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Abstract—The Chief Complaint (CC) is a crucial component
of a patient's medical record as it describes the main reason
or concern for seeking medical care. It provides critical in-
formation for healthcare providers to make informed decisions
about patient care. However, documenting CCs can be time-
consuming for healthcare providers, especially in busy emergency
departments. To address this issue, an autocompletion tool that
suggests accurate and well-formatted phrases or sentences for
clinical notes can be a valuable resource for triage nurses. In this
study, we utilized text generation techniques to develop machine
learning models using CC data. In our proposed work, we train
a Long Short-Term Memory (LSTM) model and fine-tune three
different variants of Biomedical Generative Pretrained Trans-
formers (BioGPT), namely microsoft/biogpt, microsoft/BioGPT-
Large, and microsoft/BioGPT-Large-PubMedQA. Additionally,
we tune a prompt by incorporating exemplar CC sentences,
utilizing the OpenAI API of GPT-4. We evaluate the models'
performance based on the perplexity score, modified BERTScore,
and cosine similarity score. The results show that BioGPT-Large
exhibits superior performance compared to the other models. It
consistently achieves a remarkably low perplexity score of 1.65
when generating CC, whereas the baseline LSTM model achieves
the best perplexity score of 170. Further, we evaluate and assess
the proposed models' performance and the outcome of GPT-4.0.
Our study demonstrates that utilizing LLMs such as BioGPT,
leads to the development of an effective autocompletion tool for
generating CC documentation in healthcare settings.

Index Terms—Chief Complaint, Electronic Health Record,
Text Generation, Large Language Model, BioGPT, Prompt En-
gineering, LSTM

I. INTRODUCTION

A chief complaint (CC) is a brief statement that explains
why a patient is seeing a doctor. It is usually the second
thing asked during a medical history after identifying the
patient's demographic information [1]. When a patient seeks
medical care, their CC is recorded several times. First, when
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they register at a clinic or emergency department (ED),
triage nurses and clerks create a record. Then, clinicians also
document the CC in various notes throughout the patient's
care, including daily progress notes, discharge notes, transfer
notes, and patient acceptance summary notes [2]. The limited
time and information available during triage can sometimes
result in an oversimplified or inaccurate CC, which may
not fully capture the patient's symptoms or concerns. This
can potentially impact the diagnostic process, as the treating
clinician may not have a complete understanding of the
patient's condition and may not order appropriate tests or
treatments [3]. In addition, errors in CC's can also occur
due to misspelled words, incorrect punctuation, or inaccurate
symptom descriptions [4].

The goal of this study is to employ Natural Language
Processing (NLP) techniques to create an autocompletion tool
for CC's in ED settings. A state-of-the-art (SOTA) NLP model
may help triage nurses generate accurate CC's more efficiently.
This study aims to

• Explore the potential of NLP techniques for autocom-
pleting CC's in ED settings. This study will involve
developing an NLP model capable of generating CC's.
This generated CC will not only suggest accurate and
well-formatted notes but also provide ideas to improve
their notes.

• Assess the impact of an autocompletion tool on the
efficiency and accuracy of triage in ED settings. This
study will compare the accuracy of CC's generated with
the NLP model to those entered manually by triage
healthcare providers.

Autocompletion provides word, phrase, or sentence sugges-
tions as a user types. The primary objective of this system is
to improve efficiency by reducing the number of keystrokes
required, while also elevating the quality of the content by
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minimizing typographical errors, promoting the adoption of
standardized terminology, and facilitating the exploration of a
wider range of vocabulary [5]. This process works by analyz-
ing previously entered words to make educated guesses about
a subsequent word, phrase, or sentence. To complete a CC
automatically, text generation techniques are employed which
is one of the primary tasks in Natural Language Generation
(NLG). NLG is a specialized area within the discipline of NLP
that focuses on the development of systems with the ability to
generate both coherent and easily understandable text. NLG
is often regarded as a comprehensive term that incorporates
a diverse array of tasks involving the transformation of input
data into a textual sequence as output. These tasks include gen-
erating answers for users in a chatbot, translating languages,
suggesting story ideas, or summarizing data analysis. Clinical
documents provide distinct issues in comparison to general-
domain text due to the extensive utilization of acronyms and
non-standard clinical terminology by healthcare professionals,
as well as the irregular structure and arrangement of these
documents [6]. Although Generative Pretrained Transformers
(GPT) models [7]–[9] demonstrate proficiency in generating
coherent text for broad subject areas, their effectiveness may
diminish when confronted with the complexities inherent in
clinical documentation.

CC's are free text that consists of one or more improper
sentences and medical acronyms [10]. General-purpose lan-
guage models may not be able to capture the context and fail
to show exemplary results on CC's. GPT-2 [8] has recently
adapted to the bio-medical domain. Biomedical Generative
Pretrained Transformers (BioGPT) is such an adaptation that
has been trained on a very large corpus of biomedical literature
and has shown to work well on many tasks, including text
generation [11]. Hence, we propose to employ BioGPT for
autocompletion of the CC.

