaluate the performance of
these algorithms and foster algorithmic optimizations. Besides,
a distributed quantum simulator, IQS, is presented by Intel
Labs [13]. IQS is able to utilize distributed resources in a
cloud computing infrastructure and accelerate the simulation.
However, they consider a system that consists entirely of
quantum computers. The classical computing resources are
merely intended for simulation. They fail to leverage these
widely-available cloud resources to solve a practical problem
with quantum computers collaboratively.

III. DQULEARN SYSTEM DESIGN

In this section, we discuss our system architecture that facil-
itates distributed quantum learning, the workflow algorithms
and management modules of the system in detail.

A. System Architecture

Output Data

Quantum Circuit
Executor

Quantum State
Measurement

Classical Manager

Quantum Workers

Input Data

Task
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Quantum State
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Quantum Data
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Fig. 1: DQuLearn System Architecture

The proposed DQuLearn system architecture functions as
a closed feedback loop between a classical manager and a
set of quantum workers, as illustrated in Figure 1. The data
undergoes an initial cleaning process that includes the removal



of significant outliers and other necessary data cleaning pro-
cedures. The cleaned classical data is then passed to related
modules in the system.

Quantum

Filters

Filters

Filters

Classical

Fig. 2: Parallel Filters

The Task Segmenta-
tion is a key module
in the system that aims
to segment the large in-
put into smaller pieces.
Based on the predefined
subtask unit, such as
convolutional filter size,
the Task Segmentation
module decomposes the

original data into multiple smaller sections in a continued
fashion. The data points in the same section can be grouped
and treated as individual subtasks. Figure 2 illustrates a
conceptual example of a convolutional neural network (CNN)
for image classification. An image on a classical computer
is divided into smaller sections and there might be padding
between the sections.

The generated smaller data sections are transferred to the
Logical Circuit Generator module. The main task in this
module is to encode the classical data points onto the quantum
qubits. Different encoding methods can be adopted and we
utilize X and Y rotations to encode our data. After the data
transformation, a logical circuit is generated for each section
and passes the circuit to next module. Due to limited quantum
resources, the original image may be too large to be encoded
on quantum Workers, while sub-images are small enough.

The quantum-classical co-Manager module accepts logical
circuits from the generator. It executes the scheduling algo-
rithms to monitor a set of quantum computers and selects the
best host for each circuit. Once a quantum worker is selected,
it distributes the circuit to the targeted worker for execution.
On a specific quantum worker, it employs three modules to
interact with a classical computer. Firstly, the the Quantum
Data Loader is used to load the logical circuits with initial
data encoding. It maps logical qubits that are defined by the
given circuits onto physial qubits on this specific quantum
machine. Next, the Quantum Circuit Executor conducts the
experiment to execute the gates on the circuits. Finally, the
Quantum Measurement calculates the fidelity from one anicilla
qubit which is used to calculate model loss, and sends this
metric back to the classical computer.

When the results loop back at classical computer, the
Quantum State Analyst module actively analyzes the data
based on the predefined cost function. The module uses this
analysis to update the trainable parameters in the quantum
circuit in attempts to minimize the cost function. In our system,
the decomposed data goes through smaller pieces on quantum
Workers, and the results are transferred back to the classi-
cal computer for further processing. This hybrid quantum-
classical design allows computation tasks to be distributed
collaboratively. With data stored on multiple classical com-
puters and processed on multiple quantum workers iteratively.
Consequently, our system enables a quantum application to be

distributed across multiple quantum and classical computers,
working concurrently.

Algorithm 1 DQuLearn Algorithm

1: Data set Loading Dataset: (X|Class : Mixed)
2: Parameter Initialization:

Learning Rate : α = 10−4

Network Weights : θd = [Rand Num between 0− 1× π]
epochs : ϵ = 40
stride : s = int
filter width : w = int
number of filters : nF = int
number of layers : nL = int
qubit count : qC = int
number of workers : w = int
Dataset: (X|Class = ω)

3: Define circuit compiler with circuit bank cB
4: for ζ ∈ ϵ do
5: Start epoch timer
6: for nF do
7: for xk ∈ X do
8: Encode data into unitary matrices logn encoding
9: Feed filter of size (w ∗ w) to CNN

