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Abstract—Project Matsu is a collaboration between the Open
Commons Consortium and NASA focused on developing open
source technology for the cloud-based processing of Earth satellite
imagery. A particular focus is the development of applications
for detecting fires and floods to help support natural disaster
detection and relief. Project Matsu has developed an open source
cloud-based infrastructure to process, analyze, and reanalyze
large collections of hyperspectral satellite image data using Open-
Stack, Hadoop, MapReduce, Storm and related technologies.

We describe a framework for efficient analysis of large
amounts of data called the Matsu “Wheel.” The Matsu Wheel is
currently used to process incoming hyperspectral satellite data
produced daily by NASA’s Earth Observing-1 (EO-1) satellite.
The framework is designed to be able to support scanning
queries using cloud computing applications, such as Hadoop and
Accumulo. A scanning query processes all, or most of the data,
in a database or data repository.

We also describe our preliminary Wheel analytics, including
an anomaly detector for rare spectral signatures or thermal
anomalies in hyperspectral data and a land cover classifier
that can be used for water and flood detection. Each of these
analytics can generate visual reports accessible via the web
for the public and interested decision makers. The resultant
products of the analytics are also made accessible through an
Open Geospatial Compliant (OGC)-compliant Web Map Service
(WMS) for further distribution. The Matsu Wheel allows many
shared data services to be performed together to efficiently use
resources for processing hyperspectral satellite image data and
other, e.g., large environmental datasets that may be analyzed
for many purposes.

I. INTRODUCTION

The increasing availability of large volumes of scientific
data due to the decreasing cost of storage and processing
power has led to new challenges in scientific research. Scien-
tists are finding that the bottleneck to discovery is no longer a
lack of data but an inability to manage and analyze their large
datasets.

A common class of problems require applying an analytic
computation over an entire dataset. Sometimes these are called
scanning queries since they involve a scan of the entire dataset.
For example, analyzing each image in a large collection of
images is an example of a scanning query. In contrast, standard
queries typically process a relatively small percentage of the
data in a database or data repository.

With multiple scanning queries that are run within a time
that is comparable to the length of time required for a single
scan, it can be much more efficient to scan the entire dataset
once and apply each analytic in turn versus scanning the entire
dataset for each scanning query as the query arrives. This is
the case unless the data management infrastructure has specific
technology for recognizing and processing scanning queries.
In this paper, we introduce a software application called the
Matsu Wheel that is designed to support multiple scanning
queries over satellite imagery data.

Project Matsu is a collaborative effort between the Open
Science Data Cloud (OSDC), managed by the Open Commons
Consortium (OCC), and NASA, working to develop open
source tools for processing and analyzing Earth satellite im-
agery in the cloud. The Project Matsu “Wheel” is a framework
for simplifying Earth satellite image analysis on large volumes
of data by providing an efficient system that performs all the
common data services and then passes the prepared chunks
of data in a common format to the analytics, which processes
each new chunk of data in turn.

A. Motivation for an analytic wheel

The idea behind the wheel is to have all of the data process-
ing services performed together on chunks of data to efficiently
use resources, including available network bandwidth, access
to secondary storage, and available computing resources. This
is especially important with reanalysis, in which the entire
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dataset is processed using an updated algorithm, a recalibration
of the data, a new normalization of the data, a new workflow,
etc. The motivation behind the analytic wheel is to streamline
and share these services so that they are only performed once
on each chunk of data in a scanning query, regardless of the
number or type of scanning analytics run over the data.

B. Comparison to existing frameworks

The Matsu Wheel approach differs from other common data
management or data processing systems. Real-time distributed
data processing frameworks (for example, Storm, S4, or Akka)
are designed to process data in real time as it flows through a
distributed system (see also, e.g., [1], [2], [3]). In contrast, the
Wheel is designed for the reanalysis of an entire static dataset
that is stored in distributed storage system (for example, the
Hadoop Distributed File System) or distributed database (for
example, HBase or Accumulo).

It is important to note, that any distributed scale-out data
processing system based upon virtual machines has certain
performance issues due to the shared workload across multiple
virtual machines associated with a single physical node. In
particular, these types of applications may have significant
variability in performance for real scientific workloads [4].
This is true, when multiple scanning queries hit a distributed
file system, a NoSQL database, or a wheel based system on
top of one these infrastructures. When a NoSQL database is
used for multiple scanning queries with a framework like the
wheel, the NoSQL database can quickly become overloaded.

