
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2021 IEEE

Incremental Community Detection in Distributed

Dynamic Graph

Tariq Abughofa

School of Computing

Queen’s University

Kingston, ON, Canada
abughofa@queensu.ca

Ahmed A.Harby

School of Computing

Queen’s University Kingston,

ON, Canada
Ahmed.harby@queensu.ca

Haruna Isah

School of Computing

Queen’s University

Kingston, ON, Canada
h.isah@unb.ca

Farhana Zulkernine

School of Computing

Queen’s University

Kingston, ON, Canada
Farhana.zulkernine@queensu.ca

Abstract— Community detection is an important research

topic in graph analytics that has a wide range of applications. A

variety of static community detection algorithms and quality

metrics were developed in the past few years. However, most

real-world graphs are not static and often change over time. In

the case of streaming data, communities in the associated graph

need to be updated either continuously or whenever new data

streams are added to the graph, which poses a much greater

challenge in devising good community detection algorithms for

maintaining dynamic graphs over streaming data. In this paper,

we propose an incremental community detection algorithm for

maintaining a dynamic graph over streaming data. The

contributions of this study include (a) the implementation of a

Distributed Weighted Community Clustering (DWCC)

algorithm, (b) the design and implementation of a novel

Incremental Distributed Weighted Community Clustering

(IDWCC) algorithm, and (c) an experimental study to compare

the performance of our IDWCC algorithm with the DWCC

algorithm. We validate the functionality and efficiency of our

framework in processing streaming data and performing large

in-memory distributed dynamic graph analytics. The results

demonstrate that our IDWCC algorithm performs up to three

times faster than the DWCC algorithm for a similar accuracy.

Keywords—Distributed graph processing, dynamic graphs,

streaming data, weighted community clustering

I. INTRODUCTION

 Distributed processing of large-scale graphs has gained

considerable attention in the last decade [1]. This is mainly

due to the (i) unprecedented increase in the size of graph data

such as the Web based social media networks, (ii) evolution

of systems for processing massive graph data such as Pregel

[2] and GraphX [3], and (iii) huge increase in the number of

applications that utilize graph data such as traffic and social

network analysis [4]. According to Heidari et al. [5], a typical

graph processing system executes graph algorithms such as

graph traversal over a graph dataset across five different

logical phases, which include reading graph data, pre-

processing, partitioning, computation, and error handling.

Regardless of the size and type of framework or algorithms

used, Heidari et al. reported [5] that large-scale graph data can

be processed in offline, online, or real-time mode. Offline

processing is the popular mode and is achieved by loading the

graph dataset in memory from disk storage and processing it.

Online processing allows users to update, maintain, and re-

process the graph data automatically with new values either

periodically or based on user-defined events. Real-time

processing is similar to online processing except it also

enables instant incremental updates to be made to the graph

data. Thus, it requires the computation to be done immediately

after changes happen to the data and the updated analytics

results are returned with very short delays.

Several graph processing frameworks utilize static

partitioning, which means that they consider the graph and the

processing environment to remain unchanged [1][2][5].

However, most real-world graphs are dynamic as they change

over time with new data producing new vertices and edges that

need to be merged into existing graphs. The changes in

dynamic graphs are further complicated by the need for real-

time guarantees for applications such as real-time disease

spreading and anomaly detection. Traditional static graph

analytics approaches face a major limitation in meeting this

demand [6]. Dynamic graph scenarios require novel online or

real-time graph update and analytics algorithms since the

traditional offline graph analytics approaches require first the

whole graph to be updated with the new data, and then

analytics algorithms to be applied to the whole graph, which

is extremely computation-intensive and hence impractical.

Dynamic graph [7] updates can be node-grained or edge-

grained. In node-grained dynamic graphs, new nodes or

vertices are simultaneously added to the graph with all their

incident edges. An example of such graphs is a network of

scientific papers and their references. Once a paper is

published, all the papers that it references are known as well

and no new references (connections) are added later. In edge-

grained dynamic graphs, new edges are added or removed for

already existing vertices. Social networks are a good example

of these graphs, people add new friends and "un-friend" old

ones all the time. Thus, the assumption of knowing all the

connections of a person when we add them to the graph is not

viable. In these networks, the sequence of adding new edges

is important and influences the evolution of the graph

structure.

