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Abstract—Foodborne illnesses significantly impact public health.
Deep learning surveillance applications using social media data
aim to detect early warning signals. However, labeling foodborne
illness-related tweets for model training requires extensive human
resources, making it challenging to collect a sufficient number
of high-quality labels for tweets within a limited budget. The
severe class imbalance resulting from the scarcity of foodborne
illness-related tweets among the vast volume of social media
further exacerbates the problem. Classifiers trained on a class-
imbalanced dataset are biased towards the majority class, making
accurate detection difficult. To overcome these challenges, we
propose EGAL, a deep learning framework for foodborne illness
detection that uses small expert-labeled tweets augmented by
crowdsourced-labeled and massive unlabeled data. Specifically, by
leveraging tweets labeled by experts as a reward set, EGAL learns
to assign a weight of zero to incorrectly labeled tweets to mitigate
their negative influence. Other tweets receive proportionate
weights to counter-balance the unbalanced class distribution.
Extensive experiments on real-world TWEET-FID data show
that EGAL outperforms strong baseline models across different
settings, including varying expert-labeled set sizes and class
imbalance ratios. A case study on a multistate outbreak of
Salmonella Typhimurium infection linked to packaged salad
greens demonstrates how the trained model captures relevant
tweets offering valuable outbreak insights. EGAL, funded by the
U.S. Department of Agriculture (USDA), has the potential to be
deployed for real-time analysis of tweet streaming, contributing
to foodborne illness outbreak surveillance efforts.

Index Terms—foodborne illness, social media, semi-supervised
learning, learning with noisy labels, text classification

I. INTRODUCTION

Motivation. Foodborne illnesses pose a significant public

*This work was performed while Huayi Zhang was at Worcester Polytechnic
Institute.

health threat, affecting millions of Americans annually. These
illnesses result in productivity loss, high medical expenses,
and even fatalities [1], [2]. Early foodborne illness detection is
crucial for risk reduction, outbreak control, and public health
safeguarding. Consumer-generated data from social media to
internet search, a valuable resource for surveillance, has led
to the creation of surveillance tools based on conventional
supervised machine learning. These tools have been tested by
local health agencies – by using Twitter data in New York
City [3], Chicago [4], and Las Vegas [5], Yelp reviews in San
Francisco [6] and New York City [7], as well as Google search
queries in Las Vegas and Chicago [8].

Classification models were commonly employed to detect
foodborne illness incidents within social media data, including
tweets [5], [9] in the aforementioned surveillance systems.
Subsequently, inspectors carried out case inspections based
on these cases flagged as potential incidents by the system.
Sound machine learning models that enhance precision in
detecting foodborne illness incidents can potentially reduce
the human resource demands involved in the case inspection
process. However, supervised models require high-quality
labeled training data, which are extremely resource-intensive
and often prohibitively to collect. Crowdsourcing has been
explored as a less resource-intensive approach to gather more
labels [10]. However, ensuring label quality with anonymous
labelers tends to be challenging [11]. Models trained on
data with low-quality labels may overfit to label noises and
struggle to generalize. Furthermore, budget constraints often
hinder collecting an adequate number of labels even via
crowdsourcing, leaving substantial unlabeled data unused when
relying exclusively on supervised learning.

Problem Definition. In this study, our focus is thus to train
an effective foodborne illness detection model using tweet data979-8-3503-2445-7/23/$31.00 ©2023 IEEE
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Fig. 1. Training and deployment procedure of EGAL. 1

with low-quality labels curated under resource constraints such
as a limited budget and limited support from experts. As shown
in Figure 1, we collect a large volume of tweets using the
Twitter API as the foundation of our dataset. However, due to
limited resources, the majority of these tweets remain unlabeled,
while only a small portion is labeled by crowdsourced workers,
and an even smaller portion has been labeled by experts. Our
objective is to utilize this tweet dataset to train a foodborne
illness detection model. The trained model is designed for
possible integration into a surveillance system capable of
detecting foodborne illness cases in streaming tweets.

Challenges. Despite the availability of a large volume of
tweets that can be collected using keyword search via the
Twitter API, constructing a high-quality labeled training set
to develop a reliable model remains a challenge. High-quality
training data should possess two crucial properties: (1) a bal-
anced class distribution and (2) a sufficient number of accurate
labels. Due to the scarcity of relevant tweets, the training
data, even when carefully curated with domain-driven semantic
rules, still consists mainly of irrelevant tweets, resulting in an
imbalanced training set. In such cases, classification models
tend to label all data as belonging to the majority class, which
is contrary to our core objective here, which is to identify the
items in the minority class of foodborne illness-relevant tweets.
Additionally, limited resources restrict the size and quality of
the training set. The training set consists of either a small expert-
labeled dataset only [12] or a relatively larger one collected via
crowdsourcing [13], with the latter potentially augmented with

1Twitter has been renamed as X. We note that the data collection and
framework design were carried out when the Twitter API was accessible for
academic research.

a small number of samples whose labels have been verified
by experts [14]. With abundant tweet data available for access
yet remaining unused in our context, we risk limiting the
effectiveness of training machine learning models for food
safety detection.

