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Abstract—Caching has become an important technology in the 

development of cloud computing-based high-performance web 

services.  Caches reduce the request to response latency 

experienced by users, and reduce workload on backend databases.  

They need a high cache-hit rate to be fit for purpose, and this rate 

is dependent on the cache management policy used.  Existing 

cache management policies are not designed to prevent cache 

pollution or cache monopoly problems, which impacts negatively 

on the cache-hit rate.  This paper proposes a community-based 

caching approach (CC) to address these two problems.  CC was 

evaluated for performance against thirteen commercially available 

cache management policies, and results demonstrate that the 

cache-hit rate achieved by CC was between 0.7% and 55% better 

than the alternate cache management policies.   

Keywords—Cache, Cloud Computing, Clustering, Artificial 

Bee Colony 

I.  INTRODUCTION 

A cache holds copies of requested data close to the 
source of request, in anticipation of receiving the same 
request again.  This reduces request to response latency, 
network traffic, and workload on web service backend 
databases.  As shown in Fig. 1, when a user makes a request 
from a web service, the supporting cache is first checked for 
existence of a response to the request.  If a response exists in 
the cache (cache-hit), the response is sent to the user.  If a 
response does not exist in the cache (cache-miss), a response 
is extracted from the web service backend database, and a 
copy is sent to the cache.   

 

Figure 1. Web Caching.  A user makes a request (A) on a web service, and 

the supporting cache is checked.  If a response exists in the cache (cache-

hit), the response (B) is sent to the user.  If a response does not exist in the 
cache (cache-miss), a response is extracted from the web service backend 

database (C and D) and a copy (E) is sent to the cache. 

 In the early 1980s, caches were used to support 
computer processing units for improved computer 
performance.  Caches have since been shown to be useful in 
other areas, including in computer disk drive management, 

database management systems, web browsers, proxy servers, 
and most recently, in cloud computing. 

Since the early years of the internet, a lot has changed: 
there is a growing world population, the internet is more 
widely accessible, there are an increasing number of 
applications, and there has been a shift from static to 
dynamic content.  These factors are responsible for 
generating enormous volumes of traffic, putting huge 
demands on the databases and cache resources which support 
web services.  As a result, web service users may experience 
delays when retrieving web pages from remote sites.  One 
obvious solution is to expand resources, and cloud 
computing is quickly becoming the preferred option in 
achieving this.  Cloud computing represents a new shared 
consumption and delivery model for information technology 
services, and its scalability allows the dynamic expansion of 
resources based on demand [1][2][3].  However, the 
expansion of resources may involve an increase in economic 
cost.  This paper presents a community-based caching 
approach (CC) which manages caches more intelligently 
rather than expanding them. 

 

II. MOTIVATION AND CONTRIBUTION 

This work is motivated by the emergence of caching as a 
cloud service, supporting web services in keeping up with 
the fast-growing demands of internet users on their backend 
database servers [4].  Current commercially-available 
management policies driving such cloud services were 
developed to support other environments, such as computer 
processing units and computer storage disks.  They were not 
developed with the multi-tenant characteristic or 
homogeneity of scale of cloud computing in mind.   

Also relevant is recent research into data mining, 
particularly use of the Artificial Bee Colony clustering 
algorithm, and the opportunity for exploiting the advantages 
of homogeneity in cloud computing multi-tenancy using data 
mining clustering methodology to make cloud computing-
based caches ‘smarter’, producing a better cache-hit rate.   

Caches are expensive and limited in size.  A cache 
requires a policy to ‘manage’ it, or to dictate what is held or 
removed [5].  Current commercially-available cache 
management policies are prone to two problems: cache 
pollution (where users continue to fill the cache with 
requests which will not be referenced again) and cache 
monopoly (where some users monopolise the cache with a 
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higher request rate).  To highlight the research questions that 
flow from the consideration of these two problems, I 
introduce two scenarios based on web use behaviour.   

