
“How Does It Detect A Malicious App?” Explaining
the Predictions of AI-based Android Malware Detector

Zhi Lua,∗, Vrizlynn L.L. Thinga

aCyber Security Strategic Technology Centre, ST Engineering, Singapore 567710

Abstract

AI methods have been proven to yield impressive performance on Android mal-

ware detection. However, most AI-based methods make predictions of suspicious

samples in a black-box manner without transparency on models’ inference. The

expectation on models’ explainability and transparency by cyber security and AI

practitioners to assure the trustworthiness increases. In this article, we present

a novel model-agnostic explanation method for AI models applied for Android

malware detection. Our proposed method identifies and quantifies the data fea-

tures relevance to the predictions by two steps: i) data perturbation that gen-

erates the synthetic data by manipulating features’ values; and ii) optimization

of features attribution values to seek significant changes of prediction scores on

the perturbed data with minimal feature values changes. The proposed method

is validated by three experiments. We firstly demonstrate that our proposed

model explanation method can aid in discovering how AI models are evaded by

adversarial samples quantitatively. In the following experiments, we compare

the explainability and fidelity of our proposed method with state-of-the-arts,

respectively.

Keywords: Explainable AI, Cyber security, Machine Learning

∗Corresponding author
Email addresses: lu.zhi@stengg.com (Zhi Lu), vrizlynn.thing@stengg.com (Vrizlynn

L.L. Thing)

Preprint submitted to Journal of LATEX Templates November 10, 2021

ar
X

iv
:2

11
1.

05
10

8v
1

 [
cs

.C
R

]
 6

 N
ov

 2
02

1

1. Introduction

Artificial intelligence (AI) technologies, in particular shallow machine learn-

ing methods (e.g., logistic regression, SVM and random forest, etc.) and deep

neural networks (e.g., CNN and LSTM, etc.), have been widely used to fight

against cyber attacks today [1] [2]. However, explaining the reasoning behind

the predictions made by AI models remains one of the most challenging prob-

lems in both AI and cyber security communities. The model explanation is to

identify the relevance of data features to the model’s predicted class (Fig. 1). It

is not only to facilitate the cyber security practitioners’ understanding on how

the AI model identifies the cyber threats, where the confidence on the model’s

stability is expected, but also helps the AI researchers to find out the models’

vulverabilities from certain examples [3]. The main factors affecting the insights

provided by a model explainer are: the challenges of data, such as unbalanced

data and high dimentionalities for different applications (e.g., malware detec-

tion), and the model complexity that is about the number of parameters and

various types of model structures (e.g, SVM, CNN and LSTM). These factors

have motivated the interest on the model-agnostic explainers research [4] [5] that

are capable of explaining any types of AI models.

The AI-based malware detection for Android operating system is a well stud-

ied problem [6] [7] [8] [9] [10]. The popularity and open nature of Android [11]

and its official apps market, i.e., Google Play [12], have aroused large interests

from malware developers, and accordingly make Android users more vulnera-

ble to such attacks by thousands of malicious apps. In 2019, AV-TEST [13]

reported 3.16 million Android malware developed. The efforts on Android mal-

ware detection research pay more attention on a secure AI model and the detec-

tion performance (e.g., detection rate), where the model explanation is rarely

covered. Demontis et. al. [6] introduced a secure SVM on Android malware de-

tection that can detect those malware apps evaded from standard SVM-based

detectors, through the constraints on the model’s parameters selection. Zhang

et. al. [14] combined the n-gram analysis and the online classifier techniques

2

Figure 1: Workflow of explaining an AI model for Android malware detection.

MPT explainer works together with the trained model (blue box) during the model explanation

process. Firstly, MPT explainer perturb the input sample by features and observe the model’s

prediction values. Second, MPT explainer optimizes the features attribution using modern

portfolio theory. Finally, each feature’s attribution strength is visualized by the bar chart.

to detect the Android malware and attribute their malware families. The on-

line classifier using incremental learning makes it scalable to the rapid evolved

malware. The recently emerging detection methods based on deep neural net-

works do not only bring astonishing performance in terms of detection rate (i.e.,

true positive rate), but also remove the needs of features engineering manually,

through an automatic joint end-to-end learning [7] [8] [9]. The large amount of

parameters and hidden layers structure in deep neural networks, such as CNN

and LSTM, make it more difficult for end users to understand the reasoning be-

hind the predictions, even if the authors provided the insights on the effects of

performance by the data and network structure manipulation [9]. However, only

recently has the model explanation for malware detection been addressed [10].

Clearly, the primary aim of model explanation for Android malware detec-

tion is to identify the quantified “relevance” between the data features and the

predictions. Existing explainable AI research [4] [5] [15] provides model-agnostic

explainers for those models that may not be suitable for cyber security issues.

LIME [4] explains a model through an optimization [16] of a linear model that

is human-understandable over the perturbed data with the labels generated by

the model’s inference. The high dimensionailty and sparsity of Android malware

3

feature data may cease the explainability of the interpretable models in LIME

that is too linear to underfitting. Integrated Gradients (IGs) [5] attributes the

relevance of data features through the integration of predictions’ gradients with

respect to the data features varying from zero-values to the real values. However,

the IGs method requires the availability of gradients computation for prediction

scores with respect to the model input, which is not available in certain types

of classifiers, such as random forests. The expectation, therefore, on accurate

and efficient AI model explanation for cyber security issues, such as malware

detection, is still remaining.

In this article, we propose a novel model explanation methodology capable

of exploring the reasoning behind the predictions for AI-based Android malware

detectors. The main goal of our methodology is to identify and quantify the

relevance of data features with respect to the predictions for any AI-based mal-

ware detectors, as compared to the detectors with few human-understandable

explanation for specific types of models [10]. Furthermore, this methodology

explains an AI model by a simple data perturbation technique and efficient lin-

ear optimization that is based on the modern portfolio theory (MPT) [17]. The

main advantage of the method based on optimization for features attribution

lies in the potential to explain a model accepting a high-dimension data and no

requirement on the gradients of prediction scores w.r.t. the inputs. The pro-

posed methodology can be divided into two stages: an initial data perturbation

technique followed by a linear optimization for feature attribution values (i.e.,

relevance of features). The first stage consists of the following steps: i) data

features perturbation by multiplying a scaling factor in [0, 1] to have the small

changes of feature values (i.e., perturbed data); and ii) associated prediction

scores are obtained by the forward process of the model over these perturbed

data. The second stage then minimizes the variance of the multiplication of

these prediction scores and the attribution values, with the constraint that the

sum of all features’ attribution is one. The main contribution of this article is

the formation of the optimization for features attribution, which assumes that

the small changes of relevant features affect the prediction scores significantly,

4

and thus are assigned high attribution values.

In addition, results from the quantitative evaluation show that our proposed

technique is sensitive to identify the relevant data features to the predictions

made by the AI-based Android malware apps detectors, such as SVM [10] [18] [19]

and BERT [20]. This is verified by the facts that 1) the feature with the largest

attribution value is helpful for the clustering algorithm to group the apps from

the same malware family into the same cluster, and more features do not increase

the performance significantly; 2) a significant ratio of the camouflaged features

activated for the adversarial samples, which evade the malware detection by the

classifiers, can be identified.