C. Application to Earth satellite data

Analyses of Earth satellite data and hyperspectral imagery
data in particular benefit from the Matsu Wheel system as a
use case in which the data may be large, have high-volume
throughput, and are used for many types of applications. The
Project Matsu Wheel currently processes the data produced
each day by NASA’s Earth Observing- 1 (EO-1) satellite and
makes a variety of data products available to the community.
In addition to the Atmospheric Corrector, the EO-1 satellite
has two primary scientific instruments for land observations,
the Advanced Land Imager (ALI) and a hyperspectral imager
called Hyperion [5], [6]. EO-1 was launched in November
2000 as part of NASA’s New Millennium Program (NMP)
initiative for advancing new technologies in space and is
currently in an extended mission.

The ALI instrument acquires data in 9 different bands from
0.48−2.35 µm with 30-meter resolution plus a panchromatic
band with higher 10-meter spatial resolution. The standard
scene size projected on the Earth surface equates to 37 km x 42
km (width x length). Hyperion has similar spatial resolution
but higher spectral resolution, observing in 242 band chan-
nels from 0.357−2.576 µm with 10-nm bandwidth. Hyperion
scenes have a smaller standard footprint width of 7.7 km. The
Matsu Wheel runs analytics over Level 1G data in Geographic
Tagged Image File Format (GeoTiff) format, which have been
radiometrically corrected, resampled for geometric correction,
and registered to a geographic map projection. The GeoTiff

data and metadata for all bands in a single Hyperion scene
can amount to 1.5−2.5 GB of data for only the Level 1G
data. A cloud environment for shared storage and computing
capabilities is ideal for scientific analysis of many scenes,
which can quickly add to a large amount of data.

II. WORKFLOW

A. Cloud environment

Project Matsu uses both an OpenStack-based computing
platform and a Hadoop-based computing platform, both of
which are managed by the OCC (www.occ-data.org) in con-
junction with the University of Chicago. The OpenStack plat-
form (the Open Science Data Cloud [7]) currently contains 60
nodes, 1208 compute cores, 4832 GB of compute RAM, and
1096 TB of raw storage. The Hadoop [8] platform currently
contains 28 nodes, 896 compute cores, 261 TB of storage, and
3584 GB of compute RAM.

B. Pre-processing of data on the OSDC

The Open Science Data Cloud provides a number of data
center services for Project Matsu. The data are received daily
from NASA, stored on a distributed, fault-tolerant file system
(GlusterFS), and pre-processed prior to the application of the
Wheel analytics on Skidmore. The images are converted into
SequenceFile format, a file format more suited for MapRe-
duce, and uploaded into HDFS [9]. Metadata and compute
summary statistics are extracted for each scene and stored in
Accumulo, a distributed NoSQL database [10]. The metadata
are used to display the geospatial location of scenes via a
mapping service so that users can easily visualize which areas
of the Earth are covered in the data processed by the Matsu
Wheel.

Here is an overview of the Matsu data flow for processing
EO-1 images and producing data and analytic products:

1) Performed by NASA/GSFC as part of their daily oper-
ations:
a) Transmit data from NASA’s EO-1 Satellite to NASA
ground stations and then to NASA/GSFC.
b) Align data and generate Level 0 images.
c) Transmit Level 0 data from NASA/GSFC to the
OSDC.

2) Run by NASA on the OSDC OpenStack cloud for Matsu
and other projects:
a) Store Level 0 images in the OSDC Public Data
Commons for long-term, active storage.
b) Within the OSDC, launch Virtual Machines (VMs)
specifically built to render Level 1 images from Level
0. Each Level 1 band is saved as a distinct image file
(GeoTIFF).
c) Store Level 1 band images in the OSDC Public Data
Commons for long-term storage.

3) Run specifically for Project Matsu on the Hadoop cloud:
a) Read Level 1 images, combine bands, and serialize
image bands into a single file.
b) Store serialized files on HDFS.
c) Run Wheel analytics on the serialized Level 1 images
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stored in HDFS.
d) Store the results of the analysis in Accumulo for
further analysis, generate reports, and load into a Web
Map Service.

