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Abstract—Brain network discovery aims to find nodes and
edges from the spatio-temporal signals obtained by neuroimaging
data, such as fMRI scans of human brains. Existing methods tend
to derive representative or average brain networks, assuming
observed signals are generated by only a single brain activity
state. However, the human brain usually involves multiple activity
states, which jointly determine the brain activities. The brain
regions and their connectivity usually exhibit intricate patterns
that are difficult to capture with only a single-state network.
Recent studies find that brain parcellation and connectivity
change according to the brain activity state. We refer to such
brain networks as multi-state, and this mixture can help us
understand human behavior. Thus, compared to a single-state
network, a multi-state network can prevent us from losing
crucial information of cognitive brain network. To achieve this,
we propose a new model called MNGL (Multi-state Network
Graphical Lasso), which successfully models multi-state brain
networks by combining CGL (coherent graphical lasso) with
GMM (Gaussian Mixture Model). Using both synthetic and real
world ADHD-200 fMRI datasets, we demonstrate that MNGL
outperforms recent state-of-the-art alternatives by discovering
more explanatory and realistic results.

Index Terms—brain networks, edge detection, graphical lasso,
mixture model

I. INTRODUCTION

Motivation. Brain network discovery [1, 2, 3] is one of the
most pervasive paradigms in neuroscience and involves two
main tasks: brain parcellation and edge detection. In brain net-
works, nodes represent brain regions, and edges represent the
functional/structural connections between regions. In general,
brain networks are modeled by first finding nodes that contain
coherently-functioning brain regions (i.e., performing brain
parcellation), then identifying edges between these nodes
according to an observed sequence of brain activity (i.e., edge
detection). Precise discovery of these networks cultivates a
more refined model of the human brain. Such models become
instrumental in diagnosing brain disorders [4] and analyze
brain functions [5]. Furthermore, recent studies [6, 7, 8] have
found that the difference in brain activity states can infer to
distinct brain parcellations and connectivity patterns. Thus,
an effective brain network discovery methodology must be
adaptive, adjusting to the dynamism of the brain’s activity

Fig. 1: The problem of multi-state brain network discovery.
Brain activities over time may derive from the mixture of
multiple brain states (e.g., different brain states appear during
different scenes of a movie). Without knowledge of mix-
ture state assignment, our goal is to discover the multiple
underlying brain network states, allowing for differing brain
parcellation and connectivity.

state. This temporal adaptability (i.e., state-based adjustment)
in brain parcellation and connectivity becomes pivotal in un-
derstanding human brain networks. Ultimately, characterizing
this mixture functional structure of brain parcellation and
functional connectivity, as shown in Figure 1, leads to a better
understanding of brain function and human behavior.

Knowledge Gap. Formally, the brain network discovery
problem is anchored on inferring a set of functionally homo-
geneous brain regions as the network nodes and the mapping
of their connectivity as network edges, all based on a series
of brain scans taken over time. While there are some recent
solutions [10, 13, 11] can address the problem, they often
ignore the flexibility of functional network configurations.
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(a) Naive Bayes [9] and Brain Network Discovery Model [10, 11]
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(b) PLSA[12] and Multi-State Brain Network Discovery Model (ours)

Fig. 2: Two pairs of comparison: (a) naive bayes model and traditional brain network discovery model, (b) PLSA and our model
in this paper. In each generative process, the boxes are ”plates” representing replicates. The outer plate represents document in
naive bayes and PLSA, or observation subject in brain network study, while the inner plate represents the generative process
of word (W) in a given document or brain scan (B) in a given subject, each of which word or brain scan is associated with a
choice of topic (T) or state (S). π is the topic or state distribution. N denotes the number of words or scans.

They assume that the brain is always in a single activity
state, implying that signals extracted from different regions
of the brain at different times are members of the same
network—a notion refuted by recent studies [6]. Additionally,
some studies [14] have focused on obtaining parcellation by
mapping the brain onto an atlas by image registration [15, 16].
The choice of atlas can influence the derived parcellation
and generate distinct activity states. However, in the context
of uncertainty in mixture state assignment, identifying the
appropriate atlases across time presents a significant challenge.
Thus, this paper investigates the problem of multi-state brain
network discovery, as shown in Figure 1. The goal is to
design methods in brain network discovery to capture multiple
underlying brain network states, allowing for differing brain
parcellation and connectivity.