While some studies have been conducted to develop machine
models for detecting food poisoning incidents, they have
primarily relied on high-quality datasets labeled by experts or
have employed crowd-workers to adaptively label unlabeled
tweets through active learning [13], [15]. Some approaches
have been developed to build models utilizing both unlabeled
data and imbalanced labeled data, i.e., imbalanced semi-
supervised learning [16]. However, they typically assume a
sufficient number of accurate labels for the initially labeled
data, an assumption that is difficult to guarantee in real-world
applications. The real-world scenario of a sufficient number
of unlabeled data, having a median number of unreliable
labels and a small number of accurate labels in the context of
imbalanced semi-supervised learning presents an even more
challenging problem, which is the focus of this work.

Proposed Method. To address the aforementioned chal-
lenges, we design a novel framework called EGAL (Expert
Labels Guided Approach Learning with Crowdsourced and
Unlabeled Tweets). EGAL harnesses a vast amount of unlabeled
tweets by assigning pseudo-labels. Simultaneously, it employs
a small number of tweets with expert labels as a reward set
to rebalance the class distribution and filter out falsely labeled
instances. Note that this reward set does not necessarily have
a balanced distribution across classes. An instance reweighting
strategy is thus employed to address label bias caused by
incorrect labels and class imbalance. This reweighting process



is guided by the performance of the reward set utilizing robust
criteria for imbalanced data [17], [18]. Our main contributions
are:

• We propose EGAL, a practical solution for training a
classifier to detect foodborne illness. It uses crowdsourced
and massive unlabeled data, guided by a small amount of
expert-labeled tweets, even if they are not class-balanced.
This approach effectively reduces the impact of noisy
labels and rebalances the class distribution in the scenario
of semi-supervised learning.

• We extensively evaluate EGAL and strong state-of-the-
art methods on the real-world dataset Tweet-FID [14].
The results demonstrate EGAL’s superior performance
compared to strong baselines, even when varying both
expert-labeled set sizes and imbalance ratios.

• We perform a case study on a multistate outbreak of
Salmonella Typhimurium infection associated with pack-
aged salad greens. Our method identifies informative
tweets that offer insights into the outbreak trend, show-
casing the effectiveness of our model in foodborne illness
surveillance.

Our work is part of the USDA-funded FACT project2, which
aims to develop innovative big data analytics technologies for
ensuring the safety of fresh produce. This research explores
the use of social media analysis for early food safety warnings.
By deploying EGAL in real-time tweet analysis, we contribute
to the development of a comprehensive foodborne illness
outbreak surveillance system, enabling early detection and
timely response to outbreaks for enhanced public health.

II. RELATED WORK

The problem is the intersection of class imbalance, semi-
supervised learning, and learning with noisy labels. In this
section, we briefly review the related literature on machine
learning methods used for foodborne illness detection, semi-
supervised (SSL), and learning with noisy label learning (LNL).
And also include literature on class imbalance scenario in the
context of SSL and LNL, respectively.

A. Machine Learning Methods in Foodborne Illness Detection
Previous studies primarily used supervised classifiers (e.g.,

SVM, Naive Bayes, Decision Trees) with text content features
(unigrams, bigrams) to identify relevant posts. However, these
methods require parameter optimization and can be sensitive
to chosen parameters [10], [19]. Alternatively, supervised
classification models based on pre-trained language models
have proven effective in classifying foodborne illness tweets
[9], [14]. Sadilek et al. [13] adopt a multi-step strategy to build
a high-quality model from crowds. It first collects a small set of
crowdsourced labels and trains an initial model. Subsequently,
to address the class imbalance, it employs active learning, using
crowd workers to adaptively label unlabeled tweets under the
assumption of accurate crowdsourced labels.

2Project link: https://www.nal.usda.gov/research-tools/food-safety-researc
h-projects/fact-innovative-big-data-analytics-technology-microbiological-ris
k-mitigation-assuring-fresh-produce

TABLE I
SUMMARY OF NOTATION

Notation Description
x Feature vector of instance
y Label of instance
Nc Number of instances in crowdsourced set
M Number of instances in unlabeled set
Ne Number of instances in expert-labeled set
Dc = {(xc

i , y
c
i )}Ni=1 Crowdsourced set

Du = {xu
i }Mi=1 Unlabeled set

De = {(xe
j , y

e
j )}Sj=1 Expert-labeled set

γ Imbalance ratio
θ Model parameters
l() Supervised training loss function
lu() Unsupervised training loss function
Le(′,′ ) Loss function on expert-labeled set
wi Weight for the i-th training instance

B. Semi-supervised Learning (SSL)

Semi-supervised learning [20]–[23] is a well-studied field
that significantly reduces the requirements on laborious anno-
tations by leveraging abundant unlabeled data. Among existing
methods, pseudo-labeling [20], [21], [24], in particular, the
methods utilizing self-supervised learning [22], [23], [25], [26]
have achieved great advances. The main idea is to assign pseudo
labels to unlabeled data with the model’s predictions and add
them to the labeled data. Despite the great success, these
methods commonly assume that the labeled and/or unlabeled
data are class-balanced and also the labels of the labeled data
are accurate.