Recently, the problem of distributed processing of large

dynamic graphs has gained considerable attention [7]. Several

traditional graph operations such as the k-core decomposition

[8-11], partitioning [12], and maximal clique computation

[13] have been extended to support dynamic graphs. However,

many graph processing frameworks do not support several

graph operations in the context of dynamic graphs [4]. One

such operation is community detection in graphs, which is the

process of identifying groups of nodes that are highly

connected among themselves and sparsely connected to the

rest of the graph [14]. Such groups are referred to in the

literature as “communities" and occur in various types of

graphs. Several research studies on networks modeling real-

world phenomena have shown that the networks are organized

according to community structure and their structures evolve

with time [15]. Therefore, community detection within large-

scale graphs has become an important research problem

[7][16][17]. It helps to discover new structural properties

about the graph that cannot be found otherwise such as

identification of the highly influential nodes known as

community centroids [18]. It is also used for targeted

marketing [14], distributed graph management [9][10],

uncovering tightly connected entities in a graph [7], and

finding major sub-graphs indicating special relationships that

are generally obscured by the complex structure of the original

graph [19].

Metrics for shaping communities often follow two

approaches, either by maximizing the internal density of the

communities by including heavily connected nodes into the

community, or by reducing intra-community connectivity by

removing weak connections among different communities

[20]. Most of the existing community detection algorithms

involve heavy computation and hence are time-consuming

[21]. As the graphs being operated on become larger, the

ability to process them in memory on a single machine

becomes infeasible due to both time and memory constraints

[14][17]. In dynamic graphs, the problem becomes more

complex because the data keeps changing and the

communities need to be adjusted by reapplying the solution to

the whole graph every time the data changes [15]. With

streaming data, communities need to be updated continuously

or whenever a new micro-batch (too large of a batch size will

lead to poor generalization, so micro-batches are needed to

provide some basic intuition) of streaming data gets added to

the graph. This poses a much greater challenge in devising a

good community detection algorithm for dynamic graphs over

streaming data.

In this paper, we propose an incremental community

detection algorithm as a solution to the community detection

problem for large dynamic graphs over streaming data. It

gradually propagates new incoming data in the graph and

adjusts the existing communities. The contributions of this

study are as follows.

• We implemented the Distributed Weighted Community

Clustering (DWCC) algorithm using Apache Spark [22]

and GraphX [3][23] in Scala on a multi-cluster

environment. The DWCC was proposed by Saltz et al.

[14] which was implemented on the Pregel platform for

static data.

• We conducted an extensive performance study of the

DWCC algorithm to identify the costly operations to

optimize the processing time and memory consumption.

• Based on the results of the above study, we developed a

novel Incremental Distributed WCC (IDWCC) algorithm

for undirected and unweighted node-grained dynamic

distributed graphs. IDWCC applies the Weighted

Community Clustering (WCC) optimization technique to

add new vertices from the streaming data to the most

suitable communities in an existing distributed graph. We

implemented the algorithm in Scala using GraphX to

work with Spark Streaming. To the best of our

knowledge, this is the first node-grained incremental

distributed community detection algorithm.

• We experimentally validated both DWCC and IDWCC

algorithms and compared their performances using real-

world datasets with ground-truth communities. The

evaluation addresses the performance, quality, and

applicability aspects.

The remainder of this paper is organized as follows. We

outline the existing solutions for the community detection

problem and explain the WCC metric in Section II. In Section

III we describe our implementation of the DWCC algorithm

using Spark and GraphX and the propose the IDWCC

algorithm. Next, we present a complexity analysis and

experimental evaluation of the two algorithms in Section IV.

Section V presents a case study of WCC optimization in

dynamic graphs for product recommendations. Finally, we

conclude this study and outline further improvements in

Section VI.

II. BACKGROUND & TERMINOLOGY

 Community detection is a widely studied problem [24]. It

is one of the most relevant topics in the field of graph data

processing due to its importance in many fields such as

biology, social networks, or network traffic analysis [20]. In

this section, we present a brief literature review of some of the

work in this area and explain the key concepts behind the

WCC optimization technique.

A. Literature Review

A variety of community detection algorithms have been

developed based on different graph update strategies during

the past few years. Label Propagation [25][26] is one of the

most popular community detection methods, which is

implemented in GraphX [3]. This algorithm chooses the

community of the current node using the labels of its

neighboring nodes. Initially, each node is initialized with a

unique label and at every iteration of the algorithm, each node

adopts the label that most of its neighbors have. As the labels

propagate through the network, densely connected groups of

nodes form a consensus on their labels. At the end of the

algorithm, nodes having the same labels are grouped as

communities. Another popular community detection method

based on random walks is Infomap [27]. Finding community

structure in networks using Infomap is equivalent to solving

an information flow problem. Rosvall and Bergstrom [27],

exemplified this by making a map of science, based on how

information flows among scientific journals through citations.