Challenges. To incorporate the concept of multiple states
into brain network discovery, our main challenges are:

• Brain Network discovery: Edge detection in functional
brain network discovery focuses on direct links between
the network nodes. However, the raw fMRI data usually
do not contain background knowledge of node segmenta-
tion. Thus brain network discovery is the first challenge
we face. Brain network discovery traditionally aims to
use a cohesive model for inferring brain parcellation
and edge detection at the same time [13]. However, the
brain network may have different brain parcellations in
different states and it is impractical to handle networks
of each state with uniform node segmentation. Some
recent brain network discovery methods [10, 13, 11] can
handle learning both nodes and edges, though each has

its clear limitations. [11] aims to infer brain parcellation
with spatial continuity constraint for the sake of inter-
pretability, but it fails to distinguish the direct connections
and indirect connections among the network nodes. [10]
considers the brain network discovery problem as a
coherent one, they apply two separate objective functions
for two sub-tasks respectively, and update each other
alternatively in the same framework. [13] suggests CGL
(Coherent Graphical Lasso) deals with coherent brain
network discovery, which combines the ideas of orthog-
onal non-negative matrix factorization with Graphical
Lasso. However, this method can not solve the multi-
state network in Figure 1 due to the lack of information
about state assignment.

• Mixture of multiple brain networks: Some recent works
[17, 18] have applied mixture models such as JGL (Joint
Graphical Lasso) and MGL (Mixture Graphical Lasso)
to brain network analysis. However, they all need brain
parcellation to be given first. Thus, combining the existing
Gaussian mixture model with a brain network discovery
method remains unsolved.

• Dependence between brain activity states and brain net-
work: Variations in brain activity states influence network
estimations. Alterations of state assignments subsequently
change the outcomes of corresponding network updates.
Given this interdependency, pipeline methodologies that
combine baseline techniques like CGL [13] and ON-
MtF [11] are inappropriate for multi-state brain network
discovery. Because the pipeline frameworks apply the
methods for brain parcellation and edge detection sepa-
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rately, such approaches lead to estimation inconsistency.
Proposed Method. To tackle the above challenges, we

propose a new model, named MNGL , for multi-state brain
network discovery, which jointly achieves brain parcellation
and edge detection.

We leverage the idea of Probabilistic Latent Semantic Anal-
ysis (PLSA) [12], which was originally proposed to adopt a
mixture model for natural language. PLSA assumes a given
document is a mixture of topics, and the document was
generated according to a probabilistic model with latent topics.
Inspired by this, first, we view brain scans as mixtures of
latent states, where each state S is characterized by a Gaussian
distribution with its own covariance matrix ΣS. Each ΣS
corresponds to a specific brain parcellation and connectivity
between nodes. Therefore, in the generation of each brain scan,
our model chooses a state S based on the mode distribution
π (similar to how PLSA chooses a topic), and then generates
a brain scan Bi ∼ Multinomial(0,ΣS) (as PLSA generates a
word based on the topic chosen). Our model MNGL follows
the basic idea of PLSA. By contrast, traditional brain network
discovery models [11, 13] assume all brain scans are produced
by a single state, which is characterized by a unified zero-mean
Σ-covariance multivariate Gaussian distribution. Thus, they are
analogous to naive bayes model [9]. Figure 2 illustrates these
two pairs of comparison. To model this multi-state network,
we combine CGL with GMM in a unified objective function
to deal with multi-state networks. Compared to other mixture
models [17, 18], our model only needs original brain data (a
series of brain scans) as input without any prior knowledge
related to nodes or their connectivity or assignments of each
brain states, and outputs multiple brain networks that include
both brain parcellation and connectivity structures.

Contributions. The contributions of this work are:
• We describe the open multi-state brain network discovery

problem, which is to find the underlying network structure
of hybrid cognitive brain states from a series of brain
scans.

• We propose the first solution to this open problem,
leveraging recent successes of Gaussian Mixture Models
and the Coherent Graphical Lasso.

• We demonstrate that our model outperforms recent state-
of-the-art alternatives by discovering more accurate and
realistic results on both synthetic and real fMRI datasets.

II. PRELIMINARY

We begin by introducing some basic models to deal with
brain parcellation, edge detection, and mixture modelling.

Brain Parcellation. Let X = (x1, ...,xn) ∈ Rp×n be
the observations of a p-variate Gaussian distribution where
p denotes the number of variables and n is the number of
observations. Then, we let Σ be the covariance matrix of the
n samples. The Non-negative Matrix Factorization (NMF) can
then be used to factorize Σ into two non-negative matrices:

Σ ≈ FG⊤, (1)

where F = (f1, ..., fk) ∈ Rp×k and G = (g1, ...,gk) ∈ Rp×k,
and k is a pre-specified number of nodes to discover. For
network discovery, our target is an absolute covariance matrix
Σ. So Σ is a systematic analysis matrix and F is equal
to G, which we henceforth refer to F and G as H. We
can then extend the NMF model to weighted orthogonal
non-negative factorization, or ONMtF [19], after which the
objective function becomes:

min
H⩾0,HHT=I

||Σ−HSH⊤||2. (2)

By adding non-negativity and orthogonality constraints, the
model is equivalent to k-means clustering and the Laplacian-
based spectral clustering [20].