10: Flatten data and run through a dense layer
11: y(x) = W (N)Th(N−1) + b(N)

12: for θ ∈ θd do
13: Load xk

Quantum−−−−−−−−−→
DataEncoding

QQ1 → Qcount

14: Load θd
Quantum−−−−−−−−−→

DataEncoding
QQcount

2 +1
+ 1 →

Qcount

2 + 1
15: Add π

2 → θ
16: ∆fwd = (EQ0

f(θd))
17: Add circuit to cB
18: Subtract π

2 → θ
19: ∆bck = (EQ0

f(θd))
20: Add circuit to cB
21: for Circuit ∈ cB do
22: Result = Algorithm2(Circuit)
23: Compile list of results from each circuit
24: Stop epoch timer
25: Record times per epoch
26: Calculate accuracy results per epoch

B. Distributed Quantum Learning

The training process of the system is summarized by Al-
gorithm 1. First, the data is loaded and the user introduces
of the training parameters set at run time (Lines 1-2). The
learning rate, α, indicates how large the updates to the system
parameters should be during training. The network weights
are initialized randomly. The number of epochs, ϵ, indicates
how many times the network will be trained on the data set,
X . The inputs of the convolutional neural network that factor
into the circuit creation such as the number of states, layers,
qubits and filters are also initialized.



Next, the circuit compiler where the circuit bank will be
stored is initialized and the epoch begins (Lines 3-4). At the
start of each epoch an epoch timer is initialized (Line 5). In
each epoch, for the number of filters (Line 6), Lines 7-23 must
be completed. For each data point in the X (Line 7), the data
is encoded into a unitary matrix using logn encoding (Line
8). From there, a filter shape is determined by the filter width
times the width and is fed into the CNN (Line 9). This data
is then flattened and run through a classical dense layer (Line
10). Line 11 represents the equation for propagating through
the classical dense layer.

Lines 12-22 represent the quantum backpropagation that
occurs for each parameter θ. First, the output of the classical
layer and all the trainable quantum circuit parameters θd are
loaded (Lines 13-14). Then, one forward shifted (Lines 15-
17) and one backward shifted (Lines 19-20) circuit are added
to the circuit bank. Once the circuit bank is complete, each
circuit within the circuit bank is sent to the co-Management
Module (Lines 21-22). The results from each circuit execution
are retrieved and stored in a list of results (Line 23).

Lastly, the epoch timer is stopped (Line 24) and the time
for that epoch is recorded (Line 25). The accuracy results are
then calculated and are used to calculate gradients and update
the quantum parameters (Line 26).

C. co-Manager in Multi-tenant Quantum System

The DQuLearn framework divides a training task into
several subtasks, which can be executed independently. This
distributed approach effectively leverages the capabilities of
multiple quantum machines within the system to improve
system performance. However, it also introduces new chal-
lenges from a system management perspective. For a given
subtask, there may be multiple quantum workers available,
necessitating the selection of the optimal worker based on their
runtime status. Given the limited access to quantum hardware
and the absence of root privileges, we introduce our quantum-
classical co-Manager in a simulated environment. This setup
consists of a classical manager and a set of quantum workers
represented by simulators. Each quantum worker is equipped
with a configurable maximum number of qubits, such as 5
or 10 qubits. The manager is responsible for dynamically
managing the quantum workers at runtime. For instance, it
must handle join requests from quantum workers wishing
to enter the system and assign circuits to the most suitable
worker based on their status. In our system, we delineate four
management modules for our co-Manager: (1) co-Manager
Initialization; (2) Quantum Worker Registration; (3) Periodic
Worker Management; (4) Workload Assignment. Algorithm 2
presents our management algorithms.

During the initialization phase, the co-Manager con-
tacts each quantum worker, assigning them IDs (e.g.,
w1, w2, ..., wn) in the active worker set W . Additionally, it
generates a dictionary to record the maximum qubit count,
MRwi , for each worker. These values are reported by the
workers themselves and stored in the configuration file. More-
over, the co-Manager maintains two other key values for each

quantum worker: the available qubits ARwi and occupied
qubits ORwi

. These values are updated dynamically based
on the runtime workloads on each worker. Finally, the co-
Manager maintains other parameters and objects, such as
client-submitted circuits, resource demands of the submitted
circuits, and active circuit sets on the workers.