A detailed survey and guided tour through the main aspects of

community detection methods and their applications have

been outlined by Harenberg et al. [28] and Fortunato et al. [29]

respectively.

Many centralized community-detection methods have been

proposed in the literature, however, recent dramatic growth in

real-world network size requires community detection to be

performed in a distributed environment [30]. Apart from the

huge sizes, modern networks are characterized by high

dynamics, which challenges the efficiency of community

detection algorithms [31]. These challenges have led to

several research solutions on distributed community detection

in both static and dynamic graphs. Hung et al. [32] modeled

community detection on edge-labeled graphs as a tensor

decomposition problem and proposed a fast, accurate, and

scalable distributed system for community detection in large

static graphs based on the Spark framework. Clementi et al.

[30] introduced a dynamic community detection framework

that relies on the Label Propagation algorithm [26][27].

However, the framework was evaluated using randomly

generated networks rather than real-world graphs.

Recently, Jian et al. [31] designed an algorithm based on

the Label Propagation method [26][27] that can incrementally

detect communities over distributed and dynamic graphs.

According to Jian et al., besides detecting high-quality

communities, the algorithm can incrementally update the

detected communities after a batch of edge insertion and

deletion operations. The algorithm was implemented by using

the MapReduce model. The evaluation results on real-world

datasets show that the algorithm can detect communities

incrementally with a running time that is sublinear to the

changed edge number. What is not clear, however, in the

evaluation is the measure of the indicator of the quality of the

communities for a real-world dataset.

Several metrics such as modularity and conductance have

been proposed as indicators of the quality of a community in

a graph [19]. Modularity is considered the most prominent

quality measure for community detection [24][33]. It

prioritizes communities based on their internal edge density.

One of the most popular algorithms based on modularity

optimization is the Louvain algorithm, which is presented in

detail by Blondel et al. [33]. This algorithm is a greedy

optimization that can be used for weighted graphs. The

algorithm starts with each vertex as its own community. Then

it progresses in an iterative manner where each iteration

consists of two phases. The first phase calculates the gain in

modularity (see Eq. 1) by adding each vertex to a neighboring

community and to a community that produces the highest

gain.

 (1)

This gain in modularity ΔQ when a node is moved into a

community C is calculated using Eq. 1. Σin is the sum of the

weights of the links inside C, Σtot is the sum of the weights of

the links incident to nodes in C, ki is the sum of the weights of

the links incident to node i, ki,in is the sum of the weights of

the links from i to nodes in C, and m is the sum of the weights

of all the links in the network.

More recently another metric called the Weighted

Community Clustering (WCC) was introduced by Prat-Pérez

et al. [20] to evaluate the quality of communities based on their

density in terms of triangles. Unlike Louvain, WCC

optimization does not consider edge weights in the

computations. The WCC metric ensures that communities are

cohesive, structured, and well defined. It is used in the

Scalable Community Detection (SCD) algorithm [17] for

detecting communities in undirected unweighted graphs of

unprecedented size in a short execution time. A distributed

version of the algorithm based on the vertex-centric paradigm

was developed later by Saltz et al. [14] on the Pregel platform

[2]. This approach performs well on static graphs of over one

billion edges. However, most real-world graphs are not static

but often change over time. The changes are usually

represented as streaming networks where data need to be

added to a network incrementally in real-time while updating

the graph community structure [7]. Therefore, a solution is

needed to add new data and update communities in distributed

dynamic graphs in a multi-cluster environment for streaming

data.
For incremental community detection, many modularity-

based solutions have been proposed but very few solutions

exist for node-grained graphs. Shang et al. [36] introduced an

algorithm that depends on the Louvain algorithm for detecting

an initial community structure as well as the communities for

new vertices. Pan et al. [37] developed a method for edge-

grained graphs. The problem with this method is that it

assumes the edges are added in a certain order. As a result, it

cannot handle node-grained graphs properly where the edges

are added simultaneously, and gives poor performance [7]. A

recent method called the Node-Grained Incremental (NGI)

community detection based on modularity optimization was

proposed by Yin et al. [7] for node-grained dynamic graphs.