Edge Detection. As in [21], directed links among the
network nodes can be discovered by minimizing the following
objective:

min
Θ≻0

(− log detΘ+ tr(SΘ) + λ||Θ||1) , (3)

where S = 1
nXXT is the empirical covariance matrix, Θ

is the precision matrix which is the inverse of the systematic
covariance matrix Σ, ℓ1 regularization is used to force sparsity,
and λ is the parameter to control the sparseness of Θ. The edge
eij between xi and xj exists if and only if θij ̸= 0, where θij
is the (i, j)-element of Θ. We prefer Θ rather than matrix S in
ONMtF, due to the power of sparse gaussian graphic models
on large-scale datasets.

Coherent Graphical Lasso. The Coherent Graphical Lasso
(CGL) achieves the two sub-tasks of Brain Network Discovery
(node discovery and edge detection) simultaneously [13]. CGL
is a special graphical lasso with an orthogonal non-negative
matrix factorization, as shown in Equation 4:

min
H,Θ⋆

− log detΘ⋆ + tr(H⊤SHΘ⋆) + λ||Θ⋆||1,

s.t. Θ⋆ ≻ 0,H ⩾ 0,HH⊤ = I
(4)

where S is the empirical covariance matrix, p is the number
of features, k is the number of nodes, Θ⋆ is the inverse of
the k × k absolute inter-node covariance matrix, and H is a
p× k cluster indicator matrix. However it can not be applied
to the problem of the multi-state network discovery directly
as it requires prior knowledge of state assignments.

Mixture Model. An attractive and powerful model for
multi-state problems is the Gaussian Mixture Model (GMM),
where each base distribution in the mixture is a Multivariate
Gaussian (MVG) with mean µk and covariance matrix Σk.
The probability of data sample xi is then

p(xi|θ) =
K∑

k=1

ϕkN (xi|µk,Σk), (5)

where θ is the model parameters, ϕk is the prior probability
of the k-th distribution chosen to generate a sample and∑K

k=1 ϕk = 1. Next subsection, we introduce a novel model
that extends CGL into the framework of a Gaussian Mixture
Model, thereby solving the multi-state brain network discovery
problem.
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TABLE I: Important Notations.

Symbol Definition
m The number of gaussian distributions

X ∈ Rn×p n observations of p-variate Gaussian distribution
Hj ∈ Rp×k The clustering indicator matrix and 0 ≤ j ≤ m
Y ∈ Rn×k n the projection of X along H matrix
Σj ∈ Rp×p The covariance of p-variate Gaussian distribution

Σ⋆
j ∈ Rk×k The projection of Σ along H matrix

Θj ∈ Rp×p The true precision matrix of all variables
Θ⋆

j ∈ Rk×k The true precision matrix of all nodes
Θ̂j ∈ Rp×p The estimate of true precision matrix of all variables Θ

Θ̂⋆
j ∈ Rk×k The estimate of true precision matrix of all nodes Θ⋆

ϕj The prior probability of the j-th base distribution chosen to generate a sample
γij The posterior probability of the i-th observation generated by the j-th distribution

III. METHODOLOGY

Multi-State Network Graphical Lasso. In this work,
we propose the first method for Multi-State Brain Network
Discovery, which we refer to as the Multi-State Network
Graphical Lasso, or MNGL. Firstly, following the idea of [13],
we map the original variable space X into a new feature space
Y similarly on the covariance matrix Σ:

X← Y = H⊤X,

Σ← Σ⋆ = H⊤ΣH,
(6)

where Y denotes the new k-dimensional feature space where
each feature represents node, Σ⋆ represents the inter-node
covariance matrix, and H represents a cluster indicator matrix.
Σ⋆ thus measures the association between each node yi [13].

For the rest of this section, we describe our proposed model
in terms of yi instead of xi. k is the index of nodes, j is
the index of distributions, i is the index of samples. µ⋆

j and
Σ⋆

j represent the parameters of mean vector and covariance
matrix corresponding to the j-th mixture gaussian distribution
of Y, respectively. Then, Θ⋆

j represents the inverse matrix of
covariance matrix Σ⋆

j . More special notations are collected in
Table I.

According to the notation above, given the number of base
distributions m and the number of node k, we assume the
observed sample of target feature space can be mapped into a
new feature space (nodes), which also follows a mixture of the
k gaussian distributions. The sample size is given as n. Thus,
the joint probability of these nodes Y = (y⊤

1 , · · · ,y⊤
n ) ∈

Rn×k is given by

p(Y|{Θ⋆
j}, {µ⋆

j}, {ϕj}) =
n∏

i=1

m∑
j=1

ϕjN (yi|µ⋆
j ,Σ

⋆
j ).