II. BACKGROUND STUDY

A. Chief Complaint

The ED in hospitals gets very crowded; it often has more
patients and fewer resources than other departments. Many
studies show that when the ED is too crowded, the quality
of care for patients gets worse [12]. Long wait time at the
point of triage in ED causes patient dissatisfaction [13].
Patients may have to wait a long time for treatment or to
leave the ED. Overcrowding can also lead to medical errors
and bad outcomes for patients [14]. The Emergency Nurses
Association (ENA) Triage curriculum stresses the significance
of CC in the decision-making process for emergency nurses
[15]. It is the first piece of information gathered during the
triage assessment. Around 20% of patients who visit an ED
have non-specific complaints and the majority of them are
elderly. Research conducted by retrospective chart analysis
indicates that these patients are at a higher risk of being
misdiagnosed and require hospital admission [16]. A study
conducted by Nunez et al. (2006) demonstrated that the lack
of seriousness of the initial CC is a major factor in patients'

unscheduled return to ED [17]. An autocompletion tool for
CC can help alleviate these problems.

Several studies have been done with CC datasets. Tootooni
et al. (2019) proposed a heuristic methodology for automati-
cally mapping free-text CC data into a structured list of CCs,
using an NLP-based algorithm called Chief Complaint Mapper
(CCMapper) and to demonstrate its high performance and
capability of incorporating new free-text CC data [18]. Chang
et al. (2020) used the Bidirectional Encoder Representations
from Transformers (BERT) language model to learn contextual
embeddings for CC [19]. It predicts their provider-assigned
labels with potential applications in automating the mapping
of free-text CC's to structured fields and developing a stan-
dardized ontology. Hsu et al. (2020) used NLP technologies,
including deep learning methods such as BERT, to classify
Chinese CC's at emergency departments for the detection of
influenza-like illness, with the goal of developing a fast and
effective tool to assist physicians in making diagnoses and
controlling outbreaks [20].

B. Text Generation in Electronic Health Record

The process of generating Electronic Health Records
(EHRs) presents significant challenges due to the complex
diverse nature of medical data, the imperative for utmost accu-
racy, and the rigorous demands for privacy. Recent improve-
ment in NLG is revolutionizing EHR generation in different
fields such as report generation from medical images [21],
medical note generation from table data [22], medical topic to
text generation [23], and so on. More focus has been given to
synthetic EHR generation due to the scarcity of medical data
[24]–[27]. In their work, Lee et al. (2018) generate synthetic
CC's from discrete variables in EHRs, like age group, gender,
and discharge diagnosis [28].

Recent advancements in EHR generation have leveraged
a range of methodologies, from Long Short-Term Memory
(LSTM) to transformer-based language modeling. In a study
by Liu et al. (2018), a novel transformer-based language mod-
eling job was introduced. This work involved predicting the
content of medical notes, taking into consideration previous
data from a patient's medical record [29]. Krishna et al. (2020)
primarily used LSTM and BERT to generate semi-structured
clinical summaries (SOAP) notes from doctor-patient conver-
sations [30]. Ive et al. (2020) used a neural Transformer model
to generate artificial clinical documents for mental health
records [31]. Sirrianni et al. (2022) employed GPT-2 and GPT-
Neo for next-word prediction on dental medical notes that
include exam notes, emergency notes, trauma notes, etc [32].

C. Autocompletion in Electronic Health Record

Over the past few years, researchers have extensively in-
vestigated diverse techniques to enhance autocompletion tasks
in the medical domain. Spithourakis et al. (2016) developed
LSTM-based neural language models to improve word pre-
diction and completion tasks [5]. They demonstrated superior
performance on a clinical dataset. Yazdani et al. (2019) in-
vestigated the effectiveness of a tri-gram language model in



Fig. 1. Process Flow of Current Study

predicting the next words while typing free texts [33]. Van et
al. (2020) explored the use of autocomplete and pre-trained
neural language models in semi-automated text simplification
for the medical domain, using a new parallel dataset, and
comparing the performance of four models and an ensemble
model [34].

In the biomedical domain, the scarcity of large-scale an-
notated data makes it essential to use pre-trained language
models, which can act as rich feature extractors and reduce
reliance on annotated samples [35]. These models also serve
as soft knowledge bases, capturing the domain's intricate
knowledge from vast unannotated texts. In the biomedical
field, there has been a significant increase in the attention given
to PLM models such as clinical BERT and BioGPT in recent
years. To the best of our knowledge, we have not come across
any research that specifically addresses autocompletion using
SOTA biomedical-based PLMs for CC datasets.

III. METHODOLOGY

Text generation has evolved significantly from its early
days of statistical language models to neural networks. Joze-
fowicz et al. (2016) showed that training recurrent neural
network (RNN) LMs on extensive datasets yields superior
performance compared to other statistical language models,
such as meticulously optimized N-grams [36]. While neural
models have made impressive advancements in text genera-
tion, their performance is often hindered by the scarcity of
expensive labeled data [37]. However, the inception of the
Transformer architecture [38], which is the foundation of pre-
trained language models, marked a significant advancement.
Pre-trained models have revolutionized the capabilities of text
generation exhibiting improved accuracy and fluency. There
exist two primary categories of pre-training models: BERT-
like models [39]–[41] are primarily utilized for language
understanding tasks, while the GPT-like models [7], [11] are
primarily employed for language generation tasks.