During runtime, new workers can dynamically join the
system. Worker wi must register with the co-Manager to
accept circuit assignments from the system. In the new worker
registration phase, the co-Manager adds wi to its active worker
set, W . Since no active circuit executions are taking place on
this worker at this point, its occupied qubits ORwi are set to
0, and its available qubits ARwi equal its maximum value,
MRwi

. Furthermore, the co-Manager collects wi’s classical
resource usage data (e.g., CPU/GPU), denoted as CRUwi

(t),
for further processing (Lines 2-6).

Periodically, the co-Manager must update the runtime status
of each quantum worker. This communication is facilitated
through heartbeat messages sent from the workers to the co-
Manager. Initially, the manager receives the active circuit set,
ACwi

, from wi and computes the resource demands for all
ci ∈ ACwi

. The sum represents the occupied qubits, ORwi
,

at that moment (Lines 7-9). Subsequently, the co-Manager
calculates the available qubits (Line 10) and retrieves the
current classical resource usage on wi (Line 11). It is worth
noting that the 1 in t + 1 represents a time unit, which is a
configurable value in our system. If the co-Manager fails to
receive three consecutive heartbeat messages, it assumes that
the system has lost wi and removes it from the active worker
set, W (Lines 12-13).

Since our system comprises multiple quantum workers with
varying configurations (e.g., maximum qubits) and runtime
statuses (e.g., available qubits and classical resource usage),
the co-Manager must identify the best workers for each pend-
ing circuit. For a specific circuit, ci, the co-Manager queries
the active worker set to find workers with more available qubits
than the resource demands of ci. These qualified workers are
grouped into a Candidates set (Lines 14-17). When the Candi-
dates set contains multiple workers, the manager sorts them in
ascending order based on their most recent classical resource
usage (Lines 18-19). In doing so, the co-Manager distributes
computational tasks (e.g., circuit execution) according to the
workers’ runtime statuses, aiming to balance workloads across
the system. Eventually, the worker with lowest resource usage
is selected to execution ci (Line 20).

IV. DQULEARN EVALUATION

A. Workload, Implementation and Experiment Settings

Workload: Drawing from previous work on QuClassi [29],
we employ quantum-classical convolutional neural networks as
our workload. Specifically, it utilizes three variational quantum
layer configurations: (1) Single Qubit Unitary, which employs
single qubit rotation gates such as Ry and Rz gates; (2) Dual
Qubit Unitary, which incorporates two-qubit rotation gates,
like Ryy and Rzz; and (3) Entanglement Unitary, which uses
two-qubit controlled operations, including CRY and CRZ.



Algorithm 2 co-Management Modules

1: co-Manager Initialization:
Quantum Workers: W1,W2, ...,Wn ∈ W ;
MRwi : Maximum Resource on worker i;
ARwi : Available Resource on worker i;
ORwi

: Occupied Resource on worker i;
ci: Pending circuit i;
Dci : Resource Demand (e.g., qubits) of circuit i.
syswi

: System call to query current resource usage on wi

CRUwi(t): Classical Resource Usage on wi at time t;
ACWI

: Active circuits set on wi;

2: New Worker Registration at time t:
3: wi joins W ;
4: ORwi = 0;
5: ARwi = MRwi ;
6: CRUwi

(t) = syswi
;

7: Periodical Heartbeats from wi at t+ 1:
8: for ci ∈ ACwi

do
9: ORwi = ORwi +Dci

10: ARwi = MRwi −ORwi ;
11: CRUwi

(t+ 1) = syswi
;

12: if Missing wi’s heartbeats for three periods then
13: wi removed from W ;

14: Pending circuit ci assignment at time t+ 1:
15: for wi ∈ W do
16: if ARwi

> Dci then
17: wi → Candidates
18: for wi ∈ Candidates do
19: Sort ascending based on CRUwi(t+ 1);
20: Return w1 in Candidates set;

Although QuClassi serves as our workload, the proposed
methodology can be readily adapted to other quantum deep
learning applications.
Implementation: Python 3.9 and the IBM Qiskit Quantum
Computing simulator package were used to implement our
quantum-classical system. The quantum neural network con-
struction, e.g., circuit designs, is adopted from the open-source
code of QuClassi [29]. The communication between Classical
Manager and Quantum Workers is implemented as remote
procedure calls through python RPyC library. In our system,
the heartbeat messages are exchanged every 5 seconds. This
value can be easily configured.
Experiment Settings: In our workload, we use two qubit
settings: 5 qubits and 7 qubits (qC in Algorithm 1), which
represent varying circuit widths and computational intensities.
Moreover, our circuits feature different numbers of layers:
(1) a single layer with Single Qubit Unitary; (2) two layers
containing Single and Dual Qubit Unitary; and (3) three
layers, encompassing Single, Dual, and Entanglement Unitary.
The varying layer counts signify different circuit depths.