Cache Pollution: A user who issues frequent unique 
requests for data objects with zero reusability potential may 
evict other users’ cached data objects which have reusable 
potential before they are reused. 

In Fig. 2 User 1 sends the same request with 13 units of 
time between each request, while User 2 sends different 
requests each unit of time.  Between t1 and t3, requests from 
User 1 appeared once and did not survive in the cache for 
reuse because User 2’s frequent and non-reusable requests 
would always evict it.  This leads to cache pollution, where 
frequent non-reusable requests flood a cache.  Caches are 
meant to hold data for reuse, and so the higher the reusability 
potential of a data object, the more it contributes to cache-hit 
rate and therefore better utilisation of the cache.  Cache 
pollution prevents this effective use. 

Cache Monopoly: In Fig. 2, assuming User 2 makes 
some occasional repeat requests, there will be an issue of 
cache monopoly, as User 1 yet does not stand a chance of a 
cache-hit.  If the cache’s shared resources are allocated based 
on overlapping interests across all users, the risk of 
monopoly can be minimised. 

 

Figure 2. Cache Pollution and Monopoly. 

 

Our research is aimed at optimising cache performance, 
examining the following questions:  

(1) Can the reduction of cache pollution and cache 
monopoly improve cache-hit rate?  

(2) Can identifying data objects with zero or little 
potential of being referenced again and proactively 
preventing them from being cached reduce cache 
pollution?  

(3) Can grouping users based on shared interests and 
allocating cache resources based on these groups 
rather than individual users minimise cache 
monopoly?  

(4) Can clustering successfully group users into 
communities of shared interest and associated 
interest levels? 

From these questions we arrived at three summary 
research objectives: 

(1) Design of a new cache management policy which 
prevents storage of data objects with little or no 

reuse potential, and allocates cache resources based 
on groups (communities) of shared interests. 

(2) Implementation of this new cache management 
policy, integrating a clustering algorithm to provide 
community and shared interest ranking information. 

(3) Evaluation the performance of the new cache 
management policy against current commercially-
available cache management policies. 

 
The result, and the subject of this paper, is a novel 

community-based caching approach for cloud computing 
environments. 

 

III. DESIGN 

Our proposed CC approach for cache management 
identifies communities by grouping together users with 
common interests, based on their access patterns, using a 
clustering algorithm.  It then profiles each community’s 
interests based on popularity within that community.  This 
interest profile is used to prevent cache pollution by 
determining which data object is allowed into the cache and 
which cached data object is evicted.  The identified 
communities are used to minimise cache monopoly by 
partitioning the cache and assigning each community to a 
cache partition (Fig. 3). 

 

 

Figure 3. A community-based caching approach. 

CC is inspired by the foraging activity of natural honey 
bees.  The organisational techniques of foraging honey bees 
has been proven to solve many optimisation problems 
[6][7][8][9].  Two aspects of honey bee foraging activity in 
particular have informed my engineering approach—
profitability-based deployment, and territorial organisation.   

Profitability-based deployment: For a bee colony to 
gather food efficiently, it deploys ‘employed foragers’ (E) to 
identify food sources and their profitability.  The colony then 
deploys ‘unemployed foragers’ (onlooker bees: U and scout 
bees: S) to food sources based on identified profitability, to 
ensure that most of its nectar comes from the richest sources.   

Territorial organisation: Back at the hive, food-storer 
bee (FS) behaviour indicates the hive’s available nutrients—
its  level of stockpiled nectar, pollen and water.  Bee colonies 
practice territorial defence.  Hive guards (HG) react based on 
the status of the hive: during nectar shortages, they are less 
permissive of non-hive bees.  But as nectar becomes 



abundant guards become more permissive toward non-hive 
mates (Fig. 4) [10][11]. 

 

 

Figure 4. Honey bee foraging activity.  The employed bee (E) provides its 

hive mates with information on identified food sources.  The food-storer 

bee (FS) provides information about the hive’s status.  Onlooker bees (U) 
and scout bees (S) use this information to ensure the hive gains the 

nutrients it needs.  Hive guards (HG) use the information provided by FS to 

determine whether to allow non-hive mates through the hive gate. 