Our study suggests that LSTM and BioGPT, are the most
suitable models for our tasks. LSTM model is widely recog-

TABLE I
SAMPLE OF CHIEF COMPLAINT DATASET

Chief Complaint a Predict Consensus
“been feeling bad” last 2 weeks & switched
BP medications last week & worried about
BP PMHx: CHF, HTN, gout, 3 strokes, DM

N -

“can't walk”, reports onset at <<TIME>>.
oriented x2. aortic valve replacement in
<<DATE >>. wife reports episode of sim-
ilar last week, hospitalized at <<HOSPI-
TAL>>for UTI, gout - pmhx: CVA (L side
residual deficits)

Y N

“dehydration” Chest hurts, hips hurt, cramps
PMH- Hip replacement, gout, missed pain
clinic appt today, thinks he has a gout flair
up knee and foot pain

Y Y

aOnly CC column is employed in present work.

nized and commonly employed as a baseline [42] and BioGPT
demonstrates impressive capabilities in NLG, especially in
the medical domain [11]. Additionally, OpenAI API [43]
from the GPT-4.0 model, is utilized to develop a prompt by
implementing few-shot (FS) technique. Figure 1 depicts the
overall flow of our study.

A. Dataset Description

Osborne et al. (2020) developed an algorithm for identifying
gout flares in ED patients using triage nurse CC notes [10]. In
this work, the researchers have provided a de-identified version
of a clinical corpus which to the best of their knowledge,
is the first free-text CC clinical corpus available. The corpus
was de-identified to adhere to Health Insurance Portability and
Accountability Act (HIPAA) Safe Harbor regulations. This
de-identification process involves fine-tuning named entity
recognition algorithms using BERT [39] and ALBERT [40].
In addition, potentially identifiable time information was elim-
inated, followed by a thorough manual review utilizing BRAT
software [44] to guarantee the absence of personal information.
The corpus was annotated to predict gout flare status based on
a retrospective manual examination of CC's. A subset of these
complaints underwent review by rheumatologists, applying
Gaffo criteria to confirm gout flare status, with annotator
agreement calculated for both the initial annotation and chart
review phases. This publicly available corpus consists of
2 datasets: GOUT-CC-2019-CORPUS and GOUT-CC-2020-
CORPUS. In the corpus, there are in total of 8342 CC and
each observation has 3 fields: CC, predict, and consensus.
The “Chief Complaint” field consists of freely written text
with abundant abbreviations and acronyms. The “Predict” field
signifies potential gout flare relevance (Y, N, U, -), while the
“Consensus” field indicates gout flare status based on chart
review (Y, N, U, -). Here values are yes (Y), no (N), unknown
(U), or unmarked (-). For our purpose, we only employed CC
data. The first 3 observations from the dataset are mentioned
in Table I.



Fig. 2. Illustration of Preprocessing Steps with Example

B. Data Preprocessing

CC is a free text which consists of one or more improper
sentences. It is mostly written in abbreviated forms and en-
riched in medical acronyms. From our observation, we identify
that a CC consists of 2 parts, the first part involves a patient's
complaint regarding their current health condition, and the
second part pertains to their past medical or personal history.
We find several medical acronyms that describe past medical
or personal history such as PMH, PMHX, HX, PSHX, SHX,
and FHX. We split a CC into two parts based on past medical
or personal history. The complaint part consists of one or more
improper sentences. We use the Python NLP library Stanza to
separate sentences. After splitting each CC in sentences, we
filter them based on the length. If a sentence contains less
than 4 words, it is discarded from the dataset. For instance:
‘Denies nausea’, ‘24 weeks OB’, etc. are filtered from further
consideration as these types of small sentences do not require
autocompletion and degrade model performance. We find a
total of 11770 sentences after splitting CC and filtering the
small sentences. The dataset is divided into three sets - train,
validation, and test; with a ratio of 80%, 10%, and 10%,
respectively. The vocabulary size in the training set is 11565
and the median number of words per sentence is 9 which
indicates a higher level of diversity in the dataset. It is expected
that the user will type 3 or 4 words initially which is 30% to
50% of the sentence. For every test sentence, 2 seed sequences
are generated by taking 30% and 50% from the beginning. A
data preprocessing example is shown in Figure 2.

C. A Neural Network Approach

LSTM [45] is a type of RNN that has shown high-quality
performance in NLP tasks [46], [47]. RNNs are specifically
engineered to effectively process sequential input by employ-

Fig. 3. Framework of Proposed LSTM Model Architecture

ing a hidden state that undergoes iterative updates at each
consecutive step. LSTM networks possess unique gating mech-
anisms, enabling them to effectively capture and learn long-
term dependencies. In LSTM, the model can selectively choose
which information to keep or forget from the previous state,
making it more capable of handling long-term dependencies
in the input data [48]. The ability of LSTMs to effectively
handle sequential input and comprehend long-term contextual
information serves as a foundation of text generation, which is
the iterative process of making predictions for the subsequent
word in a sequence.