By assuming µ⋆
j = 0 without losing generality, the negative

log likelihood (NLL) in terms of {Θ⋆
k} is given by,

NLL(θ) = −
n∑

i=1

log
( m∑

j=1

ϕjN (yi|0, (Θ⋆
j )

−1)
)
, (7)

where θ = {ϕ1, · · · , ϕm,Θ⋆
1, · · · ,Θ⋆

m} is the model param-
eters.

Latent States. In order to solve the Equation 7, we follow
the idea of Jensen inequality and build a latent variable in the
sum term of each expression in log. Since there are m separate

latent distributions, each data sample of the corresponding
node yi could come from one of the K distributions. We
therefore construct a latent variable Q(zij) which we constrain
such that

∑m
j=1 Q(zij) = 1. Then, the NLL function can be

rewritten as follows:

NLL(θ) = −
n∑

i=1

log

m∑
j=1

(Q(zij)p
(
yi|Θ⋆

j , ϕj

)
Q(zij)

)
(8)

= −
n∑

i=1

log

m∑
j=1

(p(yi, zij |Θ⋆
k, ϕj

)
Q(zij)

)
. (9)

We next prove that this can be treated as the posterior proba-
bility of the i-th observation generated by the j-th distribution.

According to the Jensen inequality, the expression in the
Equation 8 can be rewritten for the EM algorithm to optimize
the function, which can be split into expectation and maxi-
mization steps, respectively.

Expectation. First, according to the Jensen inequality, we
know that when the optimal function is convex,

f(E(x)) ⩽ E(f(x)). (10)

Because NLL is convex, and
∑m

j=1

(
p
(
yi,zij |Θ⋆

j ,ϕj

)
Q(zij)

)
can be

treated as the expectation of p
(
yi, zij |Θ⋆

j , ϕj

)
. So we apply

Jensen inequality here to find a lower bound:

NLL(θ) ⩽ −
n∑

i=1

m∑
j=1

Q(zij) log(p
(
yi, zij |Θ⋆

j , ϕj

)
). (11)

These terms are only equal when

p(yi, zij)

Q(zij)
= C, (12)

where C is a constant. So, we simply have:
m∑
j=1

p(yi, zij) = C

m∑
j=1

Q(zij) = C, (13)

Q(zij) =
p(yi, zij)∑m
j=1 p(yi, zij)

= rij . (14)

The equation of NLL(θ) is correct only when the constraint of
Q(zij) is true. Thus we can conclude that the latent variable
is the posterior probability of the i-th observation generated
by the j-th distribution. Therefore, we can compute each rij
based on the initialization or update results of Θ⋆

j and ϕj .
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Maximization. Given the r
(t)
ij from the Expectation step,

we update ϕ̂j , Ĥj and Θ̂⋆
j , respectively. First, we update ϕ̂j

based as follows:

ϕ̂
(t)
j =

1

n

n∑
i=1

r
(t)
ij . (15)

The remaining problem is to find the optimal estimations of
Hj and Θ⋆

j that maximizes the expectation we obtain in the
E step. Through a simple proof, it is equivalent to minimize
the following function:

min

n∑
i=1

m∑
j=1

−r(t)ij

(
log|Θ⋆

j | − x⊤
i HjΘ

⋆
jH

⊤
j xi

)
,

s.t. Θ⋆ ≻ 0,H ⩾ 0,HH⊤ = I.

(16)

Intuitively, the problem above is equivalent to m separate
conventional graphical lasso sub-problems weighted by r

(t)
ij

where each sub-problem has the form of

min− log |Θ⋆
j |+ tr(X̃⊤

j HjΘ
⋆
jH

⊤
j X̃j),

s.t. Θ⋆
j ≻ 0,Hj ⩾ 0,HjH

⊤
j = I,

(17)

where X̃j = (
√
r1j/sjx

⊤
1 , · · · ,

√
rnj/sjx

⊤
n ), rij =

(r1j , · · · , rnj)⊤ and sj =
∑n

i=1 rij . Then we bring in the ℓ1
regularization λ||Θ⋆

j ||1 to obtain the final objective function
for the Maximization step.

This problem is not convex w.r.t. {Θ⋆
j}, but we could

solve it alternatively for each Θ⋆
j by regarding other Θ⋆

j′ ̸=j

fixed. Each sub-problem of Θ⋆
j is exactly in the form of

Equation 17 plus the ℓ1 regularization terms. Thus the es-
timation of Θ⋆

j could be solved by any existing method
for solving Graphical Lasso without significant modifications.
To estimate Hj we follow the algorithm similar to NMF,
using Karush–Kuhn–Tucker (KKT) complementary slackness
conditions to enforce the non-negativity and orthogonality con-
straints, then solving the estimation of Hj by the multiplicative
update rule. Thus, we have:

(Ĥ
(t+1)
j )ls =

(
Ĥ

(t)
j

)
ls

(
X̃jX̃

⊤
j Ĥ

(t)
j Θ̂⋆−

j + Ĥ
(t)
j λ−

1

X̃jX̃⊤
j Ĥ

(t)
j Θ̂⋆+

j + Ĥ
(t)
j λ+

1

)
ls

.