CC is composed of a cache and a management layer.  
Consider the cache—which is partitioned into sub-caches—
as a set of hives: it is supported by a ‘Cache Manager’ (CM), 
‘Community Information Provider’ (CI-P) and a 
‘Demography Information Provider’ (DI-P) as shown in Fig. 
5 and Fig. 6.  CC periodically deploys its employed forager 
(CI-P) to gather information about food sources (incoming 
requests), identifying those belonging to the same patch 
(community), and building a profitability profile for each 
patch.  The storer bee (DI-P) provides status information on 
each sub-cache.  Unemployed bees (CM) choose which food 
source to harvest based on the profitability profile made 
available by employed foragers.  Guard bees only allow the 
use of sub-cache resources if there are surplus unused 
resources. 

 
Cache Manager (CM): Unemployed Bees and Hive Guard Bees 
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Figure 5. Mapping CC to Natural Honey Bee Foraging.   
 
The CM is responsible for users’ ‘get’ requests, 

partitioning the cache into sub-caches (territories) and 
applying the cache replacement policy (insertion and 
eviction).  It depends on the CI-P and DI-P to achieve these 
responsibilities.  The CI-P runs a clustering algorithm at set 
intervals, providing the CM with community membership 
information and interest profiles.   

 

The clustering algorithm used by CI-P is a modified 

ABC algorithm: Q2ABC [12].  The ABC clustering 

algorithm was chosen because of the simplicity of 

implementing and modifying it, the research interest it has 

drawn since its introduction, the ease of incorporating other 

metaheuristic algorithms into it, its good performance 

against other population-based algorithms, and because its 

representation is centroid-based.  DI-P provides CM with 

content quality and the availability status of each sub-cache.  

Each cluster identified by the clustering algorithm 

represents a community of users with shared interests.  The 

centroid of each cluster represents the popularity levels of 

requests made within each cluster.  
 

 

Figure 6. Relationship between Cache Manager (CM), Demography 

Information Provider (DI-P) and Community Information Provider (CI-P).  
The CM makes decisions based on the information provided by the DI-P 

and CI-P.  The CM captures historic data for the CI-P. 

 
Under the CC policy, the number of sub-caches is set to 

the given maximum number of communities plus one 
additional sub-cache assigned to requests with an unknown 
or unestablished community identity.  When a cache 
insertion request is made, the CM retrieves the request’s 
community identification and associated sub-cache, then 
carries out actions as described in Fig. 7. 
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Figure 7. Community-based Caching Replacement Policy.  When a cache 

request is made, the associated territory (sub-cache or partition) of the 
incoming data object is identified.  The data object is cached firstly based 

on space availability in its associated territory before that in other 

territories, and secondly based on the comparison of interest levels between 
the incoming and the incumbent data objects. 

 

IV. IMPLEMENTATION AND EVALUATION 

We evaluated CC against Adaptive Replacement Cache 
(ARC), Clock, First-in-first-out (FIFO), Greedy Dual (GD), 
Greedy Dual Size Frequency (GDSF), Hybrid, Least 
Frequently Used (LFU), Low Inter-reference Recency Set 
(LIRS), Least Recently Used (LRU), Most Recently Used 
(MRU), Two Queue (2Q) and Random Replacement (RR) 
cache management policies using cache-hit rate, cache-
acceptance count and cache-rejection count as metrics.  To 

carry out the evaluation, we implemented CC within a 
simulation environment.   