Figure 3 illustrates our proposed LSTM model for text
generation. The first layer of the model is an Embedding layer
which is used to convert the input text data into dense word
vectors of 100 dimensions. This layer takes three arguments:
the total number of unique words in the input corpus, the
dimensionality of the embedding space, and the maximum
length of input sequences. The next layer is an LSTM layer
with 100 LSTM cells, a type of RNN layer that processes
input data to capture long-term dependencies in the text.
The output of the LSTM layer is then passed to a Dense
layer with the number of neurons and softmax activation
function. This layer generates the probability distribution of
the next word in the sequence, given the input sequence.
We enable Adam optimizer, a popular optimizer used for
gradient descent in deep learning, with a learning rate of
0.001. We utilize categorical cross-entropy loss function that is
widely used for multi-class classification tasks. This model is
capable of predicting subsequent words in a sequence. During
training, each sentence is prepended with an <sos> token and
appended with an <eos> token to signify the start and end.
However, the model struggles to accurately identify sentence
endings in its predictions. As a workaround, we apply an



iterative approach to generate the next five words in any given
sequence, regardless of sentence boundaries.

D. A Transfer Learning Approach

BioGPT is a highly specialized generative pre-trained Trans-
former language model that has been specifically designed and
optimized for the purpose of generating and analyzing biomed-
ical texts [11]. The model architecture was derived from the
GPT-2 [8] model architecture and serves as its backbone.
Its training process involves utilizing a dataset including 15
million abstracts sourced from PubMed. The ultimate acquired
vocabulary size amounts to 42,384. The GPT-2 (medium)
model, serving as the foundation network, consists of 24
layers, a hidden size of 1024, and 16 attention heads. This
configuration yields a total of 355 million parameters. On the
other hand, the BioGPT model has 347 million parameters.
The difference comes solely from variations in the embedding
size and output projection size, which are a consequence of
the dissimilar vocabulary sizes. BioGPT also scaled to larger
size. The BioGPT- Large model was built with the GPT-2
XL architecture, which represents the most extensive iteration
of GPT-2, having a total of 1.5 billion model parameters.
The BioGPT models demonstrate exceptional performance on
four benchmark datasets, namely BC5CDR, KD-DTI, DDI
end-to-end relation extraction job, and PubMedQA question
answering test, surpassing previous SOTA approaches. In
addition, the model depicts better biomedical text-generation
proficiency in comparison to a standard GPT model trained
on a general domain.

Pretrained BioGPT can be adapted from downstream tasks
such as end-to-end relation extraction, question answering
(QA), and document classification by fine-tuning the model.
For this work, we tailor the model specifically for text gen-
eration. To fine-tune BioGPT, we utilize Raj-High Perfor-
mance Computer which is funded in part by the National
Science Foundation award CNS-1828649 “MRI: Acquisition
of iMARC: High Performance Computing for STEM Research
and Education in Southeast Wisconsin” [49].

Pretrained BioGPT models are available in Hugging-
face directory. For text generation, we fine-tune ‘microsoft-
/biogpt’1, ‘microsoft/BioGPT-Large’2 and ‘microsoft/BioGPT-
Large-PubMedQA’3. We exploit the tokenizer from the same
models and tokenize the input sequences by adding special
tokens <sos> (start of sentence) and <eos> (end of sentence)
at the beginning and end of each sentence, respectively.
Subsequently, padding is performed considering the maximum
token sequence (74 tokens) to make the dimension uniform
regardless of the input sequence. Additionally, Adam optimizer
is incorporated into the model's training pipeline.

BioGPT models possess the capacity to generate multiple
sequences for a single seed sequence. For each of the seed
sequences, we assign the number of return sequences to 5.
The ‘generate’ function from huggingface includes additional

1https://huggingface.co/microsoft/biogpt
2https://huggingface.co/microsoft/BioGPT-Large
3https://huggingface.co/microsoft/BioGPT-Large-PubMedQA

options such as do sample, top k, max length, top p, etc.,
which serve to regulate the output sequence. The boolean
flag do sample is utilized to decide whether or not to em-
ploy sampling throughout the process of text generation. The
parameter top k is an integer that determines the number of
most probable words to be taken into account while generating
text. The variable max length is an integer that serves as a
control parameter for determining the maximum length of the
output text. The variable top p is a floating-point number that
determines the cumulative probability of selecting the most
frequent words to be considered in the process of generating
text.

E. Prompt Tuning: Few-Shot Technique

OpenAI provides API to access their latest GPT models
[43]. GPT models are trained on natural language and these
models can generate responses based on their input. This
input is called prompt. Through the strategic creation of
tailored prompts, a diverse array of tasks can be effectively
accomplished. These tasks include drafting comprehensive
documents, skillfully composing computer code, conducting
insightful analyses of texts, adeptly crafting conversational
agents, and proficiently translating languages. Essentially, cre-
ating a prompt involves “programming” a GPT model, which
is often accomplished by providing guidelines or examples
that show the model how to complete a task.