The rest of the paper is structured as follows: we present current work on

AI-based Android malware apps detection and the model explanation methods

in Section 2. The two learning-based classifiers, i.e., SVM and BERT, are pre-

sented in Section 3, followed by the introduction to the proposed model-agnostic

MPT explainer in Section 5. We then validate the proposed methodology with

the comprehensive experiments in Section 6. Finally, the conclusion of this

methodology is discussed in Section 7.

2. Literature Review

In this section, we firstly review the research on Android malware apps

detection using AI-based methods, where the early efforts in their work on these

models explanation are also covered. Secondly, the general model explanation

methods are introduced in terms of their strength and weakness.

2.1. Android Malware Detection

The vulnerabilities in Android system are still emerging [21], and the mal-

ware is in rapid evolution. This requires the development of AI-based models

that can predict unknown malware samples in certain degrees. The AI-based

methods described in the Android malware detection literature have focused

on four basic features extraction approaches [22]. In this section, we reviewed

5

two main feature extraction techniques: the dynamic analysis and the static

analysis that are relevant to our work. The first method for features extrac-

tion is dynamic analysis that obtain the features via the apps execution, such

as system calls and file system usage, etc. For example, Xiao et. al. [9] pro-

pose a deep learning method that analyses the API calls obtained dynamically

through two Long-term Short Memory (LSTM) networks trained for malware

and non-malware apps, respectively.

The second and most commonly used method is the static analysis technique

that analyses the application source code and resources without execution and

requires small running time overhead. For example, Samra et. al. [23] use the

clustering algorithm in the malware detection that the permissions data were

extracted from the applications as the features statically. In [24], a mobile

malware analysis tool, AndroDialysis, is developed and used to assess the mal-

ware detection performance with intents feature (explicit and implicit), which

is a run-time binding message object for the inter-process communication in

Android framework. The conclusion drawn from the experiment results shows

that intents as the only features in the classification are more effective than

that with permissions features. Zhang et. al. [25] convey the semantic infor-

mation in malware classification via the graph construction of the dependencies

among the API calls as the features. Similarly, Aafer et. al. [26] capture the

semantic information about the apps’ behavior at the API level. In addition to

classification by single features, there are also a number of AI-based methods

that classify the malware apps using a combination of features extracted by the

static analysis technique. For instance, Zhu et. al. [27] detect malware apps by

building up an ensemble classifier, Rotation Forests [28] with the features ex-

tracted from the APK archive file that includes permissions, sensitive APIs and

monitoring system events, etc. The classifier was trained on a dataset of 2,130

samples of Android apps that malware and benign apps take 50% respectively,

and the results outperforms a SVM classifier. Arp et. al. [10] learn a linear

SVM classifier with the application features, inlcuding permissions, API calls

and network addresses. They propose a lightweight features extraction method

6

to extract from mainifest.xml file and the dex bytecode. In the above methods,

only DREBIN [10] provided a limited explanation of the model’s prediction.

However, their explanation is based on the weights of the SVM models, which

cannot be generalised into other models.

Deep learning methods have been successfully applied on the cyber security

issues. For example, Xiao et. al. [9] proposed a deep learning method that

detects the Android malware through training two Long-term Short Memory

(LSTM) networks for malware and non-malware apps features (i.e., system calls)

respectively. Vinayakumar et. al. [29] tried different LSTM network topologies

in Android malware detection. However, the hidden layers and cells structure

in LSTM make the inference process in a black-box mechanism for users, and

thus impossible to have the insights on the reasoning. This reduces the trust

on the model’s prediction for an example, because it has the risk for the model

to be misled to make a wrong decision by an carefully designed example, such

as that in the stop sign recognition problem [3], and the user cannot know how

the decision is made.

2.2. AI Model Explanation

The research efforts in the model explanation literature are mainly to reveal

the transparency of the reasoning behind the model’s predictions based on the

data features, a.k.a., input variables. There are two major categories of the

explanation approaches [30]: i) transparency-based methods; and ii) post-doc in-

terpretability methods. The transparency-based methods [31] are the traditional

model explanation strategy that conveys the interpretation of the predictions

by interpretable AI models. That is, these models cannot be too complicated in

terms of structure and parameters’ numbers such that humans cannot under-

stand [32]. For instance, in [10], the authors tried to enhance the interpretation

of the SVM classifier’s predictions through the presentation of the features with

top ranked weights. Unfortunately, as the complexity of the AI models grows,

it is inevitably more difficult for these methods to identify meaningful expla-

nations. In addition, it is trade-off for a model between the transparency for

7

interpretability and the prediction performance [30].

The post-doc methods explored in the literature have raised more attention

from both academia and industry. They extract the causality relationships be-

tween the prediction and the data features from the trained (learned) model.

The early research in this field focused on the model-specific explanation that

seek the rationale of predictions for specific models. For example, Zeiler et.

al. [33] proposed to visualize and observe the neurons in a convolutional neural

networks (CNNs) that shows how each neuron responses to different data in-

stances. Xu et. al. [34] developed an attention-based caption generator for the

images, where the attention mechanism shows the highlighted part of the image

that is relevant to the generation of a particular word in the caption. Obviously,

in the above methods, it is hard to extend the explanation to other models as

the learning-based AI models are rapidly evolving today. Therefore, there are

also several research that aim to develop the model explanation methods that

can disclose the inference of predictions for any models, a.k.a., model-agnostic

explanation. For instance, Samek et. al. [35] present two methods for deep

learning models: (1) sensitivity analysis (SA) that measures how sensitive the

predictions are w.r.t. each input variables, and (2) layer-wise relevance propaga-

tion (LRP) that propagates the prediction backward in the deep neural network,

constrained by a set of propagation rules. Sundararajan et. al. [5] propose a

feature attribution method, integrated gradients (IGs), that was inspired by

a cooperative gaming theory [36]. It can explain the models that the input

data are in different types [37], such as images, text and tabular data, only if

the gradients of model’s prediction scores w.r.t. data features is provided. Be-

sides, several efforts focusing on the complex model explanation that use model

approximation. For example, LIME [4], a model-agnostic method for local ex-

planation, explains any classifiers by learning an interpretable model, such as

a linear model, with the generated data around the predictions. However, it

has the risk that the linear model for interpretation through approximating the

original model make the explanation is not capable of those models and datasets

with complicated structure. Another approach presented by Wu et. al. in [38]

8

explains the deep models through the original model approximation with a de-

cision tree with few nodes. The model explanation research efforts also focus

on explaining the AI models in different tasks, such as common sense question

answering (CQA) [39]. Recently, Guo et.al. [40] proposed LEMNA as the so-

lution to LIME’s limitations that are caused by the linearity of its surrogate

model. LEMNA is designed specific for the AI models that are used in cyber

security tasks, which usually need to deal with sequential data, such as binary

code analysis using RNN [41]. The linear approximation of the original model

f(x) cannot take the dependencies among features into account that leads to

limited capacity of explanation for sequential data. LEMNA solves this issue

using the fused lasso [42], which forces the explanation considers the dependen-

cies among features accordingly. In addition, LEMNA enhanced the fidelity of

the local approximation on the non-linearity of the neighborhoods (sampled)

around the input data sample x by mixture regression model [43].