C. Analytic ‘wheel’ architecture

The analytic Wheel is so named because multiple analytics
are applied to data as it flows underneath. While a bicycle or
water wheel does not fit exactly, the image is clear: do the
work as the data flows through once, like the pavement under
the bicycle wheel. With big data, retrieving or processing data
multiple times is an inefficient use of resources and should be
avoided.

When new data become available in HDFS as part of
the pre-processing described above, the MapReduce scanning
analytics kick off. Intermediate output is written to HDFS, and
all analytic results are stored in Accumulo as JSON. Secondary
analysis that can run from the results of other analytics can
be done “off the wheel” by using the Accumulo-stored JSON
as input.

As many analytics can be included in the Wheel as can run
in the allowed time. If new data are obtained each day, then
the limit is 24 hours to avoid back-ups in processing. For other
use cases, there may be a different time window in which the
results are needed. This can be seconds, minutes, or hours.
Our MapReduce analytic environment is not designed to yield
immediate results, but the analytics can be run on individual
images at a per minute speed. Analytics with results that need
to be made available as soon as possible can be configured
to run first in the Wheel. We show a diagram of the flow of
EO-1 data from acquisition and ingest into HDFS through the
analytic Wheel framework in Figure 1.

The Wheel architecture is an efficient framework not re-
stricted only to image processing, but is applicable to any
workflow where an assortment of analytics needs to be run on
data that require heavy pre-processing or have high-volume
throughput.

III. ANALYTICS

We are currently running five scanning analytics on daily
images from NASA’s EO-1 satellite with the Project Matsu
Wheel, including several spectral anomaly detection algo-
rithms and a land cover classification analytic. Here we
describe each of these and the resulting analytic reports
generated.

A. Contours and Clusters

This analytic looks for contours in geographic space around
clusters in spectral space. The input data consist of Level
1G EO-1 GeoTiff images from Hyperion, essentially a set
of radiances for all spectral bands for each pixel in an
image. The radiance in each band is divided by its underlying
solar irradiance to convert to units of reflectivity or at-sensor
reflectance. This is done by scaling each band individually by
the irradiance and then applying a geometric correction for the
solar elevation and Earth-Sun distance, as shown in eqn. 1,

ρi =

(
π

µ0F0,i/d2earth−sun

)
Li (1)

where ρi is the at-sensor reflectance at channel i, µ0 =
cos (solar zenith angle), F0,i is the incident solar flux at chan-
nel i, dEarth−Sun is the Earth-Sun distance, and Li is the
irradiance recorded at channel i [11]. This correction accounts
for differences in the data due to time of day or year.

We then apply a principal component analysis (PCA) to
the set of reflectivities, and the top N (we choose N=5) PCA
components are extracted for further analysis. There are two
passes for the Contours and Clusters analytic to generate a
contour result: spectral and spatial.

• Spectral clusters are found in the transformed N-
dimensional spectral space for each image using a k-
means clustering algorithm and are then ranked from
most to least extreme using the Mahalanobis distance of
the cluster from the spectral center of the image.

• Pixels are spatially analyzed and are grouped together
into contiguous regions with a certain minimum purity or
fraction of pixels that belong to that cluster and are then
ranked again based on their distance from the spectral
cluster center.

Each cluster then has a score indicating 1) how anomalous
the spectral signature is in comparison with the rest of the
image and 2) how close the pixels within the contour are
to the cluster signature. The top ten most anomalous clusters
over a given timeframe are singled out for manual review and
highlighted in a daily overview summary report.

The analytic returns the clusters as contours of geographic
regions of spectral ”anomalies” which can then be viewed as
polygonal overlays on a map. The Matsu Wheel produces
image reports for each image, which contain an interactive
map with options for an OpenStreetMap, Google Physical,
or Google Satellite base layer and an RGB image created
from the hyperspectral data and identified polygon contours
as options for overlays. Researchers or anyone interested in
the results can view the image reports online through a web
browser.

By implementing this analytic in the Matsu Wheel, we
have been able to automatically identify regions of interesting
activity on the Earth’s surface, including several volcanic
events. For example, in February 2014, this Matsu Wheel
analytic automatically identified anomalous activity in EO-1
Hyperion data of the Barren Island volcano, which was also
confirmed to be active by other sources. We show an example
analytic image report for this event in Figure 2.

B. Rare Pixel Finder

The Rare Pixel Finder (RPF) is an analytic designed to find
small clusters of unusual pixels in a hyperspectral image. This
algorithm is applied directly to the EO-1 data in radiances,
but the data can also be transformed to reflectances or other
metrics or can have logs applied.

