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Abstract—Publishing and sharing data is crucial for the data
mining community, allowing collaboration and driving open
innovation. However, many researchers cannot release their data
due to privacy regulations or fear of leaking confidential business
information. To alleviate such issues, we propose the Time Series
Synthesis Using the Matrix Profile (TSSUMP) method, where
synthesized time series can be released in lieu of the original
data. The TSSUMP method synthesizes time series by preserving
similarity join information (i.e., Matrix Profile) while reducing
the correlation between the synthesized and the original time
series. As a result, neither the values for the individual time steps
nor the local patterns (or shapes) from the original data can be
recovered, yet the resulting data can be used for downstream
tasks that data analysts are interested in. We concentrate on
similarity joins because they are one of the most widely applied
time series data mining routines across different data mining
tasks. We test our method on a case study of ECG and gender
masking prediction. In this case study, the gender information
is not only removed from the synthesized time series, but the
synthesized time series also preserves enough information from
the original time series. As a result, unmodified data mining tools
can obtain near-identical performance on the synthesized time
series as on the original time series.

Index Terms—time series, data synthesis

I. INTRODUCTION

When releasing datasets to the public, the most common
concerns are privacy-related issues. This is because preserving
the privacy of the data donors is one of the most important
ethical and social responsibilities for data mining researchers.
Moreover, researchers must typically adhere to data protection
and privacy laws like HIPAA [1], GDPR [2], and PIPA [3].
As a result, the dataset must be properly anonymized before
releasing it to the public. We recognize that “privacy” is a term
with precedent and is well-defined in other domains; any of our
references to “anonymization” are informal unless otherwise
noted. In this work, our focus is on the anonymization of time
series through solving the time series substitution problem:

Problem 1. Let the function c(·, ·) compute the correlation
between two inputs, and the set D be a collection of time
series data mining methods for different data mining tasks.
Given a time series T , we want to define an anonymization
function f(·) which synthesis time series T̂ = f(T ) such that
c(T, T̂ ) ≈ 0 and d(T ) ≈ d(T̂ )∀ d ∈ D.

The goal of Problem 1 is to synthesis a time series T̂ from
the original time series T . The synthesis function f(·) in

Problem 1 needs to satisfy two conditions: 1) c(T, T̂ ) ≈ 0 and
2) d(T ) ≈ d(T̂ )∀ d ∈ D. The role of the first condition is to
ensure T and T̂ have different local patterns; we call it the lo-
cal pattern condition. It is crucial to conceal the local patterns
because, as demonstrated in our experiment (Section III), they
have the potential to reveal traits about the individuals who
generate the time series. We use Pearson correlation c(·, ·) to
ensure T and T̂ are not linearly correlated with each other.
This safeguards against malicious attackers trying to recover
T from T̂ as the solution to argminT̂ PEARSONCORR(T, T̂ )2

is not unique.
The goal for the second condition is to maintain the utility

of T . We hypothesize we could satisfy d(T ) ≈ d(T̂ )∀ d ∈ D
by enforcing MATRIXPROFILE(T ) ≈ MATRIXPROFILE(T̂ ).
The Matrix Profile (MP) is an effective method to summarize
the distance between subsequences and their nearest neigh-
bors [4, 5]. We choose to preserve such structure information
when generating T̂ because there is an increasing realization
that such information is sufficient for many time series data
mining tasks. These include segmentation, rule discovery, time
series joins, and anomaly detection [6]. By preserving the MP
from T to T̂ , we are able to maintain sufficient information to
ensure success in some d ∈ D. This condition, which focus on
the nearest neighbor relationship between subsequences within
a time series (a type of global structure), is referred to as the
global structure condition.

We note the choice of Pearson correlation and MP is
only one of many possible formulations for the time series
substitution problem. This is the initial attempt to solve this
problem, and we limit our scope to this particular variant
of the problem for proof-of-concept purposes. We defer the
investigation of other variations for future work.

We use the case study in Fig. 1 to illustrate how the
TSSUMP method can anonymize time series by addressing
Problem 1 on a real-world dataset. Suppose an electrocardio-
gram (ECG) time series anomaly detection (TSAD) bench-
mark is made available in the public domain, comprised
comprised of data collected from multiple patients, and does
not include any accompanying metadata that contains personal
information (e.g. gender, age, pre-existing health conditions).

