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Abstract—Communication-avoiding algorithms allow redun- keep their original ranks inf0, N — 1]. While these two
dant computations to minimize the number of inter-process om-  semantics survive failures with a reduced number of prasess
munications. In this paper, we propose to exploit this redudancy REBUILD spawns a new process to replace the dead one,

for fault-tolerance purpose. We illustrate this idea with QR iving it the ol f the dead in th icat
factorization of tall and skinny matrices, and we evaluate he giving I € place of Ine dead process In the communicators

number of failures our algorithm can tolerate under different it was part of, including giving it the rank of the dead prazes
semantics. Last, theABORTsemantics corresponds to the usual behavior

of non-fault-tolerant applications: the surviving proses are
terminated and the application exits.
) o ~_Using the first three semantics, programmers can integrate
Faut tolerance for high performance distributed applei t5iyre-recovery strategies directly as part of the aligoni that
can be achieved at system-level or application-level.&8§5t nerforms the computation. For instance, diskless cheakipgj
level fault tolerance is transparent for the applicatior ang7) yses the memory of other processes to save the state of
requires a specific middleware that can restart the failgldch process. Arithmetic on the state of the processes can be
processes and ensure coherent state of the applicalio#[5], yseq to store the checksum of a set of processes [6]. When a
_ Application-level fault tolerance requires the applioati  qcess fails, its state can be recovered from the checkpoin
itself to handle the failures and adapt to them. Of coursgnqg the states of the surviving processes. This approach is
it implies that the middleware that supports the distridute,aricularly interesting for iterative processes. Somerima
execution must be robust enough to survive the failures aBHerations exhibit some properties on this checkpointy sisc
provide the application with primitives to handle them [10]checkpoint invarianfor LU factorization [9].
Moreover, it requires that the application uses faultl@ A proposal forrun-through stabilizationintroduced new
algorithms that can deal with process failures [3]. constructs to handle failures at communicator-lével [CEher
Recent efforts in the MPI-3 standardization process [1glechanisms, at process-level, have been integrated as a pro
defined an interface for a mechanism caléskr-Level Failure posal in the MPI 3.1 standard draft [13, ch 15]. It is called
Mitigation (ULFM) [2] and Run-Through StabilizatioflS]. | ser.level failure mitigatiofi2]. Failures are detected when an
This paper deals with the QR factorization of tall and skinny, o aion involving a failed process fails and returns anrer

matrices, and provide three fault-tolerant algorithms hie t oo 4 consequence, operations that do not involve any failed
context of ULFM. We give the robustness of each algorithn&mCess can proceed unknowingly.

the semantics of the fault tolerance and we detail the behavi
during failure-free execution and upon failures.

|I. INTRODUCTION

IIl. FAULT-TOLERANT, COMMUNICATION-AVOIDING
Il. ALGORITHM-BASED FAULT TOLERANCE ALGORITHMS

FT-MPI [10], [11] defined four error-handling semantics Communication-avoiding algorithms were introduced on
that can be defined on a communica®HRINK consists in [7]. The idea is to minimize the number of inter-process
reducing the size of the communicator in order to leave mwmmunications, should it involve additional computasion
hole in it after a process of this communicator died. As &hese algorithms perform well on current architecturesgsa
consequence, if one procegswhich is part of a communi- ing from multicore architectures|[8] to aggregations ofstéus
cator of sizeN dies, after the failure the communicator hagl], because of the speed difference between computatiahs a
N — 1 processes numbered [fi, N — 2]. On the opposite, data movements.