Using the subset of k hyperspectral bands that are de-
termined to be most informative, it computes k-dimensional
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Additional 
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plug in easily

Fig. 1: A diagram of the flow of EO-1 ALI and Hyperion data from data acquisition and ingest through the Wheel framework.
Orange denotes the processes performed on the OSDC Skidmore cloud. With the Wheel architecture, the data need to be read
in only once regardless of the number of analytics applied to the data. The Matsu Wheel system is unique in that, essentially,
the data are flowing through the framework while the analytic queries sit in place and scan for new data. Additional analytics
plug in easily, with the requirement that an analytic takes as input a batch of data to be processed. An analytic query may be
written such that it can be run on its own in the Wheel or written to take as input the output of an upstream analytic. The
report generators are an example of the latter case, generating summary information from upstream analytics.

Mahalanobis distances and finds the pixels most distant. From
this subset, pixels that are both spectrally similar and geo-
graphically proximate are retained. Spectrally similar pixels
that can be further grouped into small compact sets are
reported as potential outlying clusters. Details of the different
steps of the algorithm are given below.

In the pre-processing step, we remove areas of the image
that are obvious anomalies not related to the image (e.g., zero
radiances on the edges of images), as well as spectral bands
that correspond to water absorption or other phenomena that
result in near-zero observed radiances. Any transformations are
applied to the data at this point, such as transforming radiance
to reflectance or logs.

Once the data are pre-processed, the Mahalanobis distance
(Di) is calculated for each pixel. Then, only the subset S1 of
pixels that satisfy Di > k1 are selected, where k1 is chosen

such that S1 only contains 0.1–0.5% of pixels. In practice
k1 was based on the upper 6σ of the distribution of sample
distances, assuming a log-normal distribution for the distances.

For the subset of S1 pixels chosen in the previous step,
we next compute a similarity matrix T with elements Tij
measuring the spectral similarity between each pair of pixels.
The similarity metric is based on the dot product between
each pair of points and measures the multi-dimensional angle
between points. The matrix is only formed for the subset S1

and contains a few hundred rows. The pixels are then further
subsetted. Pixel i is selected for set S2 if Tij > k2 for j 6= i.
The parameter k2 is chosen to be very close to 1; in this way
we select objects that are both spectrally extreme but still have
similar spectral profiles to one another.

In order to cluster the pixels geographically, we assume they
lie on a rectangular grid. An L1 norm metric is applied to the
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Fig. 2: A screenshot of a Matsu analytic image report for a Contours and Clusters spectral anomaly analytic that automatically
identified regions of interest around the Barren Island volcano, confirmed as active by other sources in February 2014. The
reports contain basic information about the data analyzed and the analytic products and a zoomable map with the data and
analytic products shown as an overlay on an OpenStreetMap, Google Physical, or Google Satellite base layer. In this analytic,
interesting regions are given a cluster score from 0 - 1000 based on how anomalous they are compared to the average detection
and appear as colored contours over the image.

subset S2 in order to further whittle down the candidate set
to pixels that are spectrally extreme, spectrally similar, and
geographically proximate. The metric is set so that traversing
from one pixel to an immediately adjacent one would give a
distance of 1, as if only vertical and horizontal movements
were allowed. Pixel i is selected for set S3 if Mij < k3 for
j 6= i and for some small value of k3. We used k3 = 3, so
that pixels either needed to be touching on a face or diagonally
adjacent.

In the final step a simple heuristic designed to find the
connected components of an undirected graph is applied. We
further restrict to a set S4 that are geographically proximate
to at least k4 other pixels (including itself). We used k4 = 5,
with the goal of finding compact clusters of between 5 and 20
pixels in size. The clumping heuristic then returns the pixels
that were mapped into a cluster, the corresponding cluster ID’s,

and the associated distances for the elements of the cluster.
The flagged pixels are reported as ”objects”. These groups

of objects are further filtered in order to make sure that they
actually represent regions of interest. The following criteria
must be satisfied in order to qualify:

1) Spectral Extremeness. The mean Mahalanobis Distance
must be greater than or equal to some parameter p1. This
selects clusters that are sufficiently extreme in spectral
space.

2) Spectral Closeness. The Signal-to-Noise ratio must be
greater than or equal to some parameter p2. This se-
lects clusters that have similar values of Mahalanobis
Distance.