Typical SSL methods usually fail to generalize well on
the minority classes under class imbalance. Imbalanced semi-
supervised learning has drawn more attention, and those
methods can be divided into two categories. One category
aims to acquire high-quality pseudo labels and rebalance the
class distribution [27]–[30]. The other one is to learn a balanced
classifier. Lee et al. [31] proposed an auxiliary balanced
classifier that addresses class imbalance by introducing an
additional regularization term. CoSSL [32] adopts a co-learning
framework to decouple the representation learning and balanced
classifier learning and share the learned representation and
generated pseudo labels.

C. Learning with Noisy Labels (LNL)

Existing methods for learning with noisy labels require either
a large-scale dataset [33], [34] or a meticulously curated, class-
balanced validation set for training guidance [35]–[37]. Limited
resources make it impractical to collect numerous labels from
crowds or to build a clean and balanced validation set using
expert knowledge. CSWL [38] tackles label noise and class
imbalance through reweighting based on the AUC criteria.
However, it remains susceptible to noisy information, especially
when the labeled data is scarce.

https://www.nal.usda.gov/research-tools/food-safety-research-projects/fact-innovative-big-data-analytics-technology-microbiological-risk-mitigation-assuring-fresh-produce
https://www.nal.usda.gov/research-tools/food-safety-research-projects/fact-innovative-big-data-analytics-technology-microbiological-risk-mitigation-assuring-fresh-produce
https://www.nal.usda.gov/research-tools/food-safety-research-projects/fact-innovative-big-data-analytics-technology-microbiological-risk-mitigation-assuring-fresh-produce
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Fig. 2. Overview of EGAL.

III. PROPOSED FRAMEWORK: EGAL

A. Problem Definition

Let D be a Tweets Dataset collected via the Twitter API
using foodborne illness-related keywords. Dc = {(xc

i , y
c
i )}N

c

i=1

represent the crowdsourced set, where xc
i is a tweet selected

from D based on semantic rules, yci ∈ {0, 1} is its aggregated
crowdsourced label (1 indicates a foodborne illness relevant
tweet, while 0 indicates an irrelevant tweet), and N c =∥ Dc ∥.
Du = {xu

i }Mi=1 denotes the unlabeled set, where M =∥ Du ∥.
And De = {(xe

j , y
e
j )}N

e

j=1 is the small expert-labeled set
randomly chosen from {xc

i}, with accurate labels {yei } provided
by domain experts, where Ne =∥ De ∥. We denote the relevant
and irrelevant tweets with the subscripts + and −, respectively.

In real-world scenarios, the number of irrelevant tweets
is usually much higher than the number of relevant tweets,
resulting in imbalance ratios: γc :=

Nc
−

Nc
+
≫ 1, γu := M−

M+
≫ 1,

and γe :=
Ne

−
Ne

+
≫ 1. Here, γu ≻ γc ≃ γe with γu and γc

unknown because the goal is to select as many relevant tweets
as possible during crowdsourcing, while the huge unlabeled
data set tends to be less curated due to its size.

Our objective, given {Dc, Du, De}, is to learn a model Φ(θ)
capable of accurately classifying tweets as being foodborne
illness relevant or irrelevant.

B. Overview

EGAL leverages the small expert-labeled set as a reward set
to guide training. The key idea is to assign weights to losses
of the crowdsourced tweets and unlabeled tweets according
to their influence on the model’s performance on the expert-
labeled reward set. The underlying hypothesis is that a model
trained with accurate labels and balanced class distribution will
reduce the loss of the reward set. We describe the process of
EGAL depicted in Figure 2. Initially, the model is trained with
a regular semi-supervised learning procedure, and each labeled
tweet and unlabeled tweet is weighted equally, respectively.
Then, it learns the weight for the loss of each training sample
by solving the meta-optimization problem that minimizes the
loss of the expert-labeled reward set. Based on the learned

weights, EGAL first filters out the samples deemed to be false-
labeled. Finally, the model is updated with the weighted losses
of the correctly labeled samples. To fully make use of these
false-labeled tweets, we now also add them to the unlabeled
set with the aim of having new pseudo-labels generated. EGAL
iterates through the weight learning and model update steps,
respectively, until the performance of the reward set no longer
improves or reaches the iteration limit.

C. Objective Functions

1) Training Loss: In semi-supervised learning, the training
loss defined as Eq. (1) is composed of supervised loss li and un-
supervised loss luj , where li denotes the per-sample supervised
loss, e.g., cross-entropy loss, while luj denotes the per-sample
unsupervised loss, wi =

1
n and wj =

1
m , β ∈ R≻0 denotes the

trade-off. Given the weights w = [w1, ..wn, wn+1, ...wn+m]
as hyperparameters, the objective function is defined in Eq. (2).
We note that the optimal weights can be learned based on the
performance of the reward set.