For our task, we tune a prompt using the OpenAI API
of the GPT-4 model, which is the latest model at present.
FS prompting technique is incorporated to generate CC. Al-
though LLMs exhibit impressive zero-shot performance, they
nevertheless fall short when applied to more challenging tasks.
FS technique involves providing the model with a limited
number of task demonstrations during the inference phase as
a form of conditioning, without making any adjustments to
the model's weights [9], [50]. In FS prompting technique, a
handful of demonstrations are provided which lead the model
towards better performance and facilitate contextual learning.
According to the OpenAI official API documentation, it is
recommended to have 50-100 examples as training examples,
however, a minimum of 10 examples are required. [43]. We
chose 100 examples of varying structures from the training
CC dataset for our prompt. A sample code is shown in Figure
4.

In the prompt development, we use OpenAI's chat com-
pletions API endpoint, setting the parameter ‘temperature’ as
0.7 and ‘n’ as 5. Here ‘n’ means the number of sequences the
model will generate for each input sentence. The ‘temperature’
controls the randomness of the model. Higher temperature
makes the model's output more diverse and random. With
a higher temperature, the model may produce unusual or
unexpected responses. A lower temperature makes the model's
output more deterministic. If the temperature is set to 0,
the model will always pick the most probable next word.
The outcomes are often neither overly random nor overly
predictable when the temperature is moderate.



Fig. 4. Prompt Tuning Code Snippet

One problem with LLM like GPT is ‘hallucination’: the
creation of unreliable, irrelevant, or false information [43].
GPT-4 is less likely to hallucinate than GPT-3.5-turbo. By
providing explicit instructions in the prompt, it is possible to
reduce hallucinations. In our proposed task, the model will
suggest CC and there will be an expert in the loop. So there
is minimal impact of hallucination.

IV. RESULTS

The assessment of NLG model output presents considerable
difficulties due to the intrinsic uncontrolled nature of many
NLG tasks. In contrast to tasks with well-defined parameters
that allow for definitive outputs, open-ended NLG tasks can
produce a diverse array of valid and logically consistent
outputs, posing challenges for objective evaluation. Conse-
quently, conventional criteria for assessing accuracy may be
inadequate, thereby requiring human judgment to evaluate the
quality and relevancy of the generated content. Celikyilmaz
et al. (2020) categorize the assessment approaches for NLG
into three main groups: Human-Centric evaluation, Untrained
Automatic Metrics, and Machine-Learned Metrics [51]. In
order to assess the performance of our models, we employ
various methodologies such as the perplexity measure [52],
BERTScore metric [53], and cosine similarity measure [54],
[55]. We also include a few examples of models' output for
demonstration.

A. Perplexity Measure

Perplexity is the often employed metric for quantifying
progress in language modeling [36], [56]. To evaluate the
models' performance, we use perplexity as an evaluation
metric. The metric quantifies the degree of ambiguity or
perplexity exhibited by the model in its predictions of the
subsequent word within a given sequence. A model's per-
formance is considered better when its perplexity score is
lower, and conversely, worse when the perplexity value is
higher. The concept of perplexity is characterized by the
exponential value of the average negative log-likelihood of a

TABLE II
PERPLEXITY SCORE & EXECUTION TIME

Model Perplexity Execution Time a

(milliseconds)

LSTM 170± 30 3727.09
BioGPT 3.45± 0.05 9710.04
BioGPT-Large 1.65± 0.10 30899.77
BioGPT-Large-PubMedQA 2.20± 0.10 33584.21
aExecution time measured on Raj-HPC [49]

given sequence. The perplexity of a tokenized sequence X,
denoted as X = (x0, x1, . . . , xt), can be calculated using
Equation 1, where log pθ (xi | x<i) denotes the ith tokens' log-
likelihood depending on the value of preceding tokens [52].

PPL(X) = exp

{
−1

t

t∑
i

log pθ (xi | x<i)

}
(1)

Table II provides an overview of the perplexity scores
associated with our various experimented models. From the
table, we can see that the perplexity score for LSTM stands
notably higher, with an overall score of 170. Hence LSTM
is eliminated from further assessment. BioGPT, BioGPT-
Large, and BioGPT-Large-PubMedQA exhibit closely aligned
performance, with perplexity rates of 3.45, 1.65, and 2.20,
respectively. Given the superior performance of the fine-tuned
BioGPT models in comparison to the LSTM model, these
three models are selected for further quantitative evaluation.

B. BERTScore Measure

The BERTScore measure, introduced by Zhang et al. (2019),
is a recently developed method for evaluating the quality of
language generation. It utilizes pre-trained BERT contextual
embeddings as its foundation [53]. The purpose of this system
is to measure the semantic similarity between two sentences
by using pairwise cosine similarity, rather than relying solely
on basic string matching. In the present study, Clinical BERT



TABLE III
COMPARISON OF BERTSCORE

Model FBERT All 5 CC Top 2 CC

30% 50% 30% 50%

0.95 0 0 0 0
0.90 0 1 0 6

BioGPT 0.80 61 309 489 866
0.70 939 804 674 303
<0.70 177 63 14 2

0.95 0 0 4 16
0.90 1 37 39 295

BioGPT-Large 0.80 449 771 893 810
0.70 685 361 240 55
<0.70 42 8 1 1

0.95 0 0 1 19
0.90 2 27 45 291

BioGPT-Large- 0.80 453 823 875 812
PubMedQA 0.70 675 314 254 54

<0.70 47 13 2 1

[41] embeddings are employed in place of the conventional
BERT embedding. The clinical BERT model has undergone
pre-training on the clinical text and is accessible to the public.
The procedure for computing BERTScore is implemented [53],
as outlined in Equations 2, 3 and 4. The tokenized reference
sentence x = <x1, ..., xk> is embedded into a sequence of
vectors, and similarly, the tokenized candidate sentence x̂ =
<x̂1, ..., x̂l> is transformed into contextual embedding.