3) Cluster Size. All clusters must be between a minimum
value parameter p3 and a maximum parameter p4 pixels
in size (the goal of this classifier is to find small
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clusters).
4) Cluster Dimension. All clusters must have at least some

parameter p5 rows and columns (but are not restricted
to be rectangles).

Parameters p1 - p5 are all tuning parameters that can be set
in the algorithm to achieve the desired results.

C. Gaussian Mixture Model and K-Nearest Neighbors (GMM-
KNN) Algorithm

The Gaussian Mixture Model and K-Nearest Neighbors
(GMM-KNN) algorithm is also designed to find small clusters
of unusual pixels in a multispectral image. Using 10–30
spectral bands, it fits the most common spectral shapes to
a Gaussian Mixture Model (smoothly varying, but makes
strong assumptions about tails of the distribution) and also
a K-Nearest Neighbor model (more detailed description of
tails, but granular), then searches for pixels that are far from
common. Once a set of candidate pixels have been found,
they are expanded and merged into “clumps” using a flood-
fill algorithm. Six characteristics of these clumps are used to
further reduce the number of candidates.

In short, the GMM-KNN algorithm consists of the following
steps.

1) Preprocessing: Take the logarithm of the radiance value
of each band and project the result onto a color-only
basis to remove variations in intensity, which tend to be
transient while variations in color are more indicative of
ground objects.

2) Gaussian Mixture Model: Fit k = 20 Gaussian compo-
nents to the spectra of all pixels, sufficiently large to
cover the major structures in a typical image.

3) Flood-fill: Expand GMM outliers to enclose any sur-
rounding region that is also anomalous, and merge
GMM outliers if they are in the same clump.

4) Characterizing clumps: Derive a detailed suite of fea-
tures to quantify each clump, including KNN, edge
detection, and the distribution of pixel spectra in the
clump.

5) Optimizing selection: Choose the most unusual candi-
dates based on their features.

D. Spectral Blobs

This algorithm uses a “windowing” technique to create a
boundary mask from the standard deviation of neighboring
pixels. A catalog of spectrally similar blobs, that contain
varying numbers of pixels, is created. This analytic consists
of the following steps:

• Label spatially connected components of the mask using
an undirected graph search algorithm.

• Apply statistical significance tests (t-test, chi-squared) to
the spectral features of the connected component (the
“blobs”).

• Merge spectrally similar regions.
The anomalous regions are the small spatial blobs that are

not a member of any larger spatial cluster.

E. Supervised Spectral Classifier

The Supervised Spectral Classifier is a land coverage clas-
sification algorithm for the Matsu Wheel. We are particularly
interested in developing these analytics for the detection of
water and constructing flood maps to complement the onboard
EO-1 flood detection system [12]. This analytic is written to
take ALI or Hyperion Level 1G data and classify each pixel in
an image as a member of a given class in a provided training
set. We currently implement this analytic with a simple land
coverage classification training set with four possible classes:

• Clouds
• Water
• Desert / dry land
• Vegetation
The classifier relies on a support vector machine (SVM)

algorithm, using the reflectance values of each pixel as the
characterizing vector. In this implementation of the classifier,
we bin Hyperion data to resemble ALI spectra for ease of use
and computation speed in training the classifier. The result of
this analytic is a GeoTiff showing the classification at each
pixel.

1) Building a training data set: We constructed a training
data set of classified spectra from sections of EO-1 Hyperion
images over areas with known land coverage and cloud
coverage and confirmed our selections by visual inspection
of three-color (RGB) images created of the training images.
We used a combinination of Hyperion bands B16 (508.22
nm), B23 (579.45 nm), and B29 (640.5 nm) to construct the
RGB images. For each image contributing to the training data
set, we only included spectra for collections of pixels that
were visually confirmed as exclusively desert, water, clouds,
or vegetation.

The training data set consists of approximately 6,000 to
9,000 objects for each class. We include spectra for a variety of
different regions on the Earth observed during different times
of the year and a range of solar elevation angles. Because
absolute values are necessary to directly compare the training
data to all test images, the raw irradiance values from the
Level 1G data must first be converted to at-sensor reflectance
using eqn. 1. Table I lists general properties of the Hyperion
scenes used in constructing the training set, where the class
column indicates which class(es) (C = cloud, W = water, V =
vegetation, and D = desert) that scene contributed to.