(18)
Here λ1 is k × k Lagrangian multip matrices following the
non-negativity constraint and its compact expression follows
as below:

λ1 = −Ĥ⊤
j X̃jX̃

⊤
j ĤjΘ̂

⋆
j . (19)

To make sure each part is non-negative, We divide the λ1 and
Θ̂⋆ into two parts, respectively:

λ1 = λ+
1 − λ−

1 ,

λ+
1 =

(|λ1|+ λ1)

2
,

λ−
1 =

(|λ1| − λ1)

2
.

(20)

The same is true on the Θ̂⋆
j . Thus we can make sure the sign

of numerator and denominator are all positive, abiding by the
non-negative constraint of Hj .

Algorithm 1 Algorithm for MNGL

Require: i: X: The observations of D-variate Gaussian dis-
tribution

ii: m: the number of Gaussian distributions
iii: k: the number of nodes (groups)
iv: λ1: the Lagrangian multiplier of the ℓ1 regular-

ization in graphical lasso
v: itermax: the maximum number of iteration
Output: Θ̂⋆

j , Ĥj and ϕ̂j

1: Initialization: initialize ˆϕ(0)
(0)

j , Θ̂⋆(0)
j ,Ĥ(0)

j and r
(0)
ij

2: repeat
3: E step: Update the latent variable r

(t)
ij with given

ϕ̂
(t−1)
j , Θ̂⋆(t−1)

j and Ĥ
(t−1)
j

4: M step: Update ϕ̂
(t)
j , Θ̂⋆(t)

j and Ĥ
(t)
j with r

(t)
ij

5: until iter = itermax or convergence

In each iteration of the Maximization step, the alternating
optimization repeats until all estimated Θ̂⋆

j , Ĥj and ϕ̂j become
stable or reaches the maximal number of iterations. The final
solutions to Equation 17 and the updated {ϕ̂j} are obtained
using Equation 15 are used in the upcoming iteration of
Expectation step to update the responsibility weights {rij}.
This looping of Expecation and Maximization repeats until
the loss function converges. The MNGL algorithm is also
summarized in Algorithm 1.

Initialization. As shown in Algorithm 1, we need to provide
starting values for each estimator. The following scheme
we found empirically works well in our experiments. For
each observation i = 1, . . . , n, we distribute the observation
randomly a class j ∈ {1, . . . ,m}. Then we assign a weight
r̂ij = 0.9 for this observation i and distribution k and
r̂ij = 0.1

m−1 for all other distributions. In the Maximization
step, we update Θ̂⋆

j from the initial values Θ̂
⋆(0)
j computed

by CGL based on the whole samples and ϕ̂j from the initial
values ϕ̂k = 1

m . Then for Ĥj , according to the Equation 18,
we note that if (Ĥ

(t+1)
j )ls = 0 in one iteration, it will never

jump out from this local solution. Thus, our experiments we
initialize Ĥ

(0)
j by performing k-means clustering then setting

Ĥ
(0)
j ← Ĥ

(0)
j + 0.2.

IV. EMPIRICAL STUDY

We begin by evaluating our method using synthetic data
where we have access to the ground truth brain states. To
comprehensively evaluate the proposed model, we conduct
experiments to answer the following research questions:

• RQ 1: How does sample size affect MNGL’s performance
relative to state-of-the-art alternatives?

• RQ 2: How robust is MNGL to the presence of noise
compared to other recent models?

• RQ 3: How do hyper-parameters in comparative experi-
ments impact each model’s performance?

• RQ 4: How does the number of nodes affect each com-
pared model?
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A. Experiment Setup

1) Synthetic Data with Ground-Truth: We evaluate the
performance of our model on synthetic data, where the ground-
truth is known. The first step of generating these synthetic
data is to build a mixture Gaussian distribution of network
structure. By following the approach of [13] in generating
a single network, we generate m different block-diagonal
matrix Θj and Hj firstly. We refer to each diagonal block
as the node in real-case. For each Θj , we give random sparity
structures for each block ΘGi,Gj

. In this paper, we design each
diagonal block ΘGi,Gi

in one Θj with different scale. Thus by
adjusting scale of diagonal blocks in different matrix Θj , we
can make different network have different node parcelation. To
simulate the connectivity of variables among diagonal and off-
diagonal blocks, we control the connectivity of each variables
on diagonal block with a high density, then giving a low
density to each off-diagonal block. Following the above steps,
we generate several different Θj and Hj . Then each Θ⋆

j can
be derived from H⊤

j ΘjHj .
Given Θj , we can thus obtain Σj , which is the inverse

of Θj . Due to the assumption of the independence of each
Gaussian distribution, we obtain the covariance matrix Σ of
the mixture Gaussian distribution. Then we generate n samples
randomly from the mixture Gaussian distribution.