L(θ;w) =

n∑
i=1

wili(θ) + β

m∑
j=1

wj l
u
j (θ). (1)

θ∗(w) = argmin
θ

n∑
i=1

wili(θ) + β

m∑
j=1

wj l
u
j (θ). (2)

2) Loss of Reward Set: Usually, accuracy is used as the
evaluation metric for classification tasks. However, in a class
imbalance scenario, accuracy could be misleading. AUC score
is a more informative measure for an imbalanced dataset.
However, it has been shown that the algorithm maximizes
the accuracy of a model but does not necessarily maximize the
AUC score [18]. Here, we adopt both accuracy and AUC to
evaluate the performance of the reward set. Usually, maximizing
the accuracy is to minimize the cross-entropy loss. The non-
parametric estimator of AUC is non-convex and discontinuous,
as defined in Eq. (3), where n+ and n− are the numbers of
relevant tweets and irrelevant tweets in a mini-batch.

AUC(Φ;D) =
1

n+n−

∑
xi∈D+

∑
xj∈D−

I(Φ(xi) ≻ Φ(xj)). (3)

To maximize the AUC score with stochastic gradient descent,
a convex and differentiable surrogate loss function f(Φ(x−)−
Φ(x+)) replaces the indicator function in Eq. (3). Here, f is
the pairwise squared loss f(s) = (1 + s)2. EGAL defines the
loss of the reward set as:

Le(θ) = λ

q∑
i=1

li(θ, x
e
i=1, y

e
i )

+ (1− λ)
1

q−q+

q−∑
i=1

q+∑
j=1

f(Φ(x−
i , θ)− Φ(x+

j , θ)).

(4)

EGAL aims to find the optimal weights that minimize the loss
of the reward set.

w∗ = arg min
w,wi∈[0,1]

Le(θ∗,w). (5)



D. Reweighting and Parameters Updating

1) Bi-level Optimization: The EGAL employs a bi-level
optimization strategy, wherein one optimization objective
is encapsulated within another objective. In this particular
scenario, the outer objective is to minimize Le(θ), which
represents the loss of the reward set. The insight is that the
performance of the reward set can serve as an indicator of the
quality of the trained model. The inner objective is to minimize
L(θ), the loss of the training set. The bi-level optimization
problem can be formulated as follows:

min
w,w∈[0,1]

Le(θ∗,w)

s.t. θ∗ = argmin
θ

L(θ,w).
(6)

2) Parameters and Weights Updating: In EGAL, it adopts
the widely-used online updating strategy from the meta-learning
literature [35], [36], [39], [40] to update w and θ. To employ
SGD to optimize Eq.(1), in each training iteration, a batch of
labeled samples {(xc

i , y
c
i )}ni=1 and unlabeled samples {xu

i }mi=1

are sampled. Then, consider approximating θ∗ with one gradient
descent step updated value via a first-order Taylor expansion
of the loss function. The updating equation of θ is formulated
as:

θ̂t(w) = θt − α(

n∑
i=1

wi∇θli(θ) |θt +β

m∑
j=1

wj∇θl
u
j (θ) |θt).

(7)
where α is the descent step size. Subsequently, the formulated
model parameters θ̂t are utilized to get the optimal selection of
weights w at step t with the objective function Eq. (5). Here,
similarly, we exploit a first-order Taylor approximation of Eq.
(5) at w = 0:

ŵt+1 = −γ∇wLe(θ̂t(w)) |wt=0 . (8)

It has been proven in [39] that

∇wiL
e(θ̂t(w)) ∝ −∇θL

e(θt)T · ∇θLi(θ
t)

, where the latter term is the inner product of the gradient of the
loss of the reward set and the training loss of training sample xi.
Thus ŵt+1 ∝ ∇θL

e(θt)T ·∇θLi(θ
t), A positive inner product

means the labeled training sample (xi, yi) can also optimize
the loss of reward set, and it should have a positive and large
weight. Otherwise, it would degrade the performance of the
reward set, and the model should not learn from it. Based
on this, we rectify ŵt+1 as non-negative weights to make the
model ignore the tweets with incorrect labels. Then, we can
normalize the weights to realize the objective of maximizing
the performance of the reward set by taking into account both
accuracy and AUC.

w̃t+1
i = max(ŵt+1

i , 0). (9)

wt+1
i =

w̃t+1
i∑n+m

i=1 w̃t+1
i + σ

. (10)

where σ=1 if
∑n+m

i=1 w̃t+1
i = 0, otherwise equals to zero. Then,

the updated weights wt+1 are utilized to optimize the model

Algorithm 1: Bi-level Optimization Procedure of
EGAL
Data: Dc, Du, De, n,m, q, T, β
Result: Model parameters θT

Initialize model parameters θ0;
for t← 0 to T − 1 do
{(xc

i , y
c
i )}ni=1 ← BatchSampler(Dc, n);

{xu
i }mi=1 ← BatchSampler(Du,m);

{(xe
i , y

e
i )}

q
i=1 ← BatchSampler(De, q);

{ŷu} ← Φ(xu, θt);
L(θ;w)←

∑n
i=1 wili(θ) + β

∑m
j=1 wj l

u
j (θ);

w ← 0; Compute θ̂t(w) by Eq. (7);
Update wt+1 by Eq. (8)-(10) ;
Update θt+1 by Eq. (11) ;

end

parameters θ with Eq. (11). The overall bi-level optimization
procedure is summarized in Algorithm 1.