We show a plot of the average training set object’s re-
flectance spectra for each of the four classes (clouds, desert,
vegetation, water) in Figure 3, which are in agreement with the
expected results. These spectra are consistent with the spectral
signatures of cloud, vegetation, and desert sand presented in
other examples of EO-1 Hyperion data analysis, specifically
Figures 3 and 4 in Griffin, et. al. (2005) [11] [13].

2) Classifying new data: The classifier uses the SVM
method provided by the Python scikit-learn machine learning
package [14]. We construct a vector space from all ALI bands
and two additional ALI band ratios, the ratios between ALI
bands 3:7 and 4:8. These ratios were chosen because they
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Fig. 3: The average reflectance spectra for each of the four classifications in the training data used by our implementation of
the Supervised Spectral Classifier analytic. The four classes are clouds (salmon), desert (lime green), vegetation (cyan), and
water (purple). Shaded grey areas show the wavelength coverage of ALI bands, which are the wavelength regions used by the
classifier described.

TABLE I: Scenes included in training set

Region name Class Obs Date Sun Azim. (°) Sun Elev. (°)
Aira W 4/18/14 119.12 49.1
San Rossore C/W 1/29/14 145.5 20.9
San Rossore C/V 8/10/12 135.8 54.5
Barton Bendish C 8/22/13 142.7 43.5
Jasper Ridge V/D 9/17/13 140.7 46.9
Jasper Ridge V/C 9/14/13 132.9 45.2
Jasper Ridge V/C 9/27/12 147.6 45.4
Arabian Desert D 12/30/12 147.0 29.9
Jornada D 12/10/12 28.7 151.4
Jornada D 7/24/12 59.6 107.5
Negev D 9/15/12 130.7 52.1
White Sands C 7/29/12 58.3 108.4
Besetsutzuyu V 7/14/12 56.8 135.5
Kenatedo W 6/22/12 50.5 46.5
Santarem W 6/17/12 57.1 118.15
Bibubemuku W 5/20/12 57.5 127.7

provided the best individual results in correctly distinguishing
between classes when used as the sole dimension for the SVM.

For Hyperion images, bands that correspond to the cover-
ages of the ALI bands are combined. The same corrections
to reflectance values that are applied to the training data are
applied to the input image data. For ALI data, an additional
scale and offset need to be applied before the irradiance values
are converted to reflectance.

3) Validating results: To confirm that the classifier analytic
is generating reasonable results, we compare the fractional
amount of land coverage types calculated by the classifier with
known fractional amounts from other sources. We compare our

results for classified cloud coverage with the cloud coverage
amounts stated for individual scenes available through the
EarthExplorer tool from the U.S. Geological Survey (USGS)
[15]. We show a visual comparison of cloud coverage deter-
mined by our classifier with cloud coverage amounts stated by
EarthExplorer for three Hyperion scenes of the big island of
Hawaii with varying amounts of clouds and a randomly chosen
scene of a section of the coast of Valencia in Figure 4. For
each pair of scenes, the left image shows an RGB image of
the Hyperion data with the USGS calculated cloud coverage,
and the right column has the classified image results, with the
amount of cloud coverage classified indicated.

The classified images appear to be visually consistent with
RGB images, though the calculations for classified cloud cov-
erage are not in complete agreement with USGS particularly
for lower amounts of cloud coverage. This may be because the
USGS EarthExplorer images include very thin cloud ”haze”
in cloud coverage calculations.

In the image of Valencia, Spain, shown in Figures 4g
and 4h the classifier can clearly distinguish the coastline in
the picture, correctly classifying the water and land features
and shows good agreement with regions that appear to be
cloud. It has some difficulty in shadowed areas like those
regions covered by cloud shadow. In Figure 5, we show a plot
comparing expected cloud and water coverage to the coverages
determined by our classifier for 20 random test scenes. For
each scene, the expected cloud coverage is taken as the center
of the range provided by the USGS EarthExplorer summary
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(a) EarthExplorer:
10-19% cloud coverage