There are also several development tools for explainable AI (xAI) that are

public available online. The What-If Tool [44] provides an interactive visual

interface for users to inspect the models’ behaviors. It works with Tensorflow

models [45] as a dashboard that allows users to compare models and find out

the importance of features by manipulating the data feature values. However,

this is a tool that requires models running on Google Cloud, and the user-

interface is not friendly for those other than data scientists. Captum [46] is a

Python library developed by Facebook recently that implements several model

explanation methods, such as DeepLift [47], Input × Gradient [48] and Inte-

grated Gradients [5]. The functionalities of Captum are under expansion, and

this model explanation library currently is only able to explain the deep learn-

ing models written in PyTorch [49]. Similarly, SecML [50] provides a Python

library that focuses on the secure and explainable AI algorithms. There are lim-

ited number of model explanation methods provided in SecML library, because

it is an integrated library that combines several machine learning, adversarial

machine learning and explainable machine learning algorithms. In addition,

SecML only accepts the data instances in the type (i.e., CArray) that is defined

9

in the library, which is not a requirement in our proposed method.

3. Learning-based Android Malware Detector

The malware detection is cast into a binary classification problem, i.e., mal-

ware and non-malware (benign). DREBIN [10], an Android malware dataset

that is used to train and validate the classifiers, is firstly introduced. Second,

the feature representation based on TF-IDF weighting scheme [51] that extends

the representative of the binary feature vector in [10] is illustrated. Finally, we

briefly introduce two classifiers: (1) SVM and (2) BERT, that are used in the

Android malware detection.

3.1. DREBIN Dataset

DREBIN [10] was developed as a lightweight Android malware detector that

utilises the static analysis technique to extract the features of suspicious An-

droid apps. An Android malware dataset with the same name, DREBIN, was

also released in public. Each Android application is represented by means of

feature sets that were extracted through a linear sweep over the application’s

manifest file, AndroidManifest.xml, and disassembled dex code from the byte-

code for the Dalvik virtual machine of Android platform. These feature sets fall

into 8 categories, which are numbered from S1 to S8, such as S2: requested per-

missions. DREBIN datasets collected 5,560 Android malware apps and 123,453

non-malware apps in total. An Android app is labeled as malicious only if

it is detected by at least two scanners in VirusTotal [52], and non-malicious

otherwise.

3.2. Embedding Features Vector by TF-IDF

The features for an application are in the form of text data, where each

feature can be treated as a single “word” or token. It is, thus, necessary to

convert the set of features to the vector space that reveals the dependencies

among features and the machine learning models can identify the patterns of

malicious or non-malicious Apps. In DREBIN [10], the features of an App

10

X were mapped into a vector space with Boolean values only. The mapping

function for binary vector values is φ : X 7→ {0, 1} ∈ Rm that any dimension

is marked as 1 refers to the associated feature contained by the App X, and

0 otherwise, where m is the total number of features. However, the vector

representation with Boolean values cannot reveal all the dependencies among

features in an App, because of its limited capacity of representation.

We, therefore, extend the representation of a vector with a new mapping

function:

φ(xi) =


fxi,X

|X| · log
|D|

|{X∈D:xi∈X}| , if feature xi ∈ X

0 , otherwise

(1)

for any feature xi’s numeric representation (i.e., word embedding) in the vec-

tor space, where |D| is the number of Apps in dataset D, |X| is the amount of fea-

tures in app X, fxi,X is the frequency of xi in app X, and
fxi,X

|X| ·log
|D|

|{X∈D:xi∈X}|

computes the term weight in TF-IDF weighting scheme. This weighting scheme

guarantees the assignment of relatively low weights on those features appear-

ing frequently among both malicious and non-malicious apps, and relatively

high weights on the features that are used in a specific class of apps. For ex-

ample, the feature android.permission.SEND SMS are more commonly used in

malicious apps [10].

By the new mapping function φ(xi), the vector representation of a malicious

app X in the family Plankton may look like:


0

0.13

...

0.08


m.facebook.com

android.hardware.wifi

...

android.hardware.touchscreen

S8

S1

S1

3.3. Learning-based Malware App Detection

We cast the malware detection problem as a binary classification task, where

the malware is labeled as the positive class and the benign app (non-malware)

11

is the negative class. Specifically, two popular classifiers, i.e., SVM and BERT,

are trained to separate the malicious apps from the non-malicious (benign).

SVM is a classical and popular classifier for binary classification before the

deep learning era. It maps a sample into a high-dimension space that has a

clear gap between two classes, and thus makes the prediction of the sample’s

category more accurate. It has been proven effective on Android malware de-

tection by many early research [10] [19] [18]. We train a SVM model with

Radial basis function (RBF) kernel [53]. Each feature of the apps are taken

as a token in text analysis, and vectorized by TF-IDF weighting scheme. The

trained SVM produces the prediction scores for each class, which indicates its

confidence on the prediction for a class. In addition, the state-of-the-art deep

learning method for natural language processing (NLP), BERT, is employed as

another classifier. In order to have the trade-off between the performance and

the hardware resources, we train the base uncased BERT model implemented

by Huggingface [54] with a maximum length of input text as 128. Both classi-

fiers are trained on the balanced DREBIN dataset. The detection performance

shown in Table 1 denote to the high detection rates (0.9684 for SVM and 0.9591

for BERT) with low false positive rates (0.0425 for SVM and 0.0420 for BERT).

4. Evade Detection by Adversarial Samples

A machine learning model for malware detection can be vulnerable to at-

tacks using well-crafted adversarial samples, because of the intrinsic assumption

to build up the model that the training and test data are drawn from the same

distribution [6] [55]. The adversarial sample violates such assumption by acti-

vating a certain number of features in the features vector to make it available

to evade the AI-based malware detection without compromising of its malicious

functionalities.

4.1. Adversarial Samples Generation Algorithm

In this paper, we simulate an evasion attack using the adversarial samples

to mislead SVM and BERT classifiers in malware detection. The attacker is

12

assumed to have full capacity of manipulating the data in the inference stage,

including the knowledge of the feature space, and the model’s feedback, such

as prediction scores. The adversarial samples are generated with the following

settings: Firstly, the optimised set of features for the adversarial samples are

selected/activated through a process of heuristic search that maximises the fit-

ness function [56]. Then, the manipulated samples will be converted into the

features space by calculating the TF-IDF values for the features in the adver-

sarial samples, including the original and the activated features. Please note

that we only activate the features under the “Permission” category, in order to

preserve the malicious functionalities, as suggested as by [6]. We also extend

the genetic algorithm [56] that was used in the adversarial samples generation,

where the model’s prediction score of benign class is used as the fitness values.

This guarantees that (1) the adversarial samples can evade the detection, be-

cause of the prediction scores > 0.5 for benign class; (2) we have the quantified

confidence that the classifier incorrectly classifies them into benign class, which

will be used in later experiments (see Section 6.2). The pseudo code for the ad-

versarial samples generation is illustrated in Algorithm 1. The MPT explainer

is then used to explain why the classifiers are bypassed by these adversarial

samples, where the activated features in the adversarial samples are expected

to be attributed with high values.

Specifically, we run the genetic algorithm to generate the adversarial sam-

ples dataset by the following parameters: (1) there are 200 malware samples

randomly selected from the test set that will be camouflaged to fool the clas-

sifiers in the experiments, which are called base samples; (2) the maximum

iterations for the evolution of solutions in genetic algorithm are 500 loops, which

is based on our observation in the early experiments that is enough to guarantee

the adversarial samples can be generated for most base samples. In addition,

the optimisation process of the genetic algorithm will be converged if any of

the following conditions is fulfilled: (1) the maximum prediction score of the

adversarial samples has been idle for at least 10 iterations that implies the no

solutions (i.e., a set of activated features) with higher fitness values can be ob-

13

tained through the optimisation process in reasonable time; (2) the maximum

fitness value > 0.99, i.e., the prediction score, which means the classifiers cannot

distinguish the adversarial samples from the malware samples at all, and there

is little benefits to increase the fitness value by the genetic algorithm; or (3) the

solutions in the optimisation process have been evolved for 500 loops.