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

x⊤
i x̂j (2)

PBERT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

x⊤
i x̂j (3)

FBERT = 2
PBERT ·RBERT

PBERT +RBERT
(4)

Table III presents the BERTScore values obtained from
three BioGPT models. We evaluate the BERTScore in 2
scenarios by selecting the seed sequence as described in
section III-B. For the first scenario, 30% of each test CC
is taken from the beginning as 30% seed sequence, and for
the second scenario, we take 50% of each test CC from the
beginning as 50% seed sequence. Each scenario is divided into
2 cases. For the first case, we consider all 5 generated CCs,
and for the other case, we consider only the best 2 performing
CCs. Overall we categorize our results into 4 major categories.

• Scenario 1: 30% seed sequence, All 5 generated CCs
• Scenario 2: 50% seed sequence, All 5 generated CCs
• Scenario 3: 30% seed sequence, Top 2 generated CCs
• Scenario 4: 50% seed sequence, Top 2 generated CCs
For example, in Scenario 3 for BioGPT-Large, there are

39 reference test CC which achieved a BERTScore between
0.90 to 0.94. This means that there are 39 reference test
CCs, whose top two generated candidate CCs achieved a
BERTScore between 0.90 to 0.94, when 30% of the reference
CCs are given to BioGPT-Large as the seed sequence.

TABLE IV
COMPARISON OF SIMILARITY

Model Similarity All 5 CC Top 2 CC

(Cosine) 30% 50% 30% 50%

0.95 9 52 112 297
0.90 379 497 792 731

BioGPT 0.80 735 580 271 148
0.70 50 45 2 1
<0.70 4 3 0 0

0.95 62 265 305 660
0.90 613 627 695 445

BioGPT-Large 0.80 474 278 175 72
0.70 28 7 2 0
<0.70 0 0 0 0

0.95 55 248 291 644
0.90 606 643 685 472

BioGPT-Large- 0.80 490 276 198 60
PubMedQA 0.70 26 10 3 1

<0.70 0 0 0 0

C. Cosine Similarity Measure

Table IV presents the cosine similarity score between the
reference and candidate CC. In the current study, we employ
the method of averaging word vectors [55] to compute the
similarity of sentences, as denoted by the following Equation
5. The Clinical BERT [41] is employed to generate word
embeddings. To analyze cosine similarity, we also categorize
our result into 4 major categories similar to IV-B.

Similarity(xi, x̂j) =
xi · x̂j

∥xi∥ × ∥x̂j∥
(5)

D. Execution Time Evaluation

To evaluate the execution time of our models, we utilize the
first example from Table V. For each model, we generate 5
output sequences. In the context of the LSTM model, the next
5 consecutive words are predicted for each sequence. Instead
of always selecting the word with the highest probability,
randomness is introduced into the predictions for this model.
On the other hand, BioGPT models are capable of predicting
the end of the sentence. So we generate 5 full sequences
with BioGPT models. As evident from Table II, there is a
direct correlation between model size and execution time. For
instance, the LSTM model has only 1,502,676 parameters and
it requires only 3727 milliseconds to generate 5 sequences.
In contrast, BioGPT-Large has 1.5 billion parameters and
it demands 30899 milliseconds for the same task. Broadly
speaking, a model's execution time is influenced by a myriad
of factors, encompassing model dimensions, parameter count,
architectural design, and the intricacies of the assigned task.

V. DISCUSSIONS

The language structures seen in clinical documentation
are complex and diverse as a result of the specific nature
of medical information and terminologies. In addition, the
acquisition of clinical text datasets poses a persistent challenge



TABLE V
EXAMPLE OF GENERATED CHIEF COMPLAINTS

Example Model Candidate CC

1 (Reference CC) Reports have chills, fever, cough, CP, sore throat, back and leg pain.

BioGPT Reports have chills, fever, malaise x 4 days

Reports have chills, fever, chills, nausea, HA.

BioGPT-Large Reports have chills, fever, bodyaches, cough x1 week.

Reports have chills, fever, dysuria, symptoms since last night.

BioGPT-Large-PubMedQA Reports have chills, fever, generalized malaise, diarrhea, and congestion since yesterday.

Reports have chills, fever, fatigue, loss of appetite.

GPT-4 Reports have chills, fever, fatigue, and sore throat x 4 days, tested negative for Covid-19

(Prompt) Reports have chills, fever, coughing and headaches for the past 3 days
2 (Reference CC) 1cm puncture wound to right hand interweb between 2nd and 3rd digit, tetanus UTD, denies pmh

BioGPT 1cm puncture wound to right hand interweb between thumb and hand.

1cm puncture wound to right hand interweb between wound to R middle finger.

BioGPT-Large 1cm puncture wound to right hand interweb between 2nd and 3rd digit, tetanus, denies PMH

1cm puncture wound to right hand interweb between 2nd and 3rd finger

BioGPT-Large-PubMedQA 1cm puncture wound to right hand interweb between 2nd and 3rd digit, swelling and pain to
wound.

1cm puncture wound to right hand interweb between 2nd and 3rd digit, tetanus not UTD

GPT-4 1cm puncture wound to right hand interweb between thumb and index finger, no signs of infection
but pain is increasing.

(Prompt) 1cm puncture wound to right hand interweb between thumb and index finger, caused by a rusty
nail.

3 (Reference CC) Chronic back and L hip pain x “years” and R shoulder pain x 1 month.

BioGPT Chronic back and L hip pain x 2 years, denies pmh

Chronic back and L hip pain, worse with ambulation x one week

BioGPT-Large Chronic back and L hip pain x1 year.

Chronic back and L hip pain x1 week.

BioGPT-Large-PubMedQA Chronic back and L hip pain, denies trauma, no known falls

Chronic back and L hip pain, radiating down R leg x1 year.

GPT-4 Chronic back and L hip pain, exacerbated by movement, no relief with OTC pain medication.

(Prompt) Chronic back and L hip pain, worsening over last week, OTC meds provide no relief.
*No objective metric is reported in Table III and IV for GPT-4 prompt tuning output.

due to the ethical considerations around patient privacy and the
unique nature of medical narratives. In our study, we found
that there is a correlation between the size of a corpus and
the perplexity score of a Language Model. Larger corpora
tend to yield higher scores, indicating improved performance
[36], [57]. Deep learning models tend to get advantages from
an increased quantity of training data. Typically, the efficacy
of training an LSTM model relies upon the availability of a
substantial volume of data, particularly for tasks of greater
complexity. This is because the model needs to learn more
nuanced patterns in the data to make accurate predictions.
Insufficient information within a short dataset may impede
the model's ability to properly learn, resulting in inferior
outcomes. The performance of our baseline LSTM model is
suboptimal, mostly attributed to the limited size of our corpus.

Based on the perplexity score presented in Table II, it

can be observed that large BioGPT models exhibit a higher
level of performance compared to BioGPT. Tables III and
IV also demonstrate similar findings. In every scenario, large
models consistently outperform BioGPT in terms of scoring.
In Table III Scenario 1, large models display approximately
450 reference test CCs, exceeding a BERTScore of 0.80. On
the other hand, the BioGPT model manages only 61 reference
test CCs. For Scenario 2, around 70% of the reference test CCs
for large models reach a BERTScore of 0.80 or above, whereas
BioGPT shows results for less than 30% of the reference test
CCs. In Scenario 3, more than 80% of the reference test CCs
for large models hit a BERTScore of 0.80 or more. Lastly,
in Scenario 4, the large models are excellent, with almost all
reference test CCs reaching a BERTScore of 0.80 or above.

When we select 50% seed sequence instead of 30%, all
our models achieve superior BERTScore. One of the plausible



reasons behind this is that it becomes easier to generate the
incomplete portion when more clues are given. Among all of
the scenarios considered for large models, it can be observed
that BERTScore performs less well in Scenario 1. Given that
we are taking into account all five candidate CCs that have
been generated, it is also important to note that only 30% of
the test reference CC is being utilized as input for the models.
On the other hand, the models have exhibited exceptional
performance in Scenario 4. This can be attributed to the fact
that we have only focused on the top two performing candidate
CCs, with 50% seed sequence as input.

According to the data shown in Table IV, while utilizing the
semantic cosine similarity measure, it is observed that large
models achieve a similarity score of 0.90 for 60% reference
CC in Scenario 1, and around 95% reference CC in Scenario
4. BioGPT models especially large models show promising
performance in generating contextually similar CCs.

In table V, for demonstration we provide a few examples of
models' output including GPT-4 prompt tuning. No objective
metric is reported for prompt tuning. In the table, reference
CC is shown in the first row of every example. The models
generate the bold-face part and the first part of the reference
CC is given to the models as seed sequence. In example 1,
the patient reports several symptoms such as chills, fever, etc.
Our BioGPT-Large model is able to generate a few related
symptoms such as bodyaches, cough, etc. The model not
only suggests related symptoms but also proposes a time. The
recommendation of time will help triage nurses improve their
clinical notes. BioGPT predicts a few irrelevant symptoms
such as ‘chills’ which are already present in the sentence.
BioGPT-Large-PubMedQA generates some relevant symptoms
and a probable timeframe, which is quite similar to the
output of BioGPT-Large model. In example 2, when 50% seed
sequence is given, both BioGPT-Large and BioGPT-Large-
PubMedQA are able to complete the phrase and suggest the
next words almost similar to reference CC. However, BioGPT
fails to generate a meaningful CC sentence in this scenario. In
example 3, the reference CC has 2 parts formed as a compound
CC. Each of our experimented models successfully predicts the
next word ‘pain’. Though the BioGPT-Large model was able
to complete the phrase, it failed to generate the last part. Other
models could not capture the first phrase properly. Several CCs
consist of multiple clauses and also include direct statements
made by patients. Such a CC is - about 7wks pregnant per pt,
pt thinks she's having a miscarriage, pt states, “last night I felt
like I was bleeding more than spotting”. The performance of
our experimented models for these particular sorts of CC is
comparatively inferior.

For all of these 3 aforementioned examples, GPT-4 success-
fully generates meaningful long sentences. However, from our
observation, it seems unable to capture the CC structure fully.
Overall, our fine-tuned BioGPT-Large model performs better.

Though our fine-tuned BioGPT-Large model works excel-
lently in the short term, it diverges in the long term. It's
not uncommon for language models like BioGPT to perform
well in generating short-term text, but struggle with generating

longer sequences. This is because generating long sequences
requires the model to maintain coherence and consistency over
a larger context, which can be challenging even for SOTA
models. In the training set, the median number of words in
a CC sentence is 9. It is expected that user input will be 3
or 4 words which is 30% to 50% of the CC sentence. As
a result, suggesting the next 5 subsequent words will prevent
divergence. If 5 words are not required to complete a sentence,
the BioGPT-Large model holds the capability to predict the
end of a sentence; exhibit example 3 in Table V.

VI. CONCLUSION AND FUTURE WORK

To conclude, we evaluate the performance of two different
types of language models, LSTM and BioGPT, for generating
CCs. Our results show that the BioGPT models outperform the
LSTM model in terms of perplexity score. We further evaluate
BioGPT models based on BERTScore and cosine similarity.
Among all BioGPT models, BioGPT-Large achieves superior
performance while generating more accurate and coherent CC.
In addition, we identify that the performance of the LSTM
model is limited due to the small size of our training data.

In the upcoming phase, we intend to conduct a Human-
Centric evaluation of our models' outputs, with insights from
domain experts. Additionally, we will use a medical corpus
to ensure the accuracy of medical terminologies. Moreover,
we aim to refine the date-time representation during post-
processing.
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[44] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, and J. Tsujii,
“Brat: a web-based tool for nlp-assisted text annotation,” in Proceedings
of the Demonstrations at the 13th Conference of the European Chapter
of the Association for Computational Linguistics, 2012, pp. 102–107.

[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[46] H. Park, S. Cho, and J. Park, “Word rnn as a baseline for sentence
completion,” in 2018 IEEE 5th International Congress on Information
Science and Technology (CiSt). IEEE, 2018, pp. 183–187.

[47] L. Yao and Y. Guan, “An improved lstm structure for natural language
processing,” in 2018 IEEE International Conference of Safety Produce
Informatization (IICSPI). IEEE, 2018, pp. 565–569.

[48] T.-H. Wen, M. Gasic, N. Mrksic, P.-H. Su, D. Vandyke, and S. Young,
“Semantically conditioned lstm-based natural language generation for
spoken dialogue systems,” arXiv preprint arXiv:1508.01745, 2015.

[49] “Raj hpc— marquette’s high performance computing cluster,” https:
//www.marquette.edu/high-performance-computing/architecture.php,
(Accessed on 09/20/2023).

[50] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a
few examples: A survey on few-shot learning,” ACM computing surveys
(csur), vol. 53, no. 3, pp. 1–34, 2020.

[51] A. Celikyilmaz, E. Clark, and J. Gao, “Evaluation of text generation: A
survey,” arXiv preprint arXiv:2006.14799, 2020.

[52] “Perplexity measure,” https://huggingface.co/docs/transformers/
perplexity, (Accessed on 09/09/2023).

[53] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with bert,” arXiv preprint arXiv:1904.09675,
2019.

[54] F. Rahutomo, T. Kitasuka, and M. Aritsugi, “Semantic cosine similarity,”
in The 7th international student conference on advanced science and
technology ICAST, vol. 4, no. 1, 2012, p. 1.

[55] M. Farouk, “Measuring sentences similarity: a survey,” arXiv preprint
arXiv:1910.03940, 2019.

[56] H. K. Dam, T. Tran, and T. Pham, “A deep language model for software
code,” arXiv preprint arXiv:1608.02715, 2016.

[57] D. Kauchak, “Improving text simplification language modeling using
unsimplified text data,” in Proceedings of the 51st annual meeting of
the association for computational linguistics (volume 1: Long papers),
pp. 1537–1546.

https://platform.openai.com/docs
https://www.marquette.edu/high-performance-computing/architecture.php
https://www.marquette.edu/high-performance-computing/architecture.php
https://huggingface.co/docs/transformers/perplexity
https://huggingface.co/docs/transformers/perplexity

	Introduction
	Background study
	Chief Complaint
	Text Generation in Electronic Health Record
	Autocompletion in Electronic Health Record

	Methodology
	Dataset Description
	Data Preprocessing
	A Neural Network Approach
	A Transfer Learning Approach
	Prompt Tuning: Few-Shot Technique

	Results
	Perplexity Measure
	BERTScore Measure
	Cosine Similarity Measure
	Execution Time Evaluation

	Discussions
	Conclusion and Future work
	References