However, it was only implemented for centralized but not

distributed processing.

In this paper, we propose an incremental community

detection algorithm for large distributed dynamic graphs on a

multi-cluster environment based on the WCC optimization

technique. The WCC optimization algorithm is explained in

detail by Prat-Perez et al. [14][17]. In this section, we

summarize the fundamental concepts of the WCC metric, its

applications in community detection in large graphs, and the

processing steps namely pre-processing and partitioning.

B. WCC

Prat-Pérez et al. [20] [19] first introduced the metric called

Weighted Community Clustering (WCC) to evaluate the

quality of community partitioning based on the distribution of

triangles in the graph. The WCC optimization approach

constructs triangles of vertices in the graph to measure the

density of vertices. WCC optimization has gained a lot of

attention due to less computational complexity as it does not

consider edge weights in the computations and demonstrates

superior results over other commonly used metrics like

modularity [17].

Given a graph G(V, E) composed of a set of vertices V and

a set of edges E, t(x, V) denotes the number of triangles that

pass through the vertex x and links it to neighbouring vertices

in a set of V vertices. (triangle count for x), and vt(x, V) denotes

the number of neighboring vertices that close at least one

triangle with x for each vertex in the graph. Given a

community C in graph G, t(x, C) and vt(x, V) are the same as

the previous measurements considering the vertices inside C

only. Based on these four measurements, the WCC value for

a vertex x in a community C can be calculated using Eq. 2 as

explained by Prat-Pérez et al [17].

(2)

The WCC value for the whole graph is calculated from the

average of the WCC of all the vertices in all the communities

in the graph as described in Eq. 3.

 (3)

Prat-Pérez et al. [20] introduced a set of basic properties

that any community cohesion metric for social networks

should fulfill. These properties include (i) clustering

coefficient, defined as the probability that two neighbors of a

given individual are also neighbors themselves [24], (ii) the

dynamics of community formation, (iii) presence of a bridge,

an edge which if removed from the graph, creates two separate

connected components, (iv) presence of a cut vertex, a node

whose removal splits the graph into two or more connected

components, and (v) presence of clique, a vertex connected to

another vertex with an edge which forms a maximal clique.

The authors further proved that WCC is a good candidate to

distinguish communities in social networks. In terms of the

clustering coefficient, they discovered that WCC reacts to the

internal structure of the communities, and in particular, to the

presence of triangles. Regarding the appearance of a new node

in a community, WCC was found to have a better value for a

node with fewer connections if the node was included in the

community. It has, however, a better value for a node with

many connections if the node was kept outside the

community. They also discovered that WCC was resistant to

bridges, and an optimal community in social networks can not

contain a bridge. Finally, WCC was found to be able to

separate communities into two cliques.

As stated before, several metrics such as modularity and

conductance have been proposed as indicators of the quality

of a community in a graph. However, we chose the WCC

metric and its optimization method to be the basis of our

distributed dynamic graph community detection algorithm

because of its performance, increasing popularity in the graph

processing community, and potential in ensuring that

communities are cohesive, structured, and well-defined [20].

WCC provides a good trade-off between performance and

quality [14][16][17]. In addition, the optimization process of

WCC can be distributed easily; the calculations of the best

movement and the WCC value for each vertex can be done

locally, and thus the computations can be executed in parallel.

To the best of our knowledge, it is the most efficient solution

for community detection in large-scale graphs.

III. SYSTEM DESIGN

 WCC is used in the SCD algorithm [17] for community

detection in centralized graphs. A distributed version of the

algorithm exists for static distributed graphs, which was

implemented by Saltz et al. [14] in Java for the Graph

processing engine. In this paper, we propose an Incremental

Distributed Weighted Community Clustering (IDWCC)

algorithm for detecting communities incrementally in a

distributed dynamic graph that is continuously updated from

streaming data. Communities help in clustering very large

graph data on a distributed infrastructure for better

management and fast processing of analytical queries.

We validate the algorithm using our existing multi-level

streaming data processing framework. The framework uses

Spark, GraphX, and GraphFrames to create and maintain a

dynamic distributed graph. Since the implementation of the

community detection algorithm based on WCC using these

tools did not exist, we implemented one using Scala, GraphX,

and GraphFrames for distributed processing on Spark.