As a result, the workload comprises 1/2/3 layers (nL in
Algorithm 1) for both 5-qubit and 7-qubit configurations. By
running experiments for differing layer and qubit counts, we
were able to record an abundance of data and observe a
common trend among the results as the number of workers was
changed. For the filters, the filter stride was set to 2 pixels (s in
Algorithm 1), filter width to 4 pixels (w Algorithm 1) and and
the number of filters was set to 4 (nF in Algorithm 1). These
settings allowed for images small enough that they could be
processed by the lower qubit count computers. Our learning
rate was set to 0.001 (α in Algorithm 1). For training data,
we utilize the widely-used MNIST dataset [1], a handwritten
digit classification dataset popular within the quantum deep
learning research community.

We conduct experiments on IBM-Q simulation backends,
a cloud environment provided by the IBM-Q platform for
quantum simulation. However, we lack control over com-
puting resources, such as CPU/GPU cores. Therefore, it is
an uncontrolled environment to our system. Additionally,
we perform experiments on the Google Cloud Platform. By
using this commercial cloud, we build our quantum-classical
system in a controlled environment, specifying the number
of CPU cores. During our experiments, we initially concen-
trate on classification accuracy to validate the effectiveness.
More importantly, we examine completion time and runtime
performance to highlight the benefits that applications derive
from distributed quantum systems.

B. Accuracy

As our distributed application is a quantum deep learning-
based classifier, we initially compare its accuracy with the non-
distributed version to verify its effectiveness. We conducted
experiments identical to those described in QuClassi [29] using
our distributed design and two quantum workers. The results
demonstrate the effectiveness of DQuLearn. For instance, in
3/9, 3/8, 3/6, and 1/5 classifications, it achieves accuracies
of 97.5%, 96.2%, 98.1%, and 98.6%, respectively. These
accuracies exhibit a difference of less than 2% when compared
to the non-distributed design.

C. Runtime

In this subsection, we concentrate on runtime evaluation.
In these experiments, the client submits its training job to
the system, which trains the neural network in a distributed
manner. Unlike the previous experiments presented, the run-
time experiments do not complete the training; instead, we
terminate them upon the completion of one epoch.

1) IBM-Q Cloud Backends (Uncontrolled Environment):
Firstly, we carry out simulations using IBM-Q Cloud Back-
ends. On the classical side, these experiments begin on a
local computer—a 2015 Macbook Air—which submits the
logical circuits to multiple IBM-Q Cloud Backends. This setup
simulates multiple unrestricted quantum workers, i.e., without
maximum qubit constraints. The IBM-Q platform simulates
the executions and returns the results to our local computer
for further processing. This loopback iterates multiple times



until the epoch finishes. We conduct experiments with both
5-qubit and 7-qubit configurations.
5-Qubit Setting: The data for 5-qubit experiments on circuits
with one, two, and three layers can be seen in Figure 3a. For all
layer counts, the trend is the same. As the number of workers
increases, the runtime of the epoch decreases.

In the one layer experiments, the runtime starts at 94.7
seconds when running on one worker and improves to only
73.1 seconds when using four workers. When using two layers,
the recorded runtime for using one simulator is 467.9 seconds
and decreases to 418.6 seconds when using four workers.
The biggest improvement in terms of the amount of seconds
being eliminated is seen in the three layer experiments. When
running on one worker the runtime is 749.8 seconds. The time
then decreases to 651.7 seconds for two workers and 569.8
seconds for four workers. This is an improvement in runtime
of 98.0 and 81.9 seconds, respectively.