2) Compared methods: To demonstrate the effectiveness
of our proposed method, we test against several state-of-art
methods coherent brain network discovery methods:

• CGL [13]: CGL aims to achieve node discovery and
directed edge detection at the same time. Meanwhile, it
can distinguish direct links from indirect connections due
to its solid probabilistic formulation.

• ONMtF [11]: ONMtF also aims to complete node dis-
covery and edge detection at the same time. However,
it focuses on explaining the spatial continuity of results.
We only apply it on the task of nodes discovery, due to
its inability of directed edge discovery.

• k-means + CGL: This pipeline method is more appro-
priate than CGL for the problem defined in this paper.
We first employ k-means to assign each xi to different
nodes, then using CGLasso for each group to obtain the
final Θ̂⋆

j and Ĥj .
• k-means + OMNtF: This is also a pipeline method that

first splits the whole sample of xi into different nodes
by using k-means, then using ONMtF on each node to
obtain each Θ̂⋆

j and Ĥj .
• k-means + JGL [17]: A Joint Graphical Model is pro-

posed in [17], which aims to discover a mixture Gaussian
distribution. However, it applies to the level of nodes. We
therefore employ k-means to map xi into the node space
of yi first.

3) Experiment Setting: We simulate four scenarios by
changing one parameter and keeping the others fixed. Each
scenario aims to study one of aforementioned research ques-
tions (RQ). In these situations, we select sample size n, the

standard error of noise σ, the variables number p of xi, and
the group number k as the controlled parameters.

• Scenario 1: We fix p = 70 (the number of variables),
σ = 0 (the standard error of noise), k = 5 (the number
of nodes) and then control sample size n from 200 to
2000.

• Scenario 2: We fix n = 2000, p = 70 and k = 5,
meanwhile control σ from 2 to 5.

• Scenario 3: We fix n = 2000, σ = 0 and k = 5, and then
control p from 70 to 350.

• Scenario 4: We fix n = 2000, σ = 0, and then control k
from 3 to 11.

To generalize the results of comparative experiments, we
sample 10 times for all experiments and average their results
to evaluate the precision and stability of our model.

4) Evaluation Protocol: To evaluate the quality of edge de-
tection, we employ Accuracy and F1-score in the comparative
experiments. We follow [22] to define the accuracy and F1-
score of edge detection:

Accuracy =
nd

ng
, (21)

F1 =
2n2

d

nand + ngnd
, (22)

where nd is the number of true edges detected by the al-
gorithm, ng is the number true edges and na is the total
number of edges detected. Higher accuracy score or higher F1
score indicates better quality of edge detection. To evaluate
the quality of clustering, we follow [23] to use the purity
score and normalized mutual information score (NMI). Higher
purity score or higher NMI score indicates better quality of
clustering.

B. Comparative Results

To study the effect of sample size on the performance of
MNGL, we design comparative experiments based on Scenario
1. Figure 3 shows the comparative results. We compare our
proposed model with five baseline methods. The first row
shows the results of the comparison on edge detection; the
second row shows the results for node discovery. In the results
of all scenarios, we use the same symbol, which is illustrated
in the caption below Figure 3. From the results in the first
row of Figure 3, we observe that the sample size n indeed
affects some methods, especially ONMtF and its derivations.
As the sample size increases, the accuracy of these two
methods become much higher. Encouragingly, this factor has
no significant effect on our model. Overall, we can clearly see
that our method MNGL is more accurate and robust than other
methods as the sample size n changes. Meanwhile, n does not
have a significant impact on the performance of MNGL, which
means that our model performs well even with a small training
set.

To study the effect of noise on the performance of MNGL,
we use the experimental setup Scenario 2. Our results are
shown in Figure 4 where the horizontal axis in the figure
represents the standard error of noise σ. The larger the σ,
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Fig. 3: Comparison of each method on edge detection and node
discovery. The first row shows the results of edge detection,
and the second shows the results of node discovery. The four
sub-figures above consider different sample size n from 200
to 2000. The other parameters are left fixed.
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Fig. 4: The four sub-figures above consider different σ (the
standard error of noise) from 2 to 5, meanwhile fix the other
parameters, which correspond to scenario2;

the stronger the noise. It leads to smaller signal-to-noise
ratio, which means it is more difficult to mine the network
structure from the available samples. As seen in the four sub-
graphs, we find that noise affects all compared methods. In
particular, while JGL suffers the most influence, ONMtF and
derivatives of it are more robust than CGL and its derivatives
in this scenario. Meanwhile, our method, MNGL, is better
than all other comparison methods in this experiment for both
edge detection and node discovery. Furthermore, σ does not
significantly decay the performance of MNGL.