A. Simulation Environment 

I installed a Memcached 1.2.6 server, Ncache express 
server, and Oracle coherence 12.1.3 server, alongside 
libraries for ARC, Clock, FIFO, GD, GDSF, Hybrid, LFU, 
LIRS, MRU, 2Q and RR cache management  policies on a 
virtual machine with 2.4 GHz Intel Core 2 Duo, 2Gb base 
memory and 40Gb of storage.  To ensure consistency, I set 
all caches to the same size, starting at 20Mb then scaling up 
to 40Mb and finally 80Mb.  I also turned off the compression 
capabilities of the memcached and ncache cache servers.  
The CC cache-partition-count parameter was set to 3, the 
decay-age parameter to 10 times the cache size, and the 
community identification process trigger was set to go off 
after every one hundred cache requests.  Datasets used for 
the evaluation included those of ClarkNet, EPA, Google 
Plus, Hyperreal, MemeTracker, MSNBC, NASA, Twitter, 
University of Saskatchewan (UOS) and USA.gov 
[13][14][15].  The simulation was repeated ten times 
independently for each dataset.  Reported values from the 
simulation are averages of the values obtained from the 
repetitions. 

B. Simulation Results 

The simulation results have been divided into three 
groups.  The first group shows results from the simulation 
based on a 20Mb cache size, while the second and third 
groups are based on a 40Mb and 80Mb cache size 
respectively.    

Each group consists of tables showing cache-hit rate 
performances.  Fig. 8–12 are charts showing cache 
monopoly management and cache pollution avoidance.  

Results from the first set of experiments (cache size 
20Mb) show that CC had a cache-hit rate between 0.7% and 
55% better than the compared policies in six of the ten traffic 
data used (Table I).  The second experiment shows that CC 
had a cache-hit rate between 1% and 49% better with seven 
of the ten trace traffic data used (Table II).  The third 
experiment shows CC having a cache-hit rate between 1% 
and 21% better with six of the ten trace traffic data used 
(Table III).  A t-Test (Paired Two Sample for Means) shows 
that CC cache-hit rate performance over the other cache 
policies (with the exception of GD, GDSF and LIRS) is 
statistically significant.  Google Plus trace traffic data under 
CC showed a higher standard deviation and standard error 
compared with other cache policies. 

Fig. 8–10 show average cache-hit rate against expected 
cache-hit rate (average repeated requests rate) for cache size 
20Mb.  CC maintained a cache-hit rate above the expected 
rate across most frequency groups.  There were two 
exceptions: (1) where all tested cache policies had an 
average cache-hit rate below the expected cache-hit rate, CC 
performance was closest to the expected cache-hit rate.  This 
is because CC excludes data objects with no cache-hit 
potential from being cached, while managing those with 
cache-hit potential in order to minimise cache monopoly and 
optimise cache-hit rate.  In our experiment there was one 