Next, we study the number of circuits being run per second
based on the number of workers being used. For the various
experiments, the number of circuits run are 1440 for one
layer, 2880 for two layers, and 4320 for three layers. As
seen in Figure 3b, across all experiments, as the number of
workers increases, the number of circuits simulated per second
increases. The one layer experiment displays the biggest
increase as the number of circuits per second jumps from 15.2
when using one worker to 16.9 when using two workers. This
number increases to 19.7 when using four workers. That’s an
overall increase of 4.5 circuits per second when using four
workers. The one layer circuits are the least complex circuits
used in the experiments so it makes sense that many of them
can be simulated per second and the amount per second would
increase significantly as the number of workers increases.
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Fig. 3: Experiments on 5-Qubit IBM-Q Backends

For the more complex circuits of two and three layers, the
improvement is not as drastic as the one layer experiments, but
there is still a steady improvement as the number of workers
is increased. During the two layer experiments, the number of
circuits per second increases from 6.2 when using one worker
to 6.4 when using two workers. This number increases to 6.6
when using four workers. Similar improvement can be seen
with the three layer experiments as the number of circuits per
second increased from 5.9 with one worker to 6.6 with two
workers to 7.6 with four workers. That’s an overall increase
of 1.7 circuits per second.

7-Qubit Setting: The data for seven-qubit experiments on cir-
cuits with one, two, and three layers can be seen in Figure 4a.
The results are in line with those of the five-qubit experiments.
Each time, more workers were used, the less time it would
take for each epoch to run. In the one layer experiments,
the runtime starts at 163.0 seconds when running on one
worker and improves to just 134.3 seconds when using four
workers. When using two circuit layers, the recorded runtime
for using one worker is 566.5 seconds and decreases to 510.8
seconds when using four workers. The biggest improvement
for number of seconds removed once again is seen in the
three layer experiments. When running on one worker, the
runtime is 1366.1 seconds. The time then decreases to 1303.9
seconds for two workers and 1246.5 seconds for four workers.
This is an improvement in runtime of 62.2 and 57.5 seconds,
respectively.
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Fig. 4: Experiments on 7-Qubit IBM-Q Backends

For the seven-qubit experiments, the number of circuits run
are 2016 for one layer, 4032 for two layers, and 6048 for three
layers. As seen in Figure 4b, the same trend as the 5-qubit
experiments occurs. Across all experiments, as the number of
workers increases, the number of circuits simulated per second
increases. The one layer experiment once again has the largest
increase as the number of circuits per second jumps from
12.4 when using one worker to 13.5 when using two workers.
This number then increases to 15.0 when using four workers.
This is an overall increase of 2.6 circuits per second. During
the two layer experiments, the number of circuits per second
slightly increases from 7.1 when using one worker to 7.2 when
using two workers. This number increases to 7.9 when using
four workers. Improvement can also be seen with three layer
experiments as the number of circuits per second increased
from 4.4 to 4.6 and to 4.8 with 1-, 2- and 4-workers.

2) Controlled Computing Environment: In the next step, we
deploy our multi-tenant quantum system on the Google Cloud
Platform, which provides a controlled computing environment,
enabling us to specify the classical hardware configurations.
We use e2-medium virtual instances located in the US-
Northeast data center. These VMs are configured with 1-2
vCPUs (1 shared core on an Intel Broadwell processor) and 4
GB of memory. In these experiments, we construct 1-manager
and 1, 2, and 4-quantum-worker computing environments
using the e2-medium instances. In addition, we conduct two



set of experiments, One Client Multiple Circuits and Multiple
Clients Multiple Circuits.
One Client Multiple Circuits: In this setting, one client sub-
mits its training job to our system. This job contains multiple
circuits that can be executed distributively. We configure our
quantum workers to the same qubit value, 5 or 7, depending
on the experiments.

Figure 5a displays the runtime for 5-qubit experiments with
1, 2, and 3 layer settings. As expected, the 4-quantum-worker
system demonstrates the shortest runtime. This is primarily due
to the presence of 4 quantum workers, allowing the application
to distribute its circuits among different workers for execution.
The results are then sent back and merged at the client’s side.
Specifically, the 4-worker system outperforms the 1-worker
and 2-worker systems by 27.1%, 18.9% in the 1-layer setting,
37.3%, 31.5% in the 2-layer setting, and 43.2%, 30.0% in
the 3-layer setting. It is worth noting that a system with two
quantum workers does not reduce the runtime of the one-
worker system by half. This is because, as the number of
workers increases, the overhead, such as communication costs
and quantum state analysis, also grows.