To study the effect of the number of variables on the
performance of MNGL, we next use Scenario 3, the results
for which are shown in Figure 5. For the node discovery
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Fig. 5: The four sub-figures above consider different p (the
number of variables xi) from 70 to 350, meanwhile fix the
other parameters, which correspond to scenario3;
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Fig. 6: The four sub-figures above consider different k (the
number of nodes yi) from 3 to 11, meanwhile fix the other
parameters, which correspond to scenario4;

task, we see that the dimension of feature space has no
impact on the performance of any methods. However, for edge
detection, when the dimension is low, the performance of CGL
and its derivatives outperforms the other baseline methods.
In particular, as the dimension increases, the accuracy of
CGL and its derivatives shows a significant downward trend
compared to the others. Again, as expected, in this scenario
the performance of MNGL is more accurate and robust than
the baseline methods.

To study the effect of the number of states on the per-
formance of MNGL, we turn to Scenario 4 and report our
findings in Figure 6. Across all sub-figures, as the number
of nodes increases, the robustness of all compared methods
shows a downward trend. Specifically, for the edge detec-
tion task, the accuracy of CGL and its derivatives perform
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slightly better than ONMtF and its derivatives. However,
when considering the F1-Score, ONMtF outperforms the CGL
methods. For node discovery, ONMtF and its derivatives show
more robustness than other baseline methods. Overall, MNGL
still significantly outperforms the compared methods in these
settings, though there is a small degree of fluctuation.

Combining the four RQs raised above and the results of
all these comparative experiments, we can draw the following
four conclusions: First, ONMtF and its derivatives are not as
good as other methods in the case of insufficient samples.
Second, CGL and its derivatives are more restrictive in high-
dimensional space. Third, Both the accuracy and robustness
of all comparative methods will decrease under the impact
of noise and the number of nodes. Fourth, compared to the
alternative methods, our proposed method MNGL exhibits
greater accuracy and robustness in each scenario, indicating
that neither sample size n, the dimension of feature space p,
noise σ nor the number of nodes k significantly degrades the
performance of our method.

C. Real-World Datasets

We also evaluate our proposed method on the fMRI dataset
from the ADHD-200 project . Attention Deficit Hyperactivity
Disorder, or ADHD, is a chronic and sometimes-devastating
condition affecting 5-10% of school-age children. It is also
extremely costly to treat – the United States alone has spent
more than 36 billion on ADHD [24]. This real-world dataset
is distributed by nilearn . Specifically, there are 40 subjects
in total. Among them, 20 subjects are labeled as ADHD,
and the others are labeled as typically developing children
(TDC). The fMRI scan of each subject in the dataset is a
series of snapshots of 3D brain images of size 91× 109× 91
over ∼176 time steps. Because the fMRI scanning datasets
are contain only voxels, the nodes and connectivity among
them are all unknown. [11, 13] put these two tasks in a
unified model to find the optimal solution. However, they
ignore the assumption of mixture network structure we defined
in this paper. Furthermore, this part of the experiment lacks
ground-truth as a reference to measure the accuracy and
robustness of the model. Therefore we must consider the
interpretability and rationality of the results. Specific to our
proposed model, we are primarily concerned with whether or
not our model can mine different cognitive networks from
the fMRI datasets (various node assignments and functional
connectivity). Therefore for this subsection, we focus solely
on applying our proposed method, MNGL, to this challenging
task.

In our experimental setting, we focus on the multi-state
brain network discovery among the same subjects, and report
the results of both nodes discovery and edge detection. To
assign the voxels that can be considered as parts of the
brain, we use anatomical automatic labeling (AAL) brain-
shaped mask, which is provided by neurology professionals.
We follow [25] and use a middle slice of these scan for the ease
of presentation. Consequently, each of the brain scans can be
represented by about 3281 voxels. So it is more conventional

(a) Edges of S1 (b) Nodes of S1

(c) Edges of S2 (d) Nodes of S2

(e) Nodes (1-6) of S1

(f) Nodes (1-6) of S2

Fig. 7: Discovered results of multi-state brain network in
ADHD subjects (k = 6).

for the visualization of the results. The datasets is a 3281
(variables)× 2992 (time steps) datasets and reasonably assume
that they are drawn from a mixture Gaussian distribution.
However, the number of Gaussian distributions m and the
number of nodes k are both unknown and need to be selected
in advance. Through repeated experimental observations, we
find that m = 2 and k = 6 can provide the most reasonable
results on the data sets.