BLANK leaves a hole in the communicator: the rank of the As seen in the examples cited in sectidnh Il, tolerating fail-
dead process is considered as invalid (communicationsretures requires some form eédundancy such as checkpoints
that the destination rank is invalid), and surviving pr@ess or checksums stored in additional processeés [3].
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after the first step, one quarter are idle after the secorg ste
""""" and so on until only one process is working at the end.
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= , Algorithm 1: TSQR
P Al ) Data: Submatrix A
" 1 Q, R=QR(A);

> g 7 2 step=0;
Pz | Az ) *3\ """"" Rl \Eﬁ 3 while ! done () do

V) 1R Vv 4 | if isSender ( step then

a— /+* I am a sender */
Py | Ay || | 5 b =myBuddy ( step ;

Vi ) 6 send (R, b ;

7 return;

FiG. 1: Computing the R of a matrix using a TSQR factorizag "«

] else

tion on 4 processes. /% T am a receiver «/
In this paper, we propose to exploit the redundant coni- b =myBuddy ( step ;

putations made by communication-avoiding algorithms faor recv (R, b) ;

fault-tolerance purpose. In this section we illustrates tidiea 1, A = concatenate (R, R);

with a communication-avoiding algorithm for tall and skynn,, Q,R=QR(A):

matrices (TSQR). This algorithm can be used to compute =
the QR factorization of matrices with a lot of rows and fews | step++;
columns, or as a panel factorization for QR factorizatiof] [1

/+ The root of the tree reaches this
) ] point and owns the final R */
A. Computing the R with TSQR 14 return R:

The TSQR relies on successive steps that consist of loeat
QR factorizations, involvingno inter-process communicatigns
and one inter-process communication. Initially, the nxatsi
d_ecompose(_j in submatrices, each process holding one .SUanPedundant TSOR
trix. On the first step, each process performs a QR factivizat
on its local submatrix. Then odd-numbered processes send th'We have seen in sectidn IIItA that 1) only one process
resulting R to the previous even-numbered process: rank €ventually gets the resulting and 2) at each step, half of
sends to rank 0, rank 3 sends to rank 2.... The algoritihe working processes get idle. The idea behRebundant
itself is given by Algorithn{L. TSQRis to use these spare processes to produce copies of the

Even-numbered processes concatenate theRwoatrices intermediateR factors, in order to tolerate process failures
by creating a new matrix whose upper half is tReit has during the intermediate steps.
computed and whose bottom half is tRet has received. Then 1) Semantics:With Redundant TSQRat the end of the
the odd-numbered process is done with its participatiohgo tcomputation, all the processes get the fiainatrix. If some
computation of theR. If the Q matrix is computed, it will processes crash during the computation but enough precesse
work again when the moment comes, after the computationsfrvive (see section Il-B3), the surviving processes thee
the R is done. final R factor.

Even-numbered processes perform a local QR factorizatior?) Algorithm: The basic idea is that when two processes
of the resulting matrix, and produce anoth&r A similar communicate with each other, instead of having one sender
communication and concatenation step is performed betwes#d one receiver that assembles the tWomatrices, the
processes of rank & 2P, if r denotes the rank of eachprocessegxchangeheir matrices. Both of them assemble the
process. An illustration of this communication, recombtio/a two matrices and both of them proceed with the local QR
and local computation process on four processes is depicfectorization. This algorithm is given by Algorithi 2.
by Figure[1. This algorithm is represented on four processes in Figure
__At each step, half of the participating processes send tHgirPlain lines represent the regular TSQR pattern. Durieg th
R and are done. The other half receive &n concatenate first communication stage, the redundancies are represbyte
it with their own R and perform a local QR factorization.dashed linesP; and P; exchange data witf, and P, respec-
This communication-computation progression forms a lyinatively, and therefore obtain the same intermediate marice
reduction tree[[16]. _ Then same data exchange is performed during the following

We can see on this example that once it has senRjts step, resulting in a first level of redundancy (obtained fithm
each process becomes idle. Eventually, process 0 is the oRjly<> P, exchange), represented by loosely dashed lines, and
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Fic. 2: Computing the R of a matrix using a TSQR factorizéFiG. 3: Redundant TSQR on 4 processes with one process
tion on 4 processes with redundaRtfactors. failure.