TABLE I AVERAGE HIT RATE FOR 20MB CACHE MEMORY SIZE 

Cache 
Policy ClarkNet EPA 

Google 
Plus Hyperreal MemeTracker MSNBC NASA Twitter UOS USAGov 

2Q 6.9% 35.6% 1.9% 45.0% 17.7% 98.3% 45.9% 1.2% 38.3% 14.4% 

ARC 6.9% 33.9% 2.0% 40.5% 17.9% 89.8% 38.4% 1.2% 37.6% 15.3% 

BCC 14.2% 46.7% 2.4% 50.4% 15.8% 98.3% 56.9% 2.0% 51.4% 13.7% 

Clock 9.9% 42.2% 0.1% 34.5% 11.4% 98.3% 45.2% 1.3% 32.3% 6.9% 

GD 7.6% 38.5% 2.5% 44.9% 17.9% 98.3% 43.5% 1.0% 40.2% 17.6% 

GDSF 9.9% 43.6% 2.4% 45.8% 18.0% 98.3% 50.0% 1.3% 49.5% 17.6% 

LIRS 7.7% 36.7% 1.9% 45.5% 17.9% 98.3% 44.0% 1.5% 39.6% 17.8% 

LRU 3.5% 19.1% 1.7% 31.1% 17.6% 98.3% 24.9% 1.5% 28.4% 11.8% 

MRU 6.1% 12.4% 0.1% 16.9% 11.4% 98.3% 16.2% 0.9% 19.5% 5.4% 

FIFO 1.1% 1.6% 0.4% 2.6% 1.8% 97.5% 1.8% 0.4% 2.3% 1.3% 

HYBRID 7.8% 39.7% 1.4% 25.8% 15.4% 98.3% 37.5% 1.3% 41.6% 9.3% 

LFU 5.8% 39.5% 0.6% 26.7% 15.2% 98.3% 34.9% 0.8% 38.0% 8.1% 

RR 7.0% 33.2% 2.3% 39.3% 17.4% 98.3% 36.6% 0.9% 37.0% 16.2% 

CC had a cache-hit rate between 0.7% and 55% better in six of the ten trace traffic data used. 

 

TABLE II AVERAGE HIT RATE FOR 40MB CACHE MEMORY SIZE  
Cache 
Policy ClarkNet EPA 

Google 
Plus Hyperreal MemeTracker MSNBC NASA Twitter UOS USAGov 

 2Q 6.9% 35.6% 1.9% 45.0% 17.7% 98.3% 45.9% 1.2% 38.3% 14.4% 

 ARC 6.9% 33.9% 2.0% 40.5% 17.9% 89.8% 38.4% 1.2% 37.6% 15.3% 

 BCC 16.3% 49.6% 3.1% 54.8% 16.8% 98.3% 59.0% 2.1% 54.2% 15.5% 

 Clock 9.9% 42.2% 0.1% 34.5% 11.4% 98.3% 45.2% 1.3% 32.3% 6.9% 

 GD 7.6% 38.5% 2.5% 44.9% 17.9% 98.3% 43.5% 1.0% 40.2% 17.6% 

 GDSF 9.9% 43.6% 2.4% 45.8% 18.0% 98.3% 50.0% 1.3% 49.5% 17.6% 

 LIRS 7.7% 36.7% 1.9% 45.5% 17.9% 98.3% 44.0% 1.5% 39.6% 17.8% 

 LRU 7.0% 28.0% 2.5% 41.3% 18.0% 98.3% 35.5% 2.0% 37.6% 16.8% 

 MRU 6.1% 12.4% 0.1% 16.9% 11.4% 98.3% 16.2% 0.9% 19.5% 5.4% 

 FIFO 2.2% 3.1% 1.0% 5.2% 3.5% 97.6% 3.6% 0.7% 4.6% 2.4% 

 HYBRID 10.4% 43.2% 2.1% 37.7% 17.0% 98.3% 49.0% 1.8% 46.6% 15.0% 

 LFU 9.6% 43.7% 1.1% 36.6% 16.9% 98.3% 49.4% 1.0% 44.7% 14.1% 

 RR 7.5% 33.0% 2.3% 39.6% 17.4% 98.3% 37.6% 1.0% 36.9% 16.1% 

 CC had a cache-hit rate between 1% and 49% better in seven of the ten trace traffic data used. 

 

group consisting of 7% of the total users that showed a high 
level of repeated requests (66% of repeated requests came 
from this group).  CC saw this as cache monopoly and 
attempted to minimise it, resulting in a poor performance.  
The second exception (2) is where CC performed generally 
poorly.  In one scenario, CC performance was below 
expected cache-hit rate and the cache-hit rate of some of the 
other cache management policies like ARC, GD, GDSF, 
LIRS and RR.  This was because the USAGov traffic trace 
data had only a few repeated requests, with frequency group 

1-10 accounting for 96% of users and 41% of repeated 
requests. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