Figure 7 shows the multi-state network discovered by
MNGL on the fMRI datasets. The results of edge detection
and node discovery are shown on the first and second line,
which corresponds to the functional network of state S1 and
S2 respectively. Meanwhile, each inferred node is displayed
on the third and fourth line individually. First, we can see
the difference between the two networks from the discov-
ered edges and nodes. We deliberately mark the differences
between the nodes of two networks with red circles. More
specifically, in the first line of Figure 7, we find a strong and
complete default mode network (DMN) for ADHD subjects,
corresponding to group 3 and 5 in the third line. A DMN
is a network of interacting brain regions known to have
activity highly correlated with each other while being distinct
from other networks in the brain, including the Parietal and
Occipital Lobes, the Cingulum Region Posterior, and the
Frontal Cortex. However, in the second line of Figure 7, this
mode is not intact. In particular, the Frontal Cortex is missing
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(c) Edges of S2 (d) Nodes of S2

(e) Nodes (1-6) of S1

(f) Nodes (1-6) of S2

Fig. 8: Discovered results of multi-state brain network in TDC
subjects (k = 6).

in the network, while the rest of the connections are different
from the functional network in the first line. The specific
relationship between each node can be found in the sub-figures
of discovered edges.

For comparison, we apply MNGL again on the subjects
of TDC, which represent the group of typically-developing
children. We can observe from Figure 8 that, although there
are differences in the node assignments and the connectivity
structure among each node, there is no deletion of DMN in
each network. At the same time, the network of state S1 from
TDC and that from ADHD have a certain degree of similarity
from the nodes result to the connectivity structure, which al-
lows us to have more reference when analyzing the differences
and connections between the two subjects. These results give
us reason to believe that the brain scans of these subjects have
some similar functional structure correspondences similar to
on-task and off-task states.

Despite the lack of ground-truth, we believe that the current
results are still consistent with the problem defined in this
paper: We find strong evidence that there is a multi-state brain
cognitive network in the fMRI datasets, and our proposed
model MNGL can effectively mine this mixture network
structure.

V. RELATED WORKS

Existing works can be divided into two categories. Firstly,
for coherent brain network discovery, ONMtF [26] is a useful

pattern recognition method. [11] extend ONMtF by adding
a spatial continuity penalty, which can increase the inter-
pretability of the parcellated regions. This method is a coherent
model which can output the result of nodes discovery and
edge detection simultaneously. However, it has discovered the
edges based on the correlation matrix instead of inferring
direct links between each node. Instead of using a correlation
matrix, [21, 27] focus on sparse inverse covariance estimation
for discovering connectivity of brain network based on large-
scale datasets. These kinds of methods can distinguish direct
links from indirect connections due to their solid probabilistic
foundation. [13] propose a model called CGL to achieve the
coherent brain network discovery, including edge detection and
node discovery. However, this method ignores the problem of
multi-state problem we mentioned in this paper.

For the multi-state problem, we consider the Gaussian
Mixture Model (GMM) [28]. GMMs model the distribution
of data observations as a weighted sum of parameterized
Gaussian distributions. However, a prominent issue related to
GMM is estimating the parameters given observations [29].
Through many extensions, the EM algorithm has proven to be
a powerful algorithm for the maximum-likelihood estimation
of GMMs [30]. Additionally, [31, 32] consider the issue of the
number of mixture components in the model, which can lead to
over-fitting in practice. GMMs have been widely used in many
areas, especially for network discovery [33, 34, 35]. Most
existing studies for mixture modeling focus on regularizing
only the mean parameters with diagonal covariance matrices
[36, 37], though some works [38, 39, 40] have started con-
sidering regularization of the covariance parameters. However,
these works do not touch on the key issue of identifying the
varying sparse structures of the precision matrices across the
components of a mixture model in brain network discovery.
[17] proposes a joint graphical model (JGL) to deal with
cluster-specific networks. [18] aims to edge detection task by
combing graphical lasso with GMM. However, these models
need brain parcellation to be given first. Thus, existing models
related to GMM are thus not suitable for the special problem
defined in this paper.

VI. CONCLUSION

In this work, we define the open problem of multi-state brain
network discovery, which is to infer various brain parcellations
and connectivities across different brain states. Previous works
on brain network discovery derive an average brain network
based on the assumption that only one single activity state of
the brain generates the signals. However, according to recent
studies in the area of brain network, assuming single-state
networks ignores a crucial of cognitive brain networks. To
better understand the temporally-changing functional network
of the brain, we propose a novel model called MNGL, which
can discover multiple brain networks, including nodes and
their connectivity based on on only unlabeled fMRI scans.
Through extensive controlled experiments, we demonstrate
that our proposed model shows more effectiveness and robust-
ness than other baseline models. MNGL also shows expected
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and meaningful results on the real ADHD-200 fMRI dataset.
We thus have reason to believe that our method can be applied
in multi-state brain network for a better understanding of brain
function and behavioral performance.
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