a secondary level of redundancy (obtained from Ehe— P; 4) Behavior upon failuresWhen a process fails, the other

exchange), represented by dashed lines. processes proceed with the execution. Processes thateequi
data from the failed process end their execution, and thge t
Algorithm 2: Redundant TSQR require data from ended processes end theirs as well (s=e lin
Data: Submatrix A [2 of Algorithm[2).
] For instance, Figulld 3 represents the execution of Redtindan
1 Q R=0R(A); TSQR on four processes. ProceBs crashes at the end of
2step=0; the first step. The data it contained is also held by process
3 while ! done () do Ps, therefore the execution can proceed. However, process
4 b = myBuddy ( step ; Py needs data prom the failed process at the following step.
5 f = sendrecv(R, R, b : Therefore, proces$, ends its execution. As a consequence,
6 if FAIL == f then P, ends its execution. At the end of the computation, the
; L return; final resultkR has been computed by processgsand P; and
therefore, the final result is available in spite of the faglu
8 A = concatenate ( R, R);
Q, R=0R(A); C. Replace TSQR
10 | step++; 1) SemanticsThe semantics dReplace TSQMs similar to

the one withRedundant TSQRit the end of the computation,
all the processes get the fin®& matrix. If some processes
crash during the computation but enough processes survive
(see sectiof TMI-G3), the surviving processes have the fihal
factor.

3) Robustness:We can see that at each step, the data2) Algorithm: The fault-free execution of thdReplace
exchange creates one extra copy of each intermediate maffi8QRalgorithm is exactly the same as wigedundant TSQR
As a consequence, the redundancy rate doubles at each &ep sectiol 1I-BR). The data held by processes along the
of the algorithm. Therefore, i denotes the step number, theeduction tree of the initial TSQR algorithm is replicated o
number of existing copies in the system 28. Hence, this spare processes that would normally stop their execution.
algorithm can tolerat@® — 1 process failures. The difference comes when a failure occurs. In this case,

We can see that the number of failures that this algoriththe process that needs to communicate with another process
can tolerate increases as the computation progresses. Heits an error when it tries to communicate with it. Then, it
fact is a direct consequence from the fact that the numbferds areplica of the process it is trying to communicate with
of redundant copies of the data is multiplied by 2 at eacline[d of Algorithm[3) and exchanges its matrix with it. If no
step. For instance, the computation can proceed if no masplica can be found alive, it means that too many processes
than 1 process have failed by the end of step 1, no mdrave failed and no extra copy of this submatrix exist. Then
than 3 processes have failed by the end of step 2, etc. In the process exits. The algorithm is described by Algorithm 3
meantime, the number of failures in the system increase with3) RobustnessWe have seen in sectidn I[I-C2 that this
time: the longer a computation lasts, the more processés wailgorithm can keen progressing as long as there exists st lea
fail [18]. Therefore, the robustness of this algorithm &Bses one copy of each submatrix. We have seen in se¢tion 1lI-B3
with time, which is consistent with the need for robustnessthat at each step, the number of existing copies in the system

/+ All the surviving processes reach
this point and own the final R x/

11 return R;




Algorithm 3: Replace TSQR the same data aB,. Then P, exchanges data witls.
Data: Submatrix A

1Q,R=0R(A): D. Self-Healing TSQR

2 step = O;while ! done () do The previous algorithms described heRedundant TSQR

3 | b=myBuddy ( step ; (section[II-B) and Replace TSQRsection[1I-G) proceed

4 f= sendrecv (R, R, b : with t_hg execution _vvithout the dead processes. Here we are

. while FAIL == f do describing an algorithm that replaces the dead processawith

o , ) new one.

6 b = findReplica(b) ; 1) Semantics:With Self-Healing TSQRat the end of the

7 if None == b then computation, all the processes get the fiRamatrix. If some

8 | return; processes crash during the computation but enough precesse

9 f= sendrecv (R, R’ b : survive at each step (see sectlon 1tD3), the final number
of processes is the same as the initial number and all the

10 | A= concatenate (R, R); processes have the fin&l factor.

11 Q, R=0QR(A); 2) Algorithm: This algorithm follows the same basic idea

12 step++ ; asRedundant TSQRsee sectioh I[-B) in a sense that at each

step of the computation, all the processes send or receive
their R matrices and compute th® of the resulting matrix.
As a consequence, the data required by the computation
13 return R; (the intermediate submatrices represented in Figlre 1) are
replicated This part is described by Algorithi 6 with the
OR initialization described by Algorithrial4.
In this algorithm, the failed processes are replaced byyewl
A X ) R} R, r| spawned ones. We have seen that the data contained by the
: ‘ failed process has been replicated by the redundant compu-
tations. As a consequence, a failed process can be recovered
completely and a newly spawned process can replace it: see
Algorithm[5.
The fault-free execution of this algorithm is similar withet
execution represented by Figlre 2.

/+ All the surviving processes reach
this point and own the final R x/

QR Send/Recv QR Send/Recv

Py

P,

P,

Algorithm 4: Self-Healing TSQR: initialization
Data: Submatrix A

1 Q, R=0R(A);

2 step=0;

3 R=QR (R, step ;

Ps

FIG. 4: Replace TSQR on 4 processes with one process failufeletum Ri

is 2%. Hence, this algorithm can tolere2é—1 process failures,
just like theRedundant TSQRlIgorithm (see sectidn 1I-B3).
The difference between thRedundant TSQRNd theRe-  Algorithm 5: Self-Healing TSQR: process restart
place TSQF_&S that_with th_e former, the processes that_ need ,, Gets my data from a process that
to communicate with a failed process exit, whereas with the
latter, they try to find a replica. Therefore, if the root okth
tree does not die, it holds the final resiltat the end of the

holds the same as me. */

1 t=mytwin () ;

computation. 2 R, step =recv (1) ;
4) Behavior upon failuresif a process fails, the processes /* Proceed with the computation */
that try to communicate with it fail to do so and try to find a R = QR ( R, step ;
replica to communicate with. /+ At the end of the computation, this
For instance, Figuild 4 represents the execution of Redtindan  ,rocess holds the final R. */

TSQR on four processes. ProceBs crashes at the end of4 return R:

the first step. The data it contained is also held by process. i

Ps, therefore the execution can proceed. However, process

P, needs data prom the failed process at the following step.3) RobustnessWe have seen in1-D2 and 1II-B3 that at
Therefore, proces$, ends its execution. As a consequenceach steps, the data necessary for each process from the
P, fails to communicate withP, and finds out thaf’; holds original algorithm is replicate@® times on other processes.




Algorithm 6: Self-Healing TSQR: computation

1 Function shtsqgr( A, step ): (1]
2 Q, R=0R(A);

3 while ! done () do 2l
4 b = myBuddy ( step ;

5 f= sendrecv(R, R, b ; A
6 if FAIL == f then

7 L spawnNew ( b) ; 4]

8 A = concatenate ( R, R);
Q, R=QR(A);
10 step++ ; )

/+ All the processes reach this

point and own the final R */
1 | return R; [6]
QR SIR QR SIR QR
[7]
Py | Ay Ro Ro 0 0 _ N\

(8]

P1 [9]
[10]
P,
P,
[11]

FiG. 5: Self-Healing TSQR on 4 processes with one process
failure. (12]

As a consequence, this algorithm can tolerzite- 1 process 23]

failuresat each step. [14]

Similarly with Redundant TSQRthe robustness of the
algorithm increases as the need for robustness increases (s
section[11I-B3). The big difference with Redundant TSQRL5]
in terms of robustness is that Self-Healing TSQR replaces
the failed processes. Therefore, this redundancy rates give
the number of failed processes that can be acceptexhch
step For instance, 1 process can fail at step 1 ; it will be
respawned and 3 additional processes can fail at step 2. As a
consequence, the total number of failures this algorithm c&®6l
tolerate isd ;_, 2_’“. Besides, at each stepit can tolerate |,
2% — 1 process failures.

4) Behavior upon failuresWhen a process fails, the pro—[18]
cess that was supposed to communicate with it detects the
failure and spawns a new process. The new process obtains the
redundant data from one of the processes that hold the same
data as the failed process. Then the computation continues
normally.
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