θt+1 = θt−α(
n∑

i=1

wt+1
i ∇θli(θ) |θt +β

m∑
j=1

wt+1
j ∇θl

u
j (θ) |θt).

(11)

IV. EXPERIMENTS

A. Experiment Settings

1) Text Relevance Classification (TRC) Task: This task,
introduced by [14], aims to identify tweets that refer to a
foodborne illness incident. Each tweet in Tweet-FID has a
binary label indicating its relevance to foodborne illness. This
task can help detect potential outbreaks of foodborne diseases
from social media posts.

2) Dataset and Metrics: We utilized the publicly available
Tweet-FID dataset from [14], comprising 1,362 (33%) relevant
and 2,760 (67%) irrelevant tweets for the TRC task. Each tweet
received both an expert label and an aggregated crowdsourced
label. The dataset was divided into a train-validation-test set
based on the expert labels. The training set consists of 1,088
relevant tweets and 2,210 irrelevant tweets. The validation set
includes 137 relevant tweets and 275 irrelevant tweets. The test
set consists of 137 relevant tweets and 275 irrelevant tweets.
The imbalance ratios of the training set, validation set, and
test set are γc = γv = γt ≈ 2. Aggregated crowdsourced
labels identified 1,625 tweets as relevant and 1,673 tweets as
irrelevant. The noise ratio, defined as the difference between
aggregated crowdsourced labels and expert labels divided by
the total number of labels in the training dataset, is 20.29%.

In January 2023, we collected tweets from 2016 to the end
of 2022, using the same domain-specific keywords as in [14],
resulting in a total of approximately 600,000 tweets. We filtered
out tweets with fewer than five tokens and those already present
in the Tweet-FID dataset. Then, we sampled 50,000 tweets as
the unlabeled set used for our experiment. Without associated
labels, the exact imbalance ratio γu of the unlabeled set is



unknown. But, unlike the carefully curated training set, which
is relatively balanced, the unlabeled set is naturally imbalanced,
and γu ≫ 1.

Evaluation Metrics. We use standard accuracy (Accuracy),
F1, and balanced accuracy (bACC) [41] to measure each
method’s performance. bACC works well with imbalanced
datasets when the standard accuracy leads to misleading results.
These three metrics can illustrate a method’s performance from
various perspectives, given an imbalanced class distribution.

3) Baseline Methods: For a fair comparison, we adopt a pre-
trained RoBERTa [42] as the backbone model for all compared
methods. RoBERTa is an improved version of BERT [43]
that removes the next-sentence prediction task and uses larger
learning rates and mini-batches for pre-training. RoBERTa
has achieved state-of-the-art performance on multiple tasks
[42], including the TRC task [14]. We compare EGAL with
following methods:

Fully supervised learning. (Sup. Learning) Sup. Learning
trains a text classification model on the given labeled data
without any special treatment for addressing label noise. This
method also does not use any unlabeled data.

SoftMatch. Softmatch, proposed by [30], is a state-of-
the-art semi-supervised learning method for balanced and
imbalanced classification, assuming the labeled data and
unlabeled data have the same class distribution. It balances
the quality and quantity of pseudo-labels by using a truncated
Gaussian function based on sample confidence. Softmatch also
encourages diverse pseudo-labels using a uniform alignment
approach. It has achieved significant improvements, particularly
in tasks with imbalanced class distributions.

CWSL. This is a weakly-supervised learning method pro-
posed by [38]. It is designed to cope with severe label noise
by assigning small weights to noisy instances. The instance
reweight process is under the guidance of performance on a
clean reward dataset. CWSL adopts robust AUC criteria as
performance measurement on the reward set to conquer the
issue that the label distributions in the training and testing data
are different.

COSINE. This self-training approach [44] fine-tunes a
pre-trained language model using both weakly-labeled and
unlabeled data. COSINE first fine-tunes the pre-trained model
with the weakly-labeled data and then generates pseudo-
labels for the unlabeled data. COSINE applies contrastive
regularization and confidence-based sample reweighting to
enhance model performance and mitigate error propagation
during the self-training procedure.

4) Methodology: For our tweet-fid dataset, we treat expert
labels as ground-truth labels and consider crowdsourced labels
as noisy labels. The expert-labeled reward set De is randomly
derived from the training set Dc with the expert labels ratio λ,
i.e., ∥ De ∥= λ ∥ Dc ∥ and γe ≃ γc. In our experiments, since
the test set in Tweet-FID is small, we combine the validation
and test sets to create a new validation set Dv , which is used
exclusively for evaluation purposes. For those experimental
settings involving expert labels, we create ten different De,
which means selecting different tweets to assign expert labels.

In our experimental study, we utilize the Adam optimizer
[45] with a learning rate of 1× 10−5, β1 of 0.9, β2 of 0.999,
weight decay of 1 × 10−4, and layer decay of 0.75 to train
each neural network model. For EGAL, we set the β value
in Eq. (1) to 1. Each model is trained for a total of 10,000
steps. Throughout the training process, we utilize the separate
expert-labeled validation dataset Dv to evaluate the model’s
performance every 512 steps. We report the average of the
model’s best performance of five random seeds under each
scenario. All experiments are conducted on a server with an
A100-80G GPU. All code is developed with Python 3.9 on
PyTorch 1.12.0.