We describe the three basic steps of the WCC optimization

algorithm. Then we illustrate the Spark implementation of the

Distributed WCC (DWCC) algorithm for a static distributed

graph. Finally, we explain and demonstrate our IDWCC for

detecting communities incrementally in dynamic distributed

graphs.

A. Partitioning

In this step, we compute an initial partition of the graph.

First, the vertices are sorted by their clustering coefficients in

descending order. Then the vertices are iterated on and for

each vertex x not previously visited, we create a new

community C that contains x and all its neighbors that were

not visited before. The algorithm requires the following

conditions to be met in an initial partition.

• Every community should contain a single-center vertex

and a set of border vertices connected to the center

vertex.

• The center vertex should be the vertex with the highest

clustering coefficient in the community.

• Given a center vertex x and a border vertex y in a

community, the clustering coefficient of x must be higher

than the clustering coefficient of any neighbor z of y that

is the center of its own community.

In the final step, the initial partition is improved iteratively

using a hill-climbing method. The execution stops when no

further improvements to the global WCC can be achieved, or

when a predefined number of iterations do not provide any

significant improvement as specified by a threshold. Next, we

will discuss our distributed implementation of WCC

optimization for GraphX. The proposed IDWCC algorithm is

explained after that.

The Pregel API in GraphX helps in executing the

partitioning of a distributed graph while respecting all the

initial partitioning conditions. It performs an iterative

execution process in which dynamic vertices keep

broadcasting changes in their communities to their neighbors

while receivers update their communities depending on the

change notifications, they receive from the neighbors until no

further adjustments are needed.

Computing the improvement of the global WCC using Eq.

3 requires the computation of the internal triangles of each

community of the graph, which makes it inefficient to

compute all possible movements of each vertex. Prat-Perez et

al. [17] present a heuristic for calculating WCC improvement

caused by moving a single vertex to a new community using

the statistics about the vertex and its neighboring

communities. The heuristic as presented in Eq. 4, gives an

approximated value and does not require the computation of

the internal triangles of each community. Instead, it depends

on calculating the following statistics: din: the number of edges

that connect the vertex v to the vertices inside the community

C where it is moving, dout : the number of edges that connect v

to the vertices outside C, b: the number of edges that are in the

boundary of C, 𝛿 : the edge density of C, r: the number of

vertices in C, and w: the clustering coefficient of the graph.

We use the same heuristic due to its efficiency. Since this

computation occurs independently within each vertex, all

vertices may perform their movements simultaneously,

meaning that this part of the algorithm can be distributed

effectively on multiple compute nodes to be executed in

parallel to improve the performance of the algorithm.

(4)

Prat-Pérez et al [17] described Θ1, Θ2, and Θ3 as the WCC

improvements of the vertices in C that are connected to x, the

vertices in C that are not connected to x, and the vertices v

respectively, where v represents the set of vertices to be added

to community C.

B. Optimization

We implement DWCC optimization for Apache Spark

using its distributed in-memory graph structure, GraphX. The

implementation is somewhat influenced by the existing graph

processing libraries in Spark and the properties of the GraphX

structure. We calculated the execution time for each small step

of DWCC as shown in Figure 2. Based on these calculations,

we developed an algorithm that works in three phases. First, it

merges the batch with the maintained evolving graph, updates

the vertex statistics, and optimizes the graph. Second, it

assigns the new vertices to initial communities. Finally, it

optimizes the WCC metric to generate better communities.

As a first step, a new graph G* = (V*, E*) is generated from

the newly arrived batch 𝛿*. The produced graph is then

merged with the full graph to produce Gt+1 = (Vt ∪ V*, Et ∪

E*) as demonstrated in Fig. 1.

We identify a set of vertices which we call the border

vertices. These vertices exist in both Gt and G, are a part of the

edges that connect the newly arriving batch with the old graph.