By these settings, we generated 29, 821 adversarial samples that can evade

both SVM and BERT classifiers.The samples are distributed by their model’s

prediction scores, where the interval is 0.1 and most of the adversarial samples

evade the model’s prediction (SVM and BERT) with scores of ≤ 0.9. We ran-

domly pick up 100 samples for each prediction scores interval from the pool (i.e.,

totally, 500 samples for BERT and 499 for SVM that one sample is removed be-

cause it was false negative in the original prediction, respectively) for both SVM

and BERT classifiers for a fair assessment on the model explanation experiment.

The MPT explainer is then used to attribute the features for each adversarial

sample such that the “relevant” features to the false negative predictions can

be identified. More details about the explanation on the adversarial samples by

MPT explainer will be discussed in Section 6.

5. Explaining Classifier’s Predictions

In this section, we firstly formulate the model explanation as a feature at-

tribution problem that is to quantify the relevance of features to the classifier’s

prediction. The data perturbation technique, then, for the generation of the

candidate data in model explanation is introduced. Finally, we present the de-

tails of the proposed methodology, i.e., MPT Explainer, that is based on modern

portfolio theory (MPT) [17].

5.1. Theory Basis

Modern Portfolio Theory (MPT) is an economic theory that maximize

the expected returns through a portfolio of assets (e.g., an allocation of invest-

ment on a set of stocks), given a certain level of risk. Inspired by MPT, the

14

Algorithm 1: Adversarial Samples Generation

Input : A malware sample from DREBIN dataset.

SVM classifier

Output: A set of adversarial samples.

Stage 0 - Candidate Features

1 Collect features from training set under “Permission” category.

2 Exclude features in the input malware sample.

Stage 1 - Construction of Adversarial Samples

3 Initialize a “population” matrix that random features are activated in

each solution.

shape=(num solutions, num genes).

One solutions refers to an adversarial sample candidate.

The genes means the candidate camouflaged features.

4 iter counter = 0

5 MAX LOOP = 500

6 while True do

7 Compute fitness values - p

8 Select matting pool

9 Crossover

10 Mutation

11 Update “population”

12 iter += 1

13 if iter counter ≥ MAX LOOP then

14 break

15 if max(p) idle for 10 iterations then

16 break

17 if max(p) > 0.99 then

18 break

19 end

20 return Adversarial samples that fitness values > 0.5

and prediction score of benign class by BERT > 0.5

15

features in a data sample can be treated as the assets. The output attribu-

tion values for the features, which refer to the explanation, are similar with the

allocation of the investment, given a certain level of the perturbation of the

classifier’s prediction scores.

5.2. Problem Statement

Problem statement The classifier f(x) :→ [0, 1]|C| ∈ F is a mapping

function to map the data instance x to a set of probabilities, which denote to

the confidence of the classifier f to classify x to each class. A data instance

x = (x1, x2, ..., xm) ∈ Rm is a vector with m features that a feature xi can

be the numerical representation of either a token in text data or a pixel (or

a superpixel) in image data. The explanation of a classifier f is to seek the

quantified relevance of each feature xi in data instance x to the predicted class.

Specifically, this is called feature attribution that is in the form of an attribution

vector A = (a1, a2, ..., am) ∈ Rm, where ai ∈ [−1, 1] represents a degree of

relevance of feature xi to the prediction, and the lower the less relevant.

5.3. Data Perturbation

We look for the interpretation of the classifier’s prediction with respect to sin-

gle data instances, which is also known as local interpretation [4]. The challenge

of local interpretation is the limited number of data that can be used to attribute

the features’ relevance, and the observation of the changes of prediction scores

by different data becomes impossible. Therefore, the synthetic data generation

through perturbing the values of each feature becomes necessary for further

model explanation. Specifically, given a data instance x = (x1, x2, ..., xm) from

the dataset, the classifier outputs a prediction f(x) that is the probability of

the predicted class (e.g, in binary classification, this is the larger probability).

For each feature xi (i = 1, 2, 3, ...m), the K perturbed data over this feature are

computed as:

x
(k)
i = α

(k)
i · xi (2)

16

where k ∈ {1, 2, 3, ...,K} is the number of perturbed data, and {αi} ∈ [0, 1]

are evenly spaced and the coefficients to linearly change the feature i values

slightly. Based on our observation in the early experiments, K is set as 50 for

the trade-off between capacity of data perturbation and computation efficiency.

By the data perturbation strategy, we simply obtain a set of K × |x| per-

turbed data, which is Px. These data will be fed into the classifier f to have

the prediction scores over the classes. Both the perturbed data and the associ-

ated prediction scores will be used in the optimization of the attribution values

vector A (See Section 5.4).

5.4. Optimization for Features Attribution

The purpose of model explanation is to find the optimized attributions values

for the features. The assumption behind is that the prediction scores are more

sensitive to the changes of relevant features than those relatively less relevant.

That is, a small changes of relevant features values will cause significant changes

of prediction scores. With the perturbed dataset Px, the changes of prediction

scores between the x(ik) (i.e., the k-th perturbed data instance by perturbing

the i-th feature value) and the original data instance x is defined as the fraction

of the prediction scores difference between f(x(ik)) and f(x):

r
(k)
i =

f(x(ik))− f(x)

f(x)
(3)

This forms a K-dimension vector of the prediction scores changes, ri =

(r
(1)
i , r

(i2)
i , ..., r

(K)
i), when varying the values of feature xi by equation (2).

We model the association between the attribution values of features, i.e., A,

with the random prediction scores changes, r = (r1, r2, ..., rm), for all m features

by their inner product:

ATr =

m∑
i=1

riai (4)

17

we compute the variance of this association as:

V ar[

m∑
i=1

riai] = E[(

m∑
i=1

riai − E(

m∑
i=1

riai))
2]

= E[(

m∑
i=1

riai − aiµi)(

m∑
j=1

rjaj − ajµj)]

=

m∑
i=1

m∑
j=1

aiaj · E[(ri − µi)(rj − µj)]

=

m∑
i=1

m∑
j=1

aiajσij = ATQA

(5)

where Q is the covariance matrix.

The aim is to find out an attribution vector, A, that the variance of this

association ATr is minimized, such that the non-trivial changes of the prediction

scores can be obtained with the minimal fluctuations of the data features. The

function of the optimization is given by:

arg min
A

ATQA

w.r.t.

m∑
i=1

ai = 1 and ai ∈ [−1, 1]
(6)

The equation (6) considers both the individual features’ contribution to the

final predictions and the contribution made by the dependency among these

features. Note that we argue that the features with negative attribution values

do not mean that they have negative contribution to the prediction. The neg-

ative value means, instead, the associated feature has negligible affect on the

final prediction.