However, an individual might build a model capable of
identifying, in whole or part, sensitive information from this
ECG TSAD benchmark using other ECG datasets in the public
domain [7]. This potential information recovery is feasible
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Fig. 1: A process diagram of using TSSUMP to release electrocardiogram (ECG) time series. Models trained on existing public
ECG datasets to identify sensitive information about patients (e.g., gender) are unable to do so while researchers can still use
existing time series analysis methods for tasks, such as anomaly detection. More details can be found in Section III.

because the local patterns present in T (such as individual
heartbeats) exhibit similarity to the patterns observed in other
ECG datasets. As depicted in Fig. 1, a malicious individual
could compromise the privacy of patients’ data by utilizing a
gender prediction model trained on datasets from [7] to deduce
the gender of each patient.

Using the TSSUMP method, the synthesized time series
contains different local pattern while the utility of the original
time series is maintained. If we release the synthesized time
series in lieu of the original ECG time series, the malicious
individual’s gender prediction model will degrade to the de-
fault rate when classifying patients in our new benchmark.
This deterioration arises from the discrepancy between the
shape of the heartbeat in the new synthesized benchmark
and the patterns observed in [7]. By preserving the utility,
the synthesized dataset ensures consistent performance across
various anomaly detection methods. Thus, it can serve as a
suitable replacement for the original ECG dataset, enabling
researchers to develop methods for time series tasks.

Our contributions include:
• We define the time series substitution problem as a means

to address the anonymization problem for time series data.
• We propose an initial successful solution leveraging the MP

to preserve the utility of original time time series while the
local patterns are unrecoverable from T̂ .

• We demonstrate the effectiveness of TSSUMP using a real-
world ECG dataset.

II. METHODOLOGY

The synthesis process of TSSUMP involves solving an
optimization problem. In this section, we focus on discussing
the loss function utilized in TSSUMP. For more details and
the implementation of the optimization algorithm, please refer
to our project website [8].

We design the loss function L so that the solution of
argminT̂ L(T, T̂ ) satisfies the local pattern and global struc-
ture conditions, and it is shown in Eq. 1.

L = Llocal + Lglobal (1)

where the Llocal is the local pattern condition loss, Lglobal is
the global structure condition loss for preserving utility.

Since Llocal focuses on the local patterns (or subsequences),
as the name suggests, Llocal is defined as:

Llocal = PEARSONCORR(Ti,m, T̂i,m)2 (2)

where Ti,m is the ith subsequence in T , T̂i,m is the ith
subsequence in T̂ , and m is the subsequence length. In the
example shown in Fig. 2, the Pearson correlation is computed
between the subsequence Ti,m from the original time series T
and the subsequence T̂i,m from the synthesized time series T̂ .
The subsequences are both the ith subsequence from their
corresponding time series.

^
synthesized 
time series, T

time series, T

m

Ti,m

Ti,m^

Fig. 2: The local pattern condition loss Llocal is computed
with PEARSONCORR(Ti,m, T̂i,m)2 using subsequences from
the same temporal location (i.e., ith time stamp).

The Lglobal loss term preserves the MP and MP Index (MPI)
of T when synthesizing T̂ . Since the MP and MPI store



the distance and identity of the nearest neighbor for each
subsequence, Lglobal is defined as:

Lglobal = Ldistance + Lidentity (3)

where Ldistance is the distance loss and Lidentity is the identity
loss for retaining the distance and identity information, respec-
tively. If Tj,m is Ti,m’s nearest neighbor in T , the distance
loss Ldistance is defined as:

Ldistance =
(

DIST(Ti,m, Tj,m)− DIST(T̂i,m, T̂j,m)
)2

(4)

where DIST(·, ·) is a function that computes the z-
normalized Euclidean distance between the inputs. The dis-
tance loss Ldistance ensures the distance between Ti,m and its
nearest neighbor Tj,m equal to the distance between their
counterparts in T̂ . If Ldistance is minimized, T̂ and T will have
similar MPs. Fig. 3 shows the relationship between Ti,m, Tj,m,
T̂i,m, and T̂j,m.

Ti,m Tj,m

… … …

Ti,m
^ Tj,m

^ Tk,m
^

… … …^
synthesized 
time series, T

time series, T

nearest 
neighbor

MPm [i] = Dist(Ti,m, Tj,m)TT

MPIm [i] = jTT

Fig. 3: Given the sampled subsequence index i, Ldistance and
Lidentity are computed using the subsequences highlighted in
the figure (see Eq. 4 and 5).