TABLE III AVERAGE HIT RATE FOR 80MB CACHE MEMORY SIZE 

Cache 
Policy ClarkNet EPA 

Google 
Plus Hyperreal MemeTracker MSNBC NASA Twitter UOS USAGov 

2Q 15.1% 47.1% 2.9% 52.4% 18.0% 98.3% 55.6% 1.4% 51.3% 20.3% 

ARC 12.8% 47.4% 3.0% 48.2% 18.5% 98.3% 49.7% 1.6% 48.2% 20.5% 

BCC 24.2% 54.0% 4.8% 60.0% 17.6% 98.3% 63.1% 2.7% 60.3% 21.0% 

Clock 11.5% 46.7% 0.1% 51.4% 12.5% 98.3% 54.6% 1.7% 41.0% 8.3% 

GD 15.2% 48.9% 3.6% 53.6% 18.4% 98.3% 56.6% 1.9% 54.6% 21.8% 

GDSF 17.6% 51.2% 3.6% 54.3% 18.3% 98.3% 58.7% 2.1% 58.2% 21.5% 

LIRS 14.0% 51.2% 2.5% 52.5% 18.3% 98.3% 57.9% 2.0% 54.0% 22.9% 

LRU 14.1% 41.5% 3.8% 48.7% 18.2% 98.3% 51.4% 2.5% 48.7% 21.6% 

MRU 8.8% 23.3% 0.1% 27.0% 12.0% 98.3% 26.0% 1.3% 30.2% 8.8% 

FIFO 8.6% 12.5% 4.1% 20.8% 13.9% 97.6% 14.6% 2.8% 18.4% 9.4% 

HYBRID 17.5% 49.2% 3.0% 52.5% 18.5% 98.3% 57.9% 2.1% 56.6% 19.1% 

LFU 15.0% 46.4% 2.1% 50.0% 17.4% 98.3% 56.6% 1.5% 55.8% 17.6% 

RR 13.0% 44.1% 3.4% 49.7% 18.0% 98.3% 49.6% 1.9% 49.5% 20.3% 

CC had a cache-hit rate between 1% and 21% better with six of the ten trace traffic data used. 

 

 

 
 

Figure 8. ClarkNet 1-10 frequency group actual and expected cache-hit rate 
(request-repeat rate).  CC incurred an overhead of 0.09Mb (to store 

community membership and profile information) for this frequency group. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. ClarkNet 11-20 frequency group actual and expected cache-hit 

rate (request-repeat rate).  CC incurred an overhead of 0.07Mb (to store 

community membership and profile information) for this frequency group. 

 

 



 

Figure 10. ClarkNet 21-30 frequency group actual and expected cache-hit 
rate (request-repeat rate).  CC incurred an overhead of 0.06Mb (to store 

community membership and profile information) for this frequency group. 

 
 
A key difference between CC and other cache policies is 

its ability to determine whether or not to cache a data object, 
based on that data object’s cache-hit potential.  Other cache 
policies cache data objects irrespective of their cache hit 
potential.  This poses a risk for cache pollution.  CC 
prevented at least 80% of data objects (barring MSNBC trace 
traffic data) with no cache potential from entering the cache, 
reducing the chance of cache pollution (Fig. 11).  The 
number of rejected data objects with cache-hit potential was 
under 6% compared with those accepted (Fig. 12). 

 

Figure 11. CC rejection and acceptance of data objects with no cache-hit 

potential.  CC kept at least 80% of data objects with no cache potential 
away from the cache, reducing the chance of cache pollution (except with 

regard to MSNBC trace traffic data). 

 

 

Figure 12. CC rejection and acceptance of data objects with cache-hit 
potential.  The number of rejected data objects with cache-hit rate 

potentials was under 6% compared with those accepted. 

 

V. CONCLUSION 

We propose taking a community-based caching (CC) 
approach.  CC manages caching as a cloud services 
intelligently.  It eliminates cache pollution and minimises 
monopoly problems inherent in other cache management 
policies, improving overall cache-hit rate.  In our 
experiment, the cache-hit rate achieved by CC was between 
0.7% and 55% better than that of other tested cache policies.  
Our t-Tests demonstrate that these improvements are 
statistically significant.   

The simulation results and tests of statistical significance 
show that CC manages caches intelligently, achieving extra 
value for a server providing caching as a cloud service.   

Future investigations should focus on how the size of 
historic data used in CC and the pre-set community count 
affect cache-hit rate. 
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