Upon closer examination of the experiments, it becomes
evident that the distributed system with multiple workers
processes more circuits per second. Figure 5b presents the
results. In the 1-layer setting, the processing speed is 3.8, 4.2,
and 5.2 circuits per second for the 1-worker, 2-worker, and 4-
worker systems, respectively. This represents a 36.8% increase
from the 1-worker to 2-worker system and a 23.8% increase
from the 2-worker to 4-worker system. Examining the more
computationally intensive 3-layer setting, the values are 2.4,
3.1, and 4.4 circuits per second, reflecting gains of 83.3% and
41.9% as the number of workers increases.
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Fig. 5: Experiments in a 5-Qubit Controlled Environment

Multi Clients Multiple Circuits: In this setting, we have
four concurrent clients, each submitting a training application,
such as 5-qubits-1-layer, which contains multiple distributed
circuits. We launch four VMs to represent four quantum
workers and configure them with 5, 10, 15, and 20 qubits.
As our circuits are either 5 or 7 qubits in width, a 20-qubit
machine can accommodate four 5-qubit circuits and two 7-
qubit circuits concurrently. Depending on the co-Manager’s
workload distribution, it may also execute two 7-qubit and one
5-qubit circuits simultaneously. Figure 6a presents the runtime

results. When compared to the results from Figure 5a, we
can see that the completion time has increased significantly.
This is due to the fact that the previous experiment contains
only one job with multiple distributed circuits. In contrast,
this experiment includes multiple concurrent jobs, leading to
a substantial increase in the computing workload.

Compared to a single-tenant system, the multi-tenant system
achieves significant runtime reductions of 68.7% and 8.2% for
5Q/1L and 7Q/2L, respectively. This is because, in general,
circuits can share the same worker in a multi-tenant distributed
system, leading to a more efficient use of system-wide re-
sources. Specifically, at the very beginning, the system has
workloads, allowing circuits from 5Q/1L to be distributed to
20-qubit workers for faster processing. Furthermore, at the end
of the experiment, as the other three jobs have been completed,
the system becomes less congested, making more resources
available for 7Q/2L. Comparing 5Q/1L and 7Q/2L both in a
multi-tenant system, the improvement reduces due to the fact
that quantum worker-1, which only has 5 qubits, is useless to
a 7-qubit circuit. However, the 5Q/2L and 7Q/2L have similar
performance. This is because, during their runtime, the system
is highly congested with all four training jobs, leaving less
room for optimization within our system.
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Fig. 6: Experiments in a Multi-tenant System

Figure 6b displays the circuits per second data from the
concurrent clients. The same trend is observed, with the 5-
qubit-1-layer achieving the largest gain of 3.9 times, increasing
from 1.4 to 5.5. When compared to Figure 5b, the degree of
improvement increases significantly due to the multi-tenancy
enabled in the system, allowing concurrent clients to share the
same quantum worker.

V. DISCUSSION AND CONCLUSION

In this project, we investigate DQuLearn, a distributed
quantum learning approach within a quantum-classical sys-
tem featuring a manager-worker architecture. Our distributed
design aims to fully utilize all available quantum workers
across the system. We propose co-Management modules that
efficiently manage the quantum workers within the system and
dynamically distribute circuits to the most suitable workers.
We conduct experiments in both uncontrolled and controlled
computing environments, namely IBM-Q Cloud Backend and
Google Cloud Platform. The results demonstrate the effective-
ness of the DQuLearn system, achieving similar accuracies as



its non-distributed counterpart. Furthermore, it exhibits sub-
stantial reductions in runtime, by up to 68.7%, and significant
improvements in processed circuits per second, with gains of
up to 3.9 times, in a 4-worker multi-tenant setting.

Despite the advantages obtained, the system has some lim-
itations. Firstly, the communication between a classical man-
ager and quantum workers relies solely on classical channels
(e.g., remote procedure calls), failing to exploit the potential
of quantum networking, Secondly, our system does not take
noise into account when scheduling the workload. However,
quantum noise has a significant impact on state fidelities.
Lastly, due to the lack of privileges on quantum hardware,
our evaluations are limited to simulations.
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