B. Effect of Expert-labeled Data

Many weakly-supervised learning only leverage weak super-
vision from heuristic rules or crowdsourcing to train a model.
Here, we want to investigate how much improvement can be
made by utilizing a small expert-labeled set in the training
process.

1) Setup: We compare two training set choices for each
method using either (1) using all crowdsourced labels in Dc as
the training labels or (2) merging λ expert labels into Dc. The
specific data settings for each method are shown in Table II.
Here, we run experiments on the two training label choices with
the fixed value of expert labels ratio λ as 10% and measure
their test performance.

2) Results: Table III provides a comparison of different
methods’ performance when the training data includes both
expert labels and crowdsourced labels. It is evident that Soft-
Match, a semi-supervised method that incorporates unlabeled
data, outperforms the supervised learning method that relies
solely on labeled data. However, COSINE, another method
designed for learning with weakly-labeled and unlabeled data,
does not demonstrate any advantage over the supervised
method, likely due to its limitations in handling imbalanced
classification problems and lack of guidance from expert-
labeled data. Methods utilizing a small reward set with expert

TABLE II
LABELED TRAINING SET (Dc), UNLABELED TRAINING SET (Du), AND

EXPERT-LABELED REWARD SET (De) SETTINGS FOR EACH METHOD.
!INDICATES USAGE,%INDICATES NON-USAGE.

Method Expert labels ratio in Dc Du De

Sup. Learning
0% % %

λ % %

SoftMatch
0% ! %

λ ! %

COSINE
0% ! %

λ ! %

CWSL
0% % !

λ % !

EGAL
0% ! !

λ ! !



TABLE III
PERFORMANCE COMPARISON OF ALL METHODS WHEN EXPERT LABELS

ARE NOT IN THE LABELED TRAINING DATASET. *: THE METHOD UTILIZES
THE UNLABELED TRAINING SET. # : THE METHOD UTILIZES

EXPERT-LABELED REWARD SET.

Method F1 Accuracy bACC
Sup. Learning 0.796 ± 0.006 0.838 ± 0.008 0.866 ± 0.003

Softmatch* 0.798 ± 0.008 0.841 ± 0.006 0.866 ± 0.007
COSINE* 0.778 ± 0.009 0.826 ± 0.009 0.849 ± 0.007
CWSL# 0.804 ± 0.005 0.847 ± 0.003 0.873 ± 0.005
EGAL*# 0.817 ± 0.006 0.863 ± 0.004 0.879 ± 0.005

labels show superior performance compared to the supervised
learning method. Notably, our method EGAL achieves the most
promising results by effectively leveraging both unlabeled data
and the reward set.

TABLE IV
PERFORMANCE COMPARISON OF ALL METHODS WHEN EXPERT LABELS

ARE NOT IN THE LABELED TRAINING DATASET.

Method F1 Accuracy bACC
Sup. Learning 0.789 ± 0.007 0.828 ± 0.009 0.862 ± 0.005

Softmatch* 0.797 ± 0.004 0.837 ± 0.003 0.862 ± 0.006
COSINE* 0.767 ± 0.011 0.811 ± 0.014 0.843 ± 0.008
CWSL# 0.798 ± 0.005 0.839 ± 0.007 0.870 ± 0.003
EGAL*# 0.813 ± 0.009 0.856 ± 0.009 0.879 ± 0.006

In Table IV, we present the results obtained when the training
data lacks expert labels. It is important to note that all methods
perform worse compared to their counterparts in Table III,
highlighting the negative influence of label noise. However,
even in this scenario, SoftMatch outperforms the supervised
method. Additionally, methods that leverage the small expert-
labeled reward set demonstrate superior performance compared
to the supervised learning method. Once again, our method
EGAL maintains its position as the top-performing approach
among all methods. These results demonstrate the effectiveness
of utilizing an expert-labeled set in the training.

C. Effect of Expert-labeled Data Ratio

In this experiment, we investigate how the number of expert
labels affects performance. The ideal method should be label-
efficient, improving the performance a lot with a small number
of expert labels.

1) Setup: Specifically, we vary the expert labels ratio λ
from 10% to 50% and create five different expert-labeled sets
with each imbalance ratio value. We repeat the experiments of
5 random seeds and report the average performance on each
dataset.

2) Results: As illustrated in Figure 3, the performance
of all methods improves with an increase in the number of
expert labels. EGAL consistently outperforms other methods,
regardless of the expert label ratio λ. Notably, even with only
10% expert labels, EGAL outperforms other methods using
50% expert labels, highlighting its label-efficiency. The weakly

supervised learning method COSINE achieves comparable
accuracy with 50% expert labels. However, its F1 score and
balanced accuracy (bACC) are consistently lower than other
methods, indicating limitations in handling scenarios with
varying class distributions between weakly-labeled samples
and unlabeled data.

D. Effect of Imbalance Ratio

The imbalance ratio γ of the Tweet-FID dataset is 2,
which means the dataset is rather balanced. However, in a
more realistic scenario, the class labels could be extremely
imbalanced, i.e., the number of food poisoning relevant tweets
is much smaller than the number of irrelevant ones. In this
experiment, we investigate the robustness of all methods under
different imbalanced ratios.