To preserve the nearest neighbor identity information, we
need to consider the distances between a subsequence T̂i,m

and the other subsequences T̂k,m in T̂ . If the nearest neighbor
of Ti,m is Tj,m, DIST(T̂i,m, T̂j,m) needs to be smaller than
DIST(T̂i,m, T̂k,m) for any k ∈ {0, · · · , n − m + 1} \ {i, j}.
To enforce such a relationship, we have defined the identity
loss Lidentity as:

Lidentity = RELU
(

DIST(T̂i,m, T̂j,m)− DIST(T̂i,m, T̂k,m)
)

(5)

The term DIST(T̂i,m, T̂j,m) computes the distance between a
supposed nearest neighbor pair of subsequences, and the term
DIST(T̂i,m, T̂k,m) computes the distance between a supposed
non-nearest neighbor pair. Because we want to ensure that
DIST(T̂i,m, T̂j,m) < DIST(T̂i,m, T̂k,m), Eq. 5 will only result
in non-zero value if such relationship is violated. In other
words, minimizing Eq. 5 ensures that the relationship holds
in time series T̂ . Fig. 3 shows the relationship between the
subsequences used for computing Lidentity.

III. EXPERIMENT

We use the ECG time series from MIT-BIH Long-Term
ECG Database [7] to validate the claims we presented in
Fig. 1, where the targeted data mining task is time series
anomaly detection (TSAD). Recall that our claims are 1) that
it is possible to build a classifier to detect personal information
from heartbeat, 2) TSSUMP can reduce the risk of uncovering

personal information from synthesized time series, and 3) the
synthesized time series produced by TSSUMP is a suitable
proxy for the original in TSAD benchmarks.

There are seven patients in the ECG database. To validate
claims #1 and #2, we use 1,000 randomly extracted samples
from each patient’s first 100,000 data points to build a gen-
der/age classifier with Support Vector Machine (SVM) [9, 10]
using default [9] parameters. The length of each sample is
100, and a total of 7,000 training samples (7 patients × 1,000
samples) are extracted from the database. The gender and age
classifiers are trained as binary classifiers, with the gender
classes as male/female and the age classes as under/over 60
years old. The SVM models are relatively easy to train with off
the shelf tools [9, 10] compared to deep learning models [11].

Validating Claims 1 and 2: We randomly extracted 1,000
samples from the second 100,000 data points of each patient.
We extract 7,000 test samples from both the original time
series and the time series generated by TSSUMP. To ensure
the comparison is fair, the samples are extracted from the same
temporal location for both original and synthesized series.

As both classifiers are built for binary problems, we use the
F1-score as the performance measurement. When the classifier
is applied to the test samples from original time series, the
F1-score for gender is 0.8585 and the F1-score for age is
0.9276. In other words, even if the gender/age information
is not included in the released dataset, a malicious individual
could likely uncover such information using models build from
public domain data. However, when we apply the classifier
on the substitute time series, the F1-score drops to 0.4635
for gender and 0.3618 for age, indicating that this personal
information is protected by TSSUMP.

Validating Claim 3: We conduct TSAD experiments similar
to [12]. We extract the second 100,000 data points of each
patient for the experiment, using the normal heartbeats from
the first 50,000 data points as the training data and the second
50,000 data points as the test data. We apply multiple TSAD
algorithms to both the original and the synthetic time series.
The TSAD algorithms tested in our experimentation are shown
in Table I.

TABLE I: The tested TSAD algorithms. Vector space and
subsequence based methods are denoted with an asterisk(*).

Library Method
Scikit-learn [9] Local Outlier Factor (LOF)*, Isolation Forest

(IForest)*, One-Class Support Vector Machine
(OCSVM)*, Autoregressive Model (Autoreg)*

PyOD [13] Auto-Encoder (AE)*, Variational Auto-
Encoder (VAE)*, Deep Support Vector
Data Description (DeepSVDD)*, Anomaly
Detection with Generative Adversarial
Networks (AnoGAN)*

TODS [14] Recurrent Neural Network (RNN) with Long
Short-Term Memory (LSTM), RNN with
Gated Recurrent Units (GRU), Deep Autoen-
coding Gaussian Mixture Model (DAGMM)*

SCAMP [15] Matrix Profile (MP)*

The vectors for vector space methods are extracted using a
sliding window with step a size of one, and vector/subsequence



lengths are set to 100. For the other hyperparameters, we use
the default setting from the implementation.

We use the Area Under the Receiver Operating Charac-
teristic Curve (AUC) to measure the quality of the anomaly
score when compared to the ground truth labels. We choose
to use AUC instead of the F1-score because anomaly scores
returned by the evaluated methods need to be converted to
binary predictions to evaluate F1-scores. As pointed out by
Kim et al. [16], the binarization process for TSAD is itself
a challenging problem. Therefore, we use AUC to avoid the
additional complication in converting the anomaly scores to
binary predictions. The performance (averaged AUC over 7
patients) of the 12 methods on both original and synthetic
time series is shown in Table II.