(b) This work:
0.5% cloud coverage

(c) EarthExplorer:
40-49% cloud coverage

(d) This work:
23% cloud coverage

(e) EarthExplorer:
90-99% cloud coverage

(f) This work:
95% cloud coverage

(g) EarthExplorer:
10-19% cloud coverage

(h) This work:
28% cloud coverage

Fig. 4: A visual comparison of RGB images (left) for several Hyperion test data scenes against the results from our Supervised
Spectral Classifier (right) with a training set of 4 classes. For the classified images, white = clouds, green = vegetation, blue =
water, brown = desert/ dry land. Subfigures a) to f) are scenes over the big island of Hawaii showing a range of cloud coverage
amounts. Subfigures g) and h) show the coastal region of Valencia, Spain with a good mix of all four classes. The classifier
results generally appear to be visually consistent with RGB images, though the calculations for classified cloud coverage are
not in complete agreement with USGS. This may be because of a different treatment of very thin cloud ”haze” in cloud
coverage calculations.
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Fig. 5: Comparison of expected cloud and water coverages
from USGS vs. coverages calculated from our classifier.
Expected water points (triangles) are calculated from island
scenes as described in the text. Expected cloud coverage
estimates (circles) are taken from USGS EarthExplorer quoted
cloud coverage for each image. The linear regression is
the solid black line, and the grey shaded area is the 95%
confidence interval. A 1-1 relationship is shown as a dashed
black line for comparison.

for that image. The expected water coverage is calculated
from scenes of islands that are completely contained within
the image. We can then calculate expected water coverage by
removing the known fractional land area of the islands and the
USGS reported cloud coverage. We fit a regression line to the
data, which shows an overall consistent relationship between
the classified results and expected estimates.

F. Viewing analytic results

For convenience, each analytic produces a report after each
run of the Wheel. These reports are built from the JSON
results stored in Accumulo and are accessible to the public
via a web page. The generated reports contain spectral and
geospatial information about the scene analyzed as well as
analytic results. An overview summary report is created for all
daily data processed by an analytic in one run of the Wheel
in addition to reports for individual scenes. These reports
are generated and viewable immediately upon completion of
the scan of new data available each day at the following
address: http://matsu-analytics.opensciencedatacloud.org/. An-
alytic products are also made programmatically accessible
through a Web Map Service.

IV. FUTURE WORK

The Matsu Wheel allows for additional analytics to be easily
slotted in with no change to the existing framework so that we
can continue to develop a variety of scanning analytics over
these data. We are extending our existing Supervised Spectral
Classifier to use specifically over floodplain regions to aid in
flood detection for disaster relief. We are also planning to
develop a similar analytic to aid in the detection of fires.

The analytics we described here are all detection algorithms,
but we can also apply this framework and the results of our
current analytics to implement algorithms for prediction. For
example, our future work includes developing Wheel analytics
for the prediction of floods. This could be done using the
following approach:

1) Develop a dataset of features describing the observed
topology of the Earth.

2) Use the topological data to identify ”flood basins,”
or regions that may accumulate water around a local
minimum.

3) Determine the relationship between detected water cov-
erage in flood basins and the volume of water present.

4) Use observed water coverage on specific dates to relate
the water volume in flood basins with time.

5) Use geospatial climate data to relate recent rainfall
amounts with water volume, which then provides a sim-
ple model relating rainfall to expected water coverage at
any pixel.

This proposed scanning analytic would provide important
information particularly if implemented over satellite data
with global and frequent coverage, such as data from the
Global Precipitation Measurement (GPM) mission [16] [17].
Our future work involves continuing to develop the Matsu
Wheel analytics and apply this framework to additional Earth
satellite datasets.

V. SUMMARY

We have described here the Project Matsu Wheel, which
is what we believe to be the first working application of a
Hadoop-based framework for creating analysis products from
a daily scan of available satellite imagery data. This system
is unique in that it allows for new analytics to be dropped
into a daily process that scans all available data and produces
new data analysis products. With an analytic Wheel scanning
framework, the data need to be read in only once, regardless of
the number or types of analytics applied, which is particularly
advantageous when large volumes of data, such as those
produced by Earth satellite observations, need to be processed
by an assortment of analytics.

We currently use the Matsu Wheel to process daily spectral
data from NASA’s EO-1 satellite and make the data and Wheel
analytic products available to the public through the Open
Science Data Cloud and via analytic reports on the web.

A driving goal of Project Matsu is to develop open source
technology for satellite imagery analysis and data mining
analytics to provide data products in support of human as-
sisted disaster relief. The open nature of this project and
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its implementation over commodity hardware encourages the
development and growth of a community of contributors to
develop new scanning analytics for these and other Earth
satellite data.
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