1) Setup: Except for the experiments with the original
dataset (γ = 2), datasets with other imbalance ratios were
created by reducing the number of relevant tweets according
to the function N+ = N−/γ. It’s important to note that the
imbalanced datasets are created based on the true class labels.
We conducted experiments across different imbalance ratios
(γ ∈ {2, 5, 10, 50}) while maintaining a fixed expert labels
ratio of 10%.

TABLE V
PERFORMANCE UNDER DIFFERENT IMBALANCE RATIOS.

Imb.ratio Method F1 Accuracy bACC

2

Sup. Learning 0.796 ± 0.006 0.838 ± 0.008 0.866 ± 0.003
Softmatch 0.798 ± 0.008 0.841 ± 0.006 0.866 ± 0.007
COSINE 0.778 ± 0.009 0.826 ± 0.009 0.849 ± 0.007
CWSL 0.804 ± 0.005 0.847 ± 0.003 0.873 ± 0.005
EGAL 0.817 ± 0.006 0.863 ± 0.004 0.879 ± 0.005

5

Sup. Learning 0.779 ± 0.003 0.840 ± 0.005 0.854 ± 0.002
Softmatch 0.791 ± 0.004 0.837 ± 0.004 0.861 ± 0.004
COSINE 0.765 ± 0.002 0.826 ± 0.007 0.836 ± 0.004
CWSL 0.795 ± 0.011 0.839 ± 0.012 0.865 ± 0.007
EGAL 0.808 ± 0.008 0.861 ± 0.006 0.867 ± 0.007

10

Sup. Learning 0.788 ± 0.012 0.838 ± 0.008 0.856 ± 0.009
Softmatch 0.778 ± 0.012 0.825 ± 0.007 0.849 ± 0.013
COSINE 0.763 ± 0.010 0.823 ± 0.006 0.834 ± 0.009
CWSL 0.790 ± 0.018 0.838 ± 0.017 0.859 ± 0.015
EGAL 0.803 ± 0.006 0.852 ± 0.007 0.866 ± 0.005

50

Sup. Learning 0.769 ± 0.006 0.821 ± 0.007 0.841 ± 0.003
Softmatch 0.767 ± 0.012 0.819 ± 0.010 0.835 ± 0.006
COSINE 0.746 ± 0.010 0.814 ± 0.003 0.823 ± 0.008
CWSL 0.783 ± 0.015 0.834 ± 0.013 0.852 ± 0.011
EGAL 0.792 ± 0.006 0.844 ± 0.006 0.859 ± 0.006

2) Results: Table V provides a comparative view of how
different methods perform across various imbalance ratios.
Sup.Learning, Softmatch, and COSINE exhibit progressively
lower performance as the imbalance ratio increases, particu-
larly in terms of balanced accuracy and F1, indicating their
limitations in handling imbalanced datasets. CSWL is primarily
designed to mitigate the effects of class imbalance; however,
this advantage is not evident in relatively balanced datasets.
EGAL’s performance remains stable and competitive across
different levels of class imbalance. This consistency highlights



Fig. 3. Performance of methods across different expert label ratios.

its robustness and makes it a reliable choice for handling
datasets with unreliable labels and unlabeled data in real-world
scenarios.

V. CASE STUDY

A. Predictions Analysis

We conducted an inspection of both correct and incorrect
predictions made by the model trained on the dataset with an
imbalance ratio of γ = 5 to gain a better understanding of its
behavior. Table VI presents examples of correct and incorrect
predictions. The first eight rows showcase tweets with correct
predictions. While these tweets contain keywords like ’food
poisoning’ and ’stomach,’ the model successfully captures
the complicated semantic relationships within the tweets,
resulting in accurate predictions. However, it occasionally
struggles with more challenging tweets, leading to some
incorrect predictions. Most of these incorrect predictions fall
into the category of false positives. We found the model has
difficulty in understanding some figurative expressions. For
instance, the tweet in row 10 uses the term "economic food
poisoning", which is a metaphorical use of "food poisoning".
This terminology misleads the model to incorrectly classify
the tweet as a foodborne illness incident. For the tweets in
rows 10 and 11, the users express uncertainty about their
situations, making it harder for the model to make the decisions.
The last tweet is indeed about food poisoning but does
not describe a personal experience. The model struggles to
distinguish between personal experiences and other relevant
content effectively.

B. Preliminary Comparison

The final goal is to identify foodborne illness cases and
try to detect the early signal of the outbreak. Here, we
take one outbreak as an example and conduct a preliminary
analysis. In 2021, the CDC and FDA investigated a Salmonella
Typhimurium outbreak [46], linking it to BrightFarms brand
packaged salad greens in four states. Officially, 31 cases
were reported, but the actual number is likely higher due
to underreporting and mild cases not seeking medical care [46].
Using our trained model with EGAL, we identified tweets
potentially related to this outbreak. Following the approach
in [14], we collected geotagged tweets from 2021, filtering

out non-U.S. locations. Our trained model predicted relevant
foodborne illness tweets mentioning keywords like "salad" and
"greens".
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Fig. 4. Trend plot of weekly reported cases of Salmonella outbreak from
prepackaged salads (red curve), tweets mentioning foodborne illness with the
words ’salad’ or ’greens’ (light blue curve), and the 4-week moving average
of tweets (yellow curve).