TABLE II: Comparison of different anomaly detection meth-
ods on original and synthesized time series.

Original Synth. Original Synth.
LOF 0.9531 0.9444 DeepSVDD 0.6167 0.6228
IForest 0.7272 0.6977 AnoGAN 0.5773 0.4703
OCSVM 0.8006 0.8256 LSTM 0.4859 0.4861
AutoReg 0.5114 0.4964 GRU 0.4867 0.4857
AE 0.9383 0.8882 DAGMM 0.6443 0.6438
VAE 0.8771 0.8695 MP 0.9294 0.9387

Aside from AnoGAN, the same TSAD method archives
similar performance on both datasets. One possible reason for
the inconsistency associated with AnoGAN is that the loss
function used in AnoGAN is known to be unstable [17, 18].
Broadly speaking, the experiment results reported in Table II
validate claim #3.

IV. RELATED WORK

Shou et al. [19] proposed a time series anonymization
method that utilizes the (k, P )-anonymity privacy model [19],
focusing on protecting individual time series within the
grouped or aggregated time series, and it differs in its goals
compared to TSSUMP. Ruta et al. [20] propose a method
to summarize and anonymize time series by providing a
summarization of the time series while preserving the relevant
shape information from the original series as much as possible.
In contrast, TSSUMP is designed to remove shape information.
Wang et al. [21] proposed the PART-GAN model, an extension
of the conditional generative adversarial network, to guarantee
differential privacy for anonymizing time series classification
datasets, addressing a different problem than Problem 1.

To the best of our knowledge, the proposed TSSUMP
method stands as the only time series anonymization technique
that focusing on removing local pattern information while
preserving the utility of the original time series. Notably, it
accomplishes its objective without any dependence on accom-
panying label information and without requiring the original
dataset to contain multiple time series.

A. The Importance of the MPI

While we believe that our paper is completely self-
contained, here we take the liberty of further explaining the

importance of the location information contained within the
Matrix Profile Index (MPI).

We want to reiterate and expand on the text in our paper,
because a reader who is not very familiar with time series
data mining might balk at the idea that the actual shape
of the subsequences may not be important, but the location
of the subsequence’s nearest neighbors is. Gharghabi et. al.
showed in [22, 23], that for semantic segmentation we only
need the location of the subsequence’s nearest neighbors. More
generally, there seems to be an emerging realization that such
information is sufficient for most time series data mining tasks.

For example, one of the main reasons why the community
does motif discovery is to understand the temporal relationship
between the motifs. Suppose we compare and contrast the
motifs in the New York Taxi demand, and the motifs in
New York temperature. An analyst may make the following
observations:
• For both datasets, the majority of the subsequence’s motifs

are to the day before (or after). This is what forecasters call
classic persistence, the assumption that the situation will be
the same tomorrow as it was today.

• Uniquely for Taxi, some of the subsequence’s nearest neigh-
bors will be seven days away. This is because of the vagaries
of the typical five-day workweek, both Saturday and Sunday
are different to typical weekdays, and each other.

• The timing of some motifs across the two different datasets
are related. Unusually hot or cold weather does greatly affect
taxi demand.

• There are a handful of days in the year when both Taxi
and Temperature motifs strongly violate classic persistence,
these are usually caused by blizzards. Such events are
classic anomalies identified in the Numenta anomaly bench-
mark [24].

• Finally, if the analyst has access to taxi demand from other
cities, she may be able to see interesting differences. For
example, Philadelphia, PA is only 80 miles from New York
and has similar weather and culture. However, in New York
alone, the subsequence’s representing the second Monday
of October show much lower persistence. Why is that?
It appears that to be caused by Columbus Day, which is
celebrated by New York’s Italian-American community but
is increasing ignored in the rest of the USA.
Note that all the analytics above (and much more) can be

conducted with only access to knowledge of the location of
the subsequence’s nearest neighbors.

V. CONCLUSIONS

We introduced the Time Series Synthesis Using the Matrix
Profile (TSSUMP) method which takes an input time series T
and synthesizes a new time series T̂ that preserves similarity
join information. The consideration of other sensitive charac-
teristics (e.g., protection against location-based attacks [25]),
improvement of the utility of the synthesized series, en-
hancement of the scalability of the synthesizing process [26,
27], testing on subsequence classification problems [28], and
evaluating privacy on a theoretical level are other areas of



future work. Our code and results are available in perpetuity
at [8].
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