Let us denote this set as Vb = Vt ∩ V*. We refer to the rest of

the vertices in the new graph which are not part of the border

vertices, as the inner vertices Vn = V*\Vb. The problem with

the border vertices is that they have already been assigned to

communities in Gt. But since they have new connections, they

are likely to belong to different communities. We isolate each

of these vertices in its own community in the full graph

Gt+1.The merge phase also calculates t(x, Vt+1) and vt(x, Vt+1)

for each vertex x in Gt+1. To perform the calculations

efficiently, we recognize three possible situations. (a)

Statistics of the old vertices stay the same as they were for the

previous micro-batch t. (b) The inner vertices need to calculate

the statistics. (c) The border vertices have new connections

and thus might belong to new triangles and need to update

their statistics. The definition of the stream batches, which is

presented in Eq. 7, is important for updating the statistics of

the border vertices as it assures that the graph holds the

following conditions. Let's denote the set of triangles that pass

through a vertex x in graph G as Tx,G and the set of vertices that

form at least one triangle with x as VTx,G. Then the following

holds true.

where A is the set of vertices that are neighbors of x and

form triangles with it in both Gt and G*. Based on these

statements, the statistics for the border vertices are calculated

as follows.

 (5)

 (6)

Using these two measurements we can compute the local

clustering coefficient for each vertex and the global clustering

coefficient w which is needed to calculate WCC’I. At the end

of this phase, we optimize the graph in the same way as it is

done for DWCC to reduce the memory consumption and the

processing required in the succeeding phases, which is a

relatively cheap operation (see Fig. 2).

Algorithm 1: Partitioning

1: Let P be a set of communities generated at the last micro-batch;

2: S ← sort ByClusteringCoefficients(Vt+1);

3: for all v in S do

4: if notVisited(v) then

5: markAsVisited(v);

6: if v ∈ V * then

7: C ← {v};

8: else

9: C ← P.getCommunity(v);

10: for all u in neighbors(v) do

11: if notVisited(u) then

12: markAsVisited(u);

13: if u ∈ V * then

14: C.add(u);

15: P.add(C)

We choose communities for the vertices that appear in the

new batch. These vertices include the inner vertices Vn which

have no communities assigned to them yet, and the border

vertices Vb which were removed from their communities

during the previous phase. We use the same algorithm as used

in DWCC (see Algorithm 1), but we limit it to the above-

mentioned sets of vertices only. Hence, every vertex in the

new batch chooses the vertex with the highest clustering

coefficient that does not belong to a community of another

vertex as its community center.

Algorithm 2 follows the same steps as its counterpart

Algorithm 1, the DWCC algorithm. However, it includes two

Figure 1. Merging G* with Gt.

optimizations since it is the most expensive processing phase

in terms of computations:

• Calculation of the community movements is still done on

all the vertices, but we drop calculating the value of

WCC in each iteration.

• We use a fixed number of iterations rather than using

more iterations when good WCC improvement appears.

This might result in missing community movements that

can have a good impact on WCC. However, as we process

subsequent micro-batches, all the vertices start changing their

communities again and any previous changes that were missed

are subsequently recovered. This way, the degradation of

WCC over time is avoided.

Algorithm 2: Partitioning optimization

1: Let P be the initial partition;

2: iteration ← 1;

3: Repeat

4: M ← ∅

5: For all v in V do

6: M.add(bestMovement(v , P))

7: P ← applyMovements(M , P);

8: Iteration = iteration+1;

9: until iteration > maxIterations;

C. Preprocessing

This phase aims to calculate the t(x, V) and vt(x, V) values

for each vertex of the graph. After these measurements are

calculated, a graph optimization which is stated in the

optimization section, is performed by removing edges that do

not close any triangles.

The Triangle Count algorithm in GraphX 1 requires the

graph to be canonical which means that the graph should

ensure the following:

• Free from self-edges (edges with the same vertex as a

source and a destination).

• All its edges are oriented (the source vertex has a greater

number of directly connected triangles than the

destination vertex based on a pre-defined comparison

method).

• Has no duplicate edges.

The cleaning is done using the subgraph API provided by

GraphX. We keep the calculated statistics namely, the triangle

count and the degree of vertex for later use. We took

advantage of the fact that GraphX supports property graphs

and hence we can save these statistics as properties of the

graph vertices.

D. Implementation

We modify certain steps of the DWCC algorithm which

incur high computational cost to make the algorithm more

scalable so that we can apply it to distributed dynamic graphs.

The key steps of the DWCC algorithm are as follows.

• Step 1: Vertex Statistics (preprocessing): Count the

triangles of vertices to identify communities and keep the

statistics of triangle count and the degrees of vertices.

1https://spark.apache.org/docs/latest/graphx-programming-

guide.html#triangle-counting

• Step 2: Graph Restructuring (preprocessing): Move

vertices and remove redundant edges as a part of graph

restructuring, optimizing, and cleaning.

• Step 3: Iterative Partitioning (initial partitioning): Use

broadcasting protocol for dynamic vertices to

add/modify communities on distributed graphs.