Figure 4 presents the weekly count of relevant tweets
throughout 2021 (represented by the light blue curve) and its
corresponding moving average (displayed as the yellow curve,
with a sampling width of 4). The figure also includes the weekly
number of reported cases recorded by the CDC 2 (indicated
by the red curve). Notably, during the period from May to
August 2021, there was a noticeable increase in the number
of tweets referencing foodborne illness and containing the
specified keywords. The reported cases of illness commenced
between June 10, 2021, and August 18, 2021. However, it
is important to acknowledge that the actual outbreak might
have started prior to the first reported case and could have
persisted beyond the detection of the last reported case. The
tweets captured by EGAL offer insights into the trend of this

2Data source: https://www.cdc.gov/salmonella/typhimurium-07-21/epi.html

https://www.cdc.gov/salmonella/typhimurium-07-21/epi.html


TABLE VI
EXAMPLES OF MODEL PREDICTIONS.!: CORRECT PREDICTION.#: INCORRECT PREDICTION

Tweet Prediction

1 @USER awwww thank you for caring but I know for a fact that it’s not food poisoning or the flu :) I know how both those feel. 0 !

2 This is a stressful enough weekend as it is and then Sunday comes and it’s #LIVMUN. No game knots my stomach like it 0 !

3
@USER @USER What a decade to be alive! Great designing decisions lead this game to the top! Like for a example make food
poisoning worse and more common because of the filth on the floor. How players should overcome this without doormats or
cleaning robots you ask? Don’t build any floors!

0 !

4 i just drank so much water and now my stomach hurts coz the only way i know to drink water is to chug it all 0 !

5 I got food poisoning off an Italian dessert. I’ve a good mind to tiramisu that company. 1 !

6 I’ve spent the last few days with probably the worst case of food poisoning I’ve had in my life. I think that’s the last time I eat
food my housemates cook. 1 !

7 @USER I like cheese too but I have food poisoning today, I do not like food poisoning [EMOJI_nauseated_face] 1 !

8 I feel absolutely terrible. First I get food poisoning, and I guess I was catching a cold?? I’ve been sneezing and congested all day.
Someone send cold medicine and tea 1 !

9 Robinhood gave economic food poisoning to its user base today, people generally don’t come back after that, reviews and ratings
aside. Next functioning market day for them will likely see redemption Seppuku. #robinhoodapp 1 #

10 That sandwich I made that I just ate is going to give me food poisoning I think : 1 #

11 I think I just had a bad experience with Great Steak[EMOJI_beaming_face_with_smiling_eyes].Or maybe I just ate too fast, I’ll let
y’all know in 23 hrs if I got food poison [EMOJI_skull] 1 #

12 @USER A little disappointed that you cropped out the riveting news about Panda Express. #foodpoisoning 1 #

outbreak. This highlights the potential of our method, EGAL, in
detecting early signals of possible foodborne illness outbreaks.

VI. DISCUSSION

In our work with social media data, we believe there are
no glaring ethical consequences related to applying AI-based
techniques for food safety surveillance. Even though tweets
we accessed were are public data, we opted to obfuscate any
mentions of users and URL links to @USER and HTTPURL,
respectively, to reduce reference to specific tweeter users.

We note that, unfortunately, X (formerly known as Twitter)
suspended academic research access to its API in March 2023.
As a result, we are no longer able to maintain our developed
surveillance system, at least as related to Twitter as a data
source [47]. Nevertheless, we set out in this research to design a
new model to uncover patterns in foodborne illness outbreaks by
analyzing the historical social media data previously collected.
This makes the assumption that as other social media platforms
increasingly replace X, we will be able to redeploy our tool to
these alternate sources with people’s social interactions online
continuing to be available for surveillance.

Additionally, we can leverage EGAL to develop new models
using alternative sources of information, benefiting the public
by providing early warnings about foodborne illness out-
breaks—potentially saving lives and livelihoods. In general, this
work contributes to the rapidly accelerating field of detecting
disease spread through social media data.

VII. CONCLUSION

In this study, we introduce EGAL, a practical solution for
detecting foodborne illnesses by leveraging a combination of
crowdsourced-labeled, large labeled, and small expert-labeled

tweet data sets. EGAL incorporates a reward set of expert-
labeled tweets to assign weights to the training set, aiming to
achieve a more balanced class distribution. Incorrectly labeled
tweets are assigned zero weights to mitigate their negative
influence, while correctly labeled tweets receive appropriate
weights. This approach effectively improves the performance
of the detection process. Through extensive experiments, we
demonstrate the superior performance of EGAL compared
to strong state-of-the-art models across various scenarios,
including different sizes of the expert-labeled set and class
imbalance ratios.

We also conduct a case study focusing on a multistate
outbreak of Salmonella Typhimurium infection associated
with packaged salad greens. Our method successfully captures
relevant tweets that provide valuable insights into the outbreak
trend.
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