6. Experiments

6.1. Experiment setup

The dataset utilised in this paper consists of 11,110 samples of Android

apps drawn from DREBIN dataset, in which there are 5, 555 benign apps and

18

5, 555 malware apps, respectively. Further, we randomly separate this dataset

into two dis-joint sub-sets: a training set with 7,442 apps and a test set with

3,668 apps. There are 179 malware families and one benign family in the whole

dataset that the top four malware families (i.e., FakeInstaller (15.7%), Plankton

(11.8%), DroidKungFu (11.7%), Opfake (11.0%)) with the largest number of

samples account for more than 50% malware samples The apps in the training

set are from 160 malware families and the test set covers 124 malware families,

respectively.

The two classifiers, i.e., SVM and BERT, are trained over the training set

with the following settings: (1) SVM is with RBF kernel that gamma = 1.0.

(2) BERT. We use the uncased base model implementation of BERT from Hug-

gingFace Transformers library [54] with the default configurations of parameters,

e.g., the maximum sequence length of the text is 128, learning rate is 4e-5. The

batch size for training is set up as 8 for a trade-off between the performance and

the memory limitation, and the model was trained for 5 epochs. Since BERT

uses the word embedding technique to generate numeric representation of the

text tokens that is not easy to perform the data perturbation directly by our

method, we approximate its prediction behaviour by training a SVM, called

aprox SVM. Specifically, BERT predicts a set of training data to have the pre-

dicted labels. The aprox SVM was trained on the same dataset and the “ground

truth” are the predicted labels by BERT. By this way, the aprox SVM has a

TPR=0.9984 and FPR=0.0029 that means it has a highly similar performance

as the BERT. The aprox SVM will only be used to generate the predictions of

perturbed data in the model explanation. Note that in the experiments, the

features attribution for BERT is identified by aprox SVM with MPT explainer.

The classifiers’ performance were assessed on the test set and summarized

in Table 1 with true positive rate (TPR), false positive rate (FPR) and Matthews

correlation coefficient (MCC). The MCC combines true/false positives/negatives

into a single metric range from [−1, 1] that 1 means a perfect prediction, 0 de-

notes to the prediction performance that is no better than the random prediction

and -1 indicates a total disagreement between the prediction and ground truth.

19

It shows that the predictions by both classifiers match the ground truth quite

well in terms of MCC, and SVM has a slightly better performance than BERT

on Android malware detection, although SVM has approximate 0.0005 higher

of FPR.

Table 1: Classification performance for SVM and BERT. Both classifiers obtained high

true positive rate (TPR) and MCC, and relatively low false positive rate (FPR). It shows a

high detection rate for both classifiers in the Android malware detection task.

SVM BERT

True Positive Rate (TPR) 0.9684 0.9591

False Positive Rate (FPR) 0.0425 0.0420

Matthews correlation

coefficient (MCC)
0.9259 0.9171

The parameter of the perturbed data amount around the input data instance

x is set as 50 for the proposed MPT Explainer. For example, for an data instance

x with 10 features to describe the suspicious app, there are 500 perturbed data

instances generated where each feature xi was varied into 50 values.

Next, we present three quantitative experiments to assess the MPT Ex-

plainer’s capability of model explanation. In the first experiment (see Sec-

tion 6.2), we test the capacity of features attribution by MPT explainer for

adversarial samples that can evade the detection by the classifiers, i.e., SVM

and BERT. We also compare the MPT explainer with another two state-of-

the-art explainers (see Section 6.3), which are LIME [4] and SHAP [15], in the

second experiment of “good” explanation. Finally, a fidelity test (Section 6.4)

on the explanation is conducted for MPT explainer and SHAP.

6.2. Analysis of Activated Features in Adversarial Samples

In this experiment, we evaluate if the MPT explainer is able to identify the

activated features in an adversarial example (see Section 4). It is expected that

the MPT explainer can help to find out the reasons that the adversarial example

evades the model’s detection in the features level. Specifically, we evaluate the

20

explanation performance in two ways: (1) the general performance assessment,

and (2) the functional analysis in terms of the activated features number in an

adversarial sample and the prediction scores, respectively.

The first assessment is to observe the general performance of MPT ex-

plainer on features attribution based on the percentage of the samples with

“good” explanation. A sample has “good” explanations, only if a certain

percentage of its activated features (i.e., camouflaged features) are attributed

with positive values. The threshold for a sample to have “good” explanation

varies from 0% to 90% with 10% intervals in our experiment. The increased

thresholds of “good” explanation means less tolerance for MPT explainer to

incorrectly attribute the activated features with negative values. In Table 2,

it is clear that the amount of adversarial samples with “good” explanation by

MPT Explainer is decreasing as the “good” explanation threshold is increasing.

Specifically, in the Configuration 1 that candidate activated features are from

benign apps samples in the training set, the MPT explainer identifies a large

number of the activated adversarial features as the positive contribution to the

false negative prediction of benign class, when the “good” explanation threshold

is less than 50%. In the usage of an analysis tool, such explanation of the clas-

sifier’s behavior on adversarial samples can reveal how the detector was evaded.

The explanation performance, however, is deteriorated quickly once the “good”

explanation threshold is larger than 50%. We argue that such performance de-

terioration is reasonable, because the model’s prediction for a sample is made

by the cohesive contribution of all the features. That refers to a comprehensive

consideration of all features by the classifier (i.e., over the distribution of the

features vector), including the contributions made by individual features and

that made by the complicated relationships among features.

Further, we verified the above argument by another experiment with the

Configuration 2 that the candidate activated features are from malware sam-

ples in the training set. In Table 2, it shows quite high percentages of adversarial

samples with “good” explanation for both SVM and BERT, when the thresholds

of “good” explanation are larger than 50%. Note that the activated features

21

Table 2: Results on adversarial samples explanation in terms of the percentage of

“good” explanation. The varying thresholds of “good” explanation (top row) are from >

0% to >90% with 10% intervals. C for configuration. S for SVM and B for BERT.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

C1 S 1 1 0.992 0.908 0.581 0.309 0.216 0.188 0.188 0.182

C1 B 1 1 0.994 0.882 0.592 0.336 0.23 0.196 0.188 0.18

C2 S 1 1 1 0.99 0.936 0.679 0.293 0.164 0.142 0.128

C2 B 0.996 0.996 0.996 0.994 0.948 0.640 0.348 0.232 0.204 0.194

were used by malware samples and intuitively, all the features in malware sam-

ples should have been no contribution to the false negative predictions of benign

class. Therefore, the features are attributed with positive values by MPT ex-

plainer imply that the classifiers consider all the features comprehensively. That

is, a malware sample is camouflaged as a benign app sample to evade the de-

tection successfully by: (1) the contribution from individual activated features;

and (2) the contribution made by the activated feature and the existing features

together, which is why some of the features in the original base sample are also

attributed with positive values.

The second assessment is a functional analysis that measures the adver-

sarial samples with “good” explanation, as a function of two variables: (1) the

prediction score of benign class by the classifier; and (2) the number of activated

features in each sample. A higher prediction score indicates the stronger confi-

dence from the classifier on its prediction, when the classifier considers all the

features, including the contributions made by individual features. In addition,

more features are activated in an adversarial sample denotes to the significant

changes of the features vector, which implies more complicated relationships

among features, and thus the features attribution are more difficult than that

on the adversarial samples with less amount of activated features.