• Step 4: WCC Optimization (partition refinement):

Compute the WCC metric or improvement for the graph.

We investigate and calculate the execution time of each of

the small steps of DWCC and propose changes to the DWCC

algorithm to define the IDWCC for node-grained dynamic

distributed graphs. The IDWCC algorithm has many similar

steps as the DWCC. However, it has optimizations that avoid

repeated calculations and consequently reduce the memory,

data movement, and computational costs without sacrificing

the quality of the result.

In this paper, we limit our scope of interest to dynamic

graphs that satisfy two properties. First, the graph progresses

over a window of time in which a small batch of vertices and

their edges are added. These edges connect the new vertices

to each other and to the full graph generated from the last

micro-batch. Second, the edges are equal in value i.e., the

edges are not weighted or directed. We denote the graph from

the previous iteration as Gt = (Vt, Et) where Vt and Et are its

sets of vertices and edges at time t respectively. Let us refer to

the vertices in the newly arriving batch as V* and the edges as

E*. We define a micro-batch from the stream of a node-

grained dynamic graph d as follows:

(7)

Based on the cost of each step and the above-mentioned

graph properties, we developed the IDWCC algorithm that

works in three phases. First, it merges a micro-batch of the

streaming data with the maintained evolving graph, updates

the vertex statistics, and optimizes the graph. Second, it

assigns the new vertices to the initial communities. Finally, it

optimizes the WCC metric to generate better communities.

Table 1. Properties of the test graphs

Data Sources Vertices Edges

Amazon 334,863 925,872

DBLP 317,080 1,049,866

YouTube 1,134,890 2,987,624

IV. VALIDATION AND RESULTS

A. Experimental Setup

A distributed multi-cluster environment was used for our

experiments applying Spark, Spark Streaming, and GraphX to

implement the dynamic distributed graph. Eight identical

machines were used, each having 8 cores 2.10 GHz Intel Xeon

64-bit CPU, 30 GB of RAM, and 300 GB of disk space to host

and perform computations on the distributed graph data

structure. We installed Apache Spark v2.2.0 on all the

machines. Both DWCC and IDWCC algorithms were

implemented using Scala 2.112.

B. Data Source

 We used a set of different real-life undirected graphs that

have ground-truth communities. We took these graphs from

the SNAP data repository3. The selected graphs and some

statistics about them are presented in Table 1. The use of

multiple graphs for the experiments allowed us to compare the

results for different graph sizes. In addition, it gave us the

ability to experiment with different sizes of micro-batches

easily. After loading a graph from the experimental sets, we

ensured that it is clean and free from duplicates and self-edges.

We also sorted the edges by the source vertices which made

the graph canonical from the start and ready for processing.

C. Complexity Analysis

We compare the complexity of sequential implementation

of our incremental algorithm to its static counterpart when

both are applied to detect communities in a dynamic graph.

Let n be the number of vertices and m the number of edges in

the graph. We assume that the average degree of the graph d

at any point of time t is d = m/n and that real graphs (graphs

are meant to be found in real-world with millions of vertices

and edges) have a quasi-linear relation between vertices and

edges O(m) = O(n.logn). Under these assumptions, the

complexity of the static WCC optimization algorithm, as

calculated in Prat-Perez et al. [17] is O(m.logn).

Now we calculate the complexity of a centralized version

of the sequential incremental WCC optimization algorithm.

For the first phase, we do not consider the complexity of

merging the graphs since the operation is necessary for any

dynamic graph. That leaves the cost of computing the triangles

and degrees for the vertices in the new batch as follows:

O(m*.d + m*) = O(m*.log nt+1)

The second phase requires sorting the vertices based on the

local clustering coefficient. However, the vertices are already

sorted from processing a previous micro-batch. Hence, the

cost is only for organizing the new vertices in the right order

which requires sorting the new vertices and then executing a

full scan of the vertices in the worst-case O(n*+nt) = O(nt).

For the third phase, let α be the number of iterations required

to find the best possible communities, which is a constant. In

each iteration, we compute in the worst-case d+1 movements

for each vertex of type WCC’I which has a cost of O(1). That

makes the total cost as follows:

O(n.(d+1)) = O(m)

Next, we apply all the movements which are equal to the

number of vertices, so it costs O(nt+1). We also need to update,

for each iteration in the second phase, the statistics w, cout, din,

and dout for each vertex and community, which has a cost of

O(mt+1). We sum all the costs to get the full cost of this phase

O(α.(mt+1 + nt+1 +mt+1)) = O(mt+1). The full cost of the

algorithm is the sum of the cost of the three phases: O(m*log

nt+1 + nt + mt+1). Since m* << nt+1, then m*.lognt+1 <<

2https://github.com/TariqAbughofa/incremental_distributed_wcc
3 http://snap.stanford.edu/

nt+1.lognt+1 < mt+1. The cost can be simplified to become

O(mt+1). This cost is much smaller than O(mt+1.lognt+1) the

cost of applying the static algorithm on the whole graph during

the t th iteration.

D. Experimental Details and Results

 We conducted the following three sets of experiments.

• Experiment a: We computed the efficiency of the

optimizations used in IDWCC by comparing the

execution time of each step of IDWCC with its

counterpart in DWCC.

• Experiment b: We compared the quality of the results of

DWCC, IDWCC, and SCD.

• Experiment c: Finally, we compared the quality of the

results and the execution time of the DWCC and IDWCC

algorithms for a dynamic distributed graph by executing

the algorithms while updating the graph in real-time from

a data stream. We executed 5 iterations of the DWCC and

IDWCC algorithms based on the recommendations of

Prat-Pérez et al. [19], the authors of the original WCC

optimization algorithm.

We experimented with different graph sizes to compare the

performances of the algorithms for different sizes of graphs

and micro-batches of the streaming data. Initially, we

constructed the graph from a bulk of static data already

downloaded from the selected data sources. For the bulk data,

the first two columns in Table 2 show the number of vertices

and edges added to the graph respectively. Next, we appended

new data to the existing distributed graph from the streaming

data sources using micro-batches of data at a time. The

number of edges added from the data streams and the

corresponding numbers of micro-batches of data used for the

updates are shown in columns 3 and 4 in Table 2 respectively.

It can be noticed that we chose to use fewer micro-batches

with the smaller size bulk graphs, and greater micro-batches

for the larger size bulk graphs to limit the use of the resources

on each iteration.

Table 2. Initial sizes and updated sizes of the test graphs

 Bulk

Vertices

Bulk

Edges

Stream

Edges

of Micro-

batches

Amazon 258,464 576,718 349,154 10

DBLP 253,119 852,754 197,112 10

YouTube 903,959 2666,836 320788 10

LiveJournal 768,792 13,997,342 20,683,847 30

Experiment a shows the benefits of the optimization

techniques we applied to our IDWCC as shown in the

algorithm listing. For both DWCC and IDWCC, we calculated

the time that each step took to be executed on the full Amazon

graph and aggregated them to compute the total execution

time as shown in Fig. 2. The results show that the IDWCC has

a shorter execution time compared to the DWCC algorithm.

The vertex statistics step as defined in the implementation part

in Section III is the one responsible for calculating each vertex

triangle count and degree.

https://github.com/TariqAbughofa/incremental_distributed_wcc
http://snap.stanford.edu/

In Fig.2, we notice that the execution time was reduced in

IDWCC by almost three times compared to DWCC as we

counted the triangles and degrees only for the new vertices and

the border vertices (vertices statistics Fig.2). The graph

restructuring step had no change in execution time as no

adjustments were made to the vertices. The iterative

partitioning step had a small decrease in execution time caused

by the way we altered this stage. The biggest gain was

expected in memory consumption as proven later. Finally, the

WCC optimization step, which calculates the WCC metric, an

expensive operation, was eliminated completely (no column

for IDWCC) from the IDWCC algorithm resulting in a great

reduction in the computational cost.

Experiment b aimed at comparing the quality of results of

the distributed graph community detection algorithms,

DWCC and IDWCC. The existing implementation of the SDC

algorithm already proved that it had better quality than many

other centralized community detection algorithms while

having faster execution [17]. These studies compared the

quality of the results of the SDC to that of Louvain [33] and

Infomap [27]. Therefore, instead of repeating similar

experiments and comparing the effectiveness of WCC

optimization to that of the other approaches such as Louvain

and Infomap, we compared the quality of the communities

produced by the SCD, DWCC, and IDWCC. We measure the

quality of the communities by calculating the global WCC on

the full test graph after appending data from the last micro-

batch. The results are displayed in Fig. 3 which shows that

both DWCC and IDWCC produced good