We show the analysis results for SVM and BERT in Table 3. The number

in each cell is calculated by the number of adversarial samples with “good” ex-

22

Table 3: Function analysis for model explanation (SVM left, BERT right), as a

function of the model’s prediction scores and the number of activated features

in each sample. The threshold of an adversarial sample with the “good” explanation >

0.4. The candidate activated features are by Configuration 1. The intervals of the classifier’s

prediction scores are shown in the first column, and the intervals of the number of activated

features in a sample is shown in the first row.

SVM (0, 30] (30,50] 50+

(0.5,0.6] 0.448 0.278 0.286

(0.6,0.7] 0.392 0.500 0.111

(0.7,0.8] 0.661 0.636 0.185

(0.8,0.9] 0.737 0.636 0.490

(0.9,1.0] 1.000 1.000 1.000

BERT (0, 30] (30,50] 50+

(0.5,0.6] 0.579 0.333 0.417

(0.6,0.7] 0.444 0.545 0.706

(0.7,0.8] 0.600 0.167 0.786

(0.8,0.9] 0.553 0.222 0.667

(0.9,1.0] 0.667 0.667 0.909

planation divides the number of the adversarial samples that has the prediction

scores in a certain interval (i.e., a row in the table) and the amount of acti-

vated features (i.e., a column in the table). The functional analysis reveals the

features attributions for both SVM and BERT by MPT explainer have better

performance when the classifier has a higher confidence on its false negative

prediction of benign class (i.e., prediction score close to 1) than those sample

with less confidence. In addition, the performance of features attribution by

MPT explainer for SVM is deteriorated if the number of activated features in

an adversarial sample is increased. And more activated features in the adver-

sarial samples are identified by the MPT explainer for BERT as the number of

activated features in a sample increased. The difference reveals the following

findings: (1) SVM and BERT made the false negative prediction by considering

different features; and (2) it requires to activate less amount of features to evade

the detection by SVM than that by BERT, which maybe helpful for the analysts

to find out the solution to a more secure malware detector.

23

6.3. Explanation Capability Comparison

In this experiment, we compared the explanation capabilities of MPT explainer

with another two state-of-the-art explainable AI methods: LIME [4] and SHAP [15],

when they are used to explain SVM and BERT’s false negative predictions on

the adversarial samples (see Fig. 2). Totally, the 500 adversarial samples gen-

erated with the Configuration 1 are used. The performance of each explainer is

evaluated in terms of the “good” explanation metric (see Section 6.2).

Fig. 2a shows the percent of samples with “good” explanations for SVM’s

prediction behaviors by MPT explainer, SHAP and LIME. It seems these three

explainers explain the model’s behavior accurately when the threshold of “good”

explanation is small. LIME shows the most stable percentage of “good” expla-

nation, as it keeps relatively high percentage of “good” explanation in most

time even if the threshold is increasing. MPT explainer shows competitive per-

formance when the threshold is small, but its percentage of “good” explanation

is decreased when the threshold is increasing. The percentage of samples with

“good” explanations by SHAP is deteriorated quickly to zero, as the the thresh-

old of a “good” explanation is becoming larger. This is because SHAP only

explains a small number of features that have the top attribution values. In

summary, we can have a few findings: (1) Most of the features with high at-

tributed values generated by the three explainers are from the activated features

of the adversarial samples. (2) LIME shows the relatively stable performance,

regardless of the thresholds; (3) MPT explainer has competitive explanation

ability with LIME, when the threshold is small; and (4) SHAP’s performance is

not stable and deteriorated quickly as the threshold is increasing.

6.4. Fidelity Test

We also compare the explanation fidelity between MPT explainer and kernel

SHAP, when they are used to explain the PDF malware detectors (e.g., SVM and

Random Forest classifiers) for the samples from the PDF malware dataset [57].

The PDF malware dataset has 4, 999 malicious samples and 5, 000 normal PDF

24

files. We follow [40] to use the 135 features, which values have been encoded into

binary values. The SVM and Random Forest are trained on the training set,

and we observe the explanation performance when MPT explainer and SHAP

are used to explain the classification of the testing samples.

The fidelity tests include deduction test and augmentation test. The de-

duction test assumes that the AI model’s prediction of a manipulated sample,

in which a certain number of features with high attribution values (so called

“important” features) are removed, will towards the opposite class of the orig-

inal sample, if the explanation (i.e., the attribution values) by the explainer is

correct. The augmentation test refers to adding a certain number of features

with high attribution values from a malware sample to a benign sample (i.e.,

the sample in the opposite class) may make the model’s prediction towards the

class of malware, if the explanation is correct. We follow [40] to evaluate the

explainer’s performance in the fidelity tests by positive classification rate

(PCR) that refers to the percentage of samples remains its original class label

after the manipulation of deduction or augmentation. Therefore, the PCR for a

“good” explainer is as low as possible in a deduction test. A “good” explainer

has a high PCR in augmentation.

Fig. 3 shows the fidelity of the MPT explainer and SHAP. In deduction test

(see Fig. 3a), removing a small number of “important” features (less than 3

features) identified by both SHAP and MPT explainer can reduce the PCR to

around 98.92% for SVM classifier. The PCR curve of SHAP then fluctuates

sharply when more and more “important” features are used, and it will finally

increase to nearly 100% PCR that is higher than MPT explainer’s PCR, when

more than 48 features are used (135 features totally). The similar case happens

when SHAP explains Random Forest. In comparison, the PCR of the MPT ex-

plainer keeps relatively lower than 100% in a stable way (around 98.92% PCR).

The unstable PCR curve of SHAP increases the uncertainty of accurately iden-

tified “important” features towards the model’s prediction. We analyzed the

explanations generated by SHAP and MPT explainer, and found that SHAP

usually only focus on a small amount of features (6% features for SVM, and

25

10% features for Random Forest), which means most of the remaining features

are attributed with zeros. This may cause the problem that if one “important”

feature is not identified or an unimportant feature is incorrectly identified in

the explanation, the accuracy of the whole explanation will be decreased sig-

nificantly. In comparison, MPT explainer attributes the features by not only

considering their individual contributions, but also the contributions made by

the dependencies among them. Therefore, in both SVM and RF classifiers,

MPT explainer attributes more than 60% features with non-zero values, which

forms a large pool of candidate features that have contribution (positive or neg-

ative) to the model’s prediction, and these features keeps the stable explanation

regardless the number of features used in the deduction tests.

In Fig. 3b, it shows that in the augmentation test, adding a small number

of “important” features identified by SHAP from the malware samples to a

non-malware sample can make the model’s prediction towards malware (i.e.,

the opposite class of non-malware samples) with a high PCR value (>80%).

However, as the instability issue for SHAP in the deduction test, as long as

more “important” features are used, the PCR of SHAP becomes not stable

and intends to decrease significantly. The MPT explainer shows a low PCR

when a small number of features are used, and a rapid growth of the PCR

as the increasing of the “important” features. And finally the PCR of MPT

explainer is getting close to that of SHAP. We argue that (1) SHAP is only

able to accurately identify the contributions of a small number of features,

and therefore, the explanation is not complete and the fluctuating PCR curves

along the increasing number of features implies the remaining features that

are attributed with low or zero attribution values by SHAP can also affect

the model’s behavior significantly and likely to mean inaccurate attributions.

(2) MPT explainer, however, explains the model’s prediction on a sample by

attributing more features’ contribution/importance, and the rapid growth of

PCR curves in the augmentation test implies that the attribution values for the

remaining features by MPT explainer are still accurate. This is because MPT

explainer takes care of both the individual features’ contribution to the model’s

26

(a) Percentage of “good” explanation

identifid by LIME, SHAP & MPT Ex-

plainer for SVM

(b) Percentage of “good” explanation

identifid by LIME, SHAP & MPT Ex-

plainer for BERT

Figure 2: “Good” segmentation comparesion

(a) Deduction Test (b) Augmentation Test

Figure 3: Fidelity test. (a) Deduction test: SHAP shows unstable PCRs that fluctuate at

the beginning for SVM and increased to neraly 100% when more than 50 features used that

is higher than the PCR of MPT explainer. (b) Augmentation test: MPT explainer has a low

PCR when a small number of features used, and increased quickly to close to the PCR of

SHAP, which is decreasing, as the number of features is increasing.

prediction and the dependencies among features.

Therefore, we suggest (1) MPT explainer can be used to generate a more

complete explanation of a model’s behavior on a given sample. Users can un-

derstand the AI model’s behavior through the contributions made by most of

the features in a sample. (2) SHAP’s explanation on a model’s behavior usually

focuses on the contribution made by a small number of features. Therefore, it

may be a good practice to use SHAP to have a compact explanation (abstract)

of a model’s prediction on a given sample.

27

6.5. Running Time Performance

The average running time that MPT explainer explains the Android malware

detection by SVM for a single data sample is around 15.44 seconds, and 15.20

seconds for BERT, respectively. The explanation was running through an un-

optimized Python code on a PC with GeForce RTX 2070 GPU, 3.60 GHz × 8

Intel i7-9700K CPU and 62.8 GB memory. Most of the time were spent on the

prediction process by the classifiers over the hundreds of perturbed data.

7. Conclusion

In this article, we presented a novel explainable AI method that addresses the

problem of features attribution for machine learning classifiers used in Android

malware detection. This method is inspired by the modern portfolio theory

(MPT) that minimizes the variance of the association of the prediction scores

changes and the attribution values. By this way, a higher value of a feature’s

attribution implies that the small change of this feature will cause a non-trivial

change of the model’s prediction score. The effectiveness of the proposed method

is assessed by three experiments. The first experiment presents a comprehensive

analysis on the capacity of features attribution by the MPT explainer for the

adversarial samples, where the malware samples are camouflaged as the benign

apps samples and can evade the detection by the SVM and BERT. In the second

experiment, we compare the explanation capacity between the MPT explainer

and the state-of-the-arts methods, e.g., SHAP and LIME. The results for these

two experiments prove thee MPT explainer is helpful for the security analysts

to find out the reasons that the classifiers are fooled by the adversarial samples,

such that a machine learning model for malware detection that is more resistant

against such attacks can be developed. The third experiment is to test the

explanation fidelity by the MPT explainer, where the comparison with SHAP

shows the MPT explainer can explain the model’s behavior in a high fidelity.

These results hold a promise that the proposed model explanation method is

helpful for both AI and cyber security practitioners.

28

References

[1] A. L. Buczak, E. Guven, A survey of data mining and machine learning

methods for cyber security intrusion detection, IEEE Communications sur-

veys & tutorials 18 (2) (2015) 1153–1176.

[2] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, C. Wang,

Machine learning and deep learning methods for cybersecurity, IEEE Ac-

cess 6 (2018) 35365–35381.

[3] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,

A. Prakash, T. Kohno, D. Song, Robust physical-world attacks on deep

learning visual classification, in: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 1625–1634.

[4] M. T. Ribeiro, S. Singh, C. Guestrin, “why should i trust you?” explaining

the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD

international conference on knowledge discovery and data mining, 2016, pp.

1135–1144.

[5] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep net-

works, in: Proceedings of the 34th International Conference on Machine

Learning-Volume 70, JMLR. org, 2017, pp. 3319–3328.

[6] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck, I. Corona,

G. Giacinto, F. Roli, Yes, machine learning can be more secure! a case

study on android malware detection, IEEE Transactions on Dependable

and Secure Computing.

[7] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller,

S. Sezer, Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, et al., Deep android

malware detection, in: Proceedings of the Seventh ACM on Conference on

Data and Application Security and Privacy, 2017, pp. 301–308.

[8] J. Yan, Y. Qi, Q. Rao, Lstm-based hierarchical denoising network for an-

droid malware detection, Security and Communication Networks 2018.

29

[9] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, A. K. Sangaiah, Android malware

detection based on system call sequences and lstm, Multimedia Tools and

Applications 78 (4) (2019) 3979–3999.

[10] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, C. Siemens,

Drebin: Effective and explainable detection of android malware in your

pocket., in: Ndss, Vol. 14, 2014, pp. 23–26.

[11] I. D. C. (IDC), Smart phone market share, accessed: 2020-02-26.

URL https://www.idc.com/promo/smartphone-market-share/os

[12] Google play, accessed: 2020-02-25.

URL https://play.google.com/

[13] Av-test, accessed: 2020-02-25.

URL https://www.av-test.org/en/statistics/malware/

[14] L. Zhang, V. L. Thing, Y. Cheng, A scalable and extensible framework for

android malware detection and family attribution, Computers & Security

80 (2019) 120–133.

[15] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model pre-

dictions, in: Advances in neural information processing systems, 2017, pp.

4765–4774.

[16] B. Efron, T. Hastie, I. Johnstone, R. Tibshirani, et al., Least angle regres-

sion, The Annals of statistics 32 (2) (2004) 407–499.

[17] H. Markowitz, Portfolio selection, Journal of Finance 7 (1) (1952) 77–91.

[18] M. Zhao, F. Ge, T. Zhang, Z. Yuan, Antimaldroid: An efficient svm-based

malware detection framework for android, in: International Conference on

Information Computing and Applications, Springer, 2011, pp. 158–166.

[19] W. Li, J. Ge, G. Dai, Detecting malware for android platform: An svm-

based approach, in: 2015 IEEE 2nd International Conference on Cyber

Security and Cloud Computing, IEEE, 2015, pp. 464–469.

30

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://play.google.com/
https://play.google.com/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

[20] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of

deep bidirectional transformers for language understanding, arXiv preprint

arXiv:1810.04805.

[21] H. Meng, V. L. Thing, Y. Cheng, Z. Dai, L. Zhang, A survey of android

exploits in the wild, Computers & Security 76 (2018) 71–91.

[22] K. Bakour, H. M. Ünver, R. Ghanem, The android malware detection sys-

tems between hope and reality, SN Applied Sciences 1 (9) (2019) 1120.

[23] A. A. A. Samra, Kangbin Yim, O. A. Ghanem, Analysis of clustering tech-

nique in android malware detection, in: 2013 Seventh International Confer-

ence on Innovative Mobile and Internet Services in Ubiquitous Computing,

2013, pp. 729–733. doi:10.1109/IMIS.2013.111.

[24] A. Feizollah, N. B. Anuar, R. Salleh, G. Suarez-Tangil, S. Furnell, An-

drodialysis: Analysis of android intent effectiveness in malware detection,

computers & security 65 (2017) 121–134.

[25] M. Zhang, Y. Duan, H. Yin, Z. Zhao, Semantics-aware android malware

classification using weighted contextual api dependency graphs, in: Pro-

ceedings of the 2014 ACM SIGSAC conference on computer and commu-

nications security, 2014, pp. 1105–1116.

[26] Y. Aafer, W. Du, H. Yin, Droidapiminer: Mining api-level features for ro-

bust malware detection in android, in: International conference on security

and privacy in communication systems, Springer, 2013, pp. 86–103.

[27] H.-J. Zhu, Z.-H. You, Z.-X. Zhu, W.-L. Shi, X. Chen, L. Cheng, Droiddet:

Effective and robust detection of android malware using static analysis

along with rotation forest model, Neurocomputing 272 (2018) 638 – 646.

doi:https://doi.org/10.1016/j.neucom.2017.07.030.

URL http://www.sciencedirect.com/science/article/pii/

S0925231217312870

31

http://dx.doi.org/10.1109/IMIS.2013.111
http://www.sciencedirect.com/science/article/pii/S0925231217312870
http://www.sciencedirect.com/science/article/pii/S0925231217312870
http://www.sciencedirect.com/science/article/pii/S0925231217312870
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2017.07.030
http://www.sciencedirect.com/science/article/pii/S0925231217312870
http://www.sciencedirect.com/science/article/pii/S0925231217312870

[28] H. Lu, L. Yang, K. Yan, Y. Xue, Z. Gao, A cost-sensitive rotation for-

est algorithm for gene expression data classification, Neurocomputing 228

(2017) 270–276.

[29] R. Vinayakumar, K. Soman, P. Poornachandran, S. Sachin Kumar, De-

tecting android malware using long short-term memory (lstm), Journal of

Intelligent & Fuzzy Systems 34 (3) (2018) 1277–1288.

[30] F. K. Došilović, M. Brčić, N. Hlupić, Explainable artificial intelligence: A

survey, in: 2018 41st International convention on information and com-

munication technology, electronics and microelectronics (MIPRO), IEEE,

2018, pp. 0210–0215.

[31] Z. C. Lipton, The mythos of model interpretability, Queue 16 (3) (2018)

31–57.

[32] C. Molnar, Interpretable Machine Learning, 2019, https://christophm.

github.io/interpretable-ml-book/.

[33] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional net-

works, in: European conference on computer vision, Springer, 2014, pp.

818–833.

[34] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,

Y. Bengio, Show, attend and tell: Neural image caption generation with

visual attention, in: International conference on machine learning, 2015,

pp. 2048–2057.

[35] W. Samek, T. Wiegand, K.-R. Müller, Explainable artificial intelligence:

Understanding, visualizing and interpreting deep learning models, arXiv

preprint arXiv:1708.08296.

[36] R. Aumann, L. Shapley, Values of non-atomic games. 1974.

[37] P. K. Mudrakarta, A. Taly, M. Sundararajan, K. Dhamdhere, Did the

model understand the question?, arXiv preprint arXiv:1805.05492.

32

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

[38] M. Wu, M. C. Hughes, S. Parbhoo, M. Zazzi, V. Roth, F. Doshi-Velez,

Beyond sparsity: Tree regularization of deep models for interpretability,

in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[39] N. F. Rajani, B. McCann, C. Xiong, R. Socher, Explain yourself! leveraging

language models for commonsense reasoning, in: Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics, Associ-

ation for Computational Linguistics, Florence, Italy, 2019, pp. 4932–4942.

doi:10.18653/v1/P19-1487.

URL https://www.aclweb.org/anthology/P19-1487

[40] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, X. Xing, Lemna: Explaining

deep learning based security applications, in: Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, 2018, pp.

364–379.

[41] E. C. R. Shin, D. Song, R. Moazzezi, Recognizing functions in binaries with

neural networks, in: 24th {USENIX} Security Symposium ({USENIX}

Security 15), 2015, pp. 611–626.

[42] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and

smoothness via the fused lasso, Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 67 (1) (2005) 91–108.

[43] A. Khalili, J. Chen, Variable selection in finite mixture of regression models,

Journal of the american Statistical association 102 (479) (2007) 1025–1038.

[44] What-if tool, accessed: 2020-03-30.

URL https://pair-code.github.io/what-if-tool/index.html

[45] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-

enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

33

https://www.aclweb.org/anthology/P19-1487
https://www.aclweb.org/anthology/P19-1487
http://dx.doi.org/10.18653/v1/P19-1487
https://www.aclweb.org/anthology/P19-1487
https://pair-code.github.io/what-if-tool/index.html
https://pair-code.github.io/what-if-tool/index.html

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,

Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heteroge-

neous systems, software available from tensorflow.org (2015).

URL https://www.tensorflow.org/

[46] Captum, accessed: 2020-03-20.

URL https://captum.ai/

[47] A. Shrikumar, P. Greenside, A. Kundaje, Learning important features

through propagating activation differences, in: Proceedings of the 34th In-

ternational Conference on Machine Learning-Volume 70, JMLR. org, 2017,

pp. 3145–3153.

[48] P.-J. Kindermans, K. Schütt, K.-R. Müller, S. Dähne, Investigating the

influence of noise and distractors on the interpretation of neural networks,

arXiv preprint arXiv:1611.07270.

[49] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch.

[50] M. Melis, A. Demontis, M. Pintor, A. Sotgiu, B. Biggio, secml: A

python library for secure and explainable machine learning, arXiv preprint

arXiv:1912.10013.

[51] C. D. Manning, P. Raghavan, H. Schütze, Scoring, term weighting, and

the vector space model, Cambridge University Press, 2008, p. 100–123.

doi:10.1017/CBO9780511809071.007.

[52] Virustotal, accessed: 2020-02-26.

URL https://www.virustotal.com/

[53] J.-P. Vert, K. Tsuda, B. Schölkopf, A primer on kernel methods, Kernel

methods in computational biology 47 (2004) 35–70.

[54] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,

T. Rault, R. Louf, M. Funtowicz, J. Brew, Huggingface’s transformers:

State-of-the-art natural language processing, ArXiv abs/1910.03771.

34

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://captum.ai/
https://captum.ai/
http://dx.doi.org/10.1017/CBO9780511809071.007
https://www.virustotal.com/
https://www.virustotal.com/

[55] M. Barreno, B. Nelson, A. D. Joseph, J. D. Tygar, The security of machine

learning, Machine Learning 81 (2) (2010) 121–148.

[56] X. Liu, X. Du, X. Zhang, Q. Zhu, H. Wang, M. Guizani, Adversarial sam-

ples on android malware detection systems for iot systems, Sensors 19 (4)

(2019) 974.

[57] C. Smutz, A. Stavrou, Malicious pdf detection using metadata and struc-

tural features, in: Proceedings of the 28th annual computer security appli-

cations conference, 2012, pp. 239–248.

35

	1 Introduction
	2 Literature Review
	2.1 Android Malware Detection
	2.2 AI Model Explanation

	3 Learning-based Android Malware Detector
	3.1 DREBIN Dataset
	3.2 Embedding Features Vector by TF-IDF
	3.3 Learning-based Malware App Detection

	4 Evade Detection by Adversarial Samples
	4.1 Adversarial Samples Generation Algorithm

	5 Explaining Classifier's Predictions
	5.1 Theory Basis
	5.2 Problem Statement
	5.3 Data Perturbation
	5.4 Optimization for Features Attribution

	6 Experiments
	6.1 Experiment setup
	6.2 Analysis of Activated Features in Adversarial Samples
	6.3 Explanation Capability Comparison
	6.4 Fidelity Test
	6.5 Running Time Performance

	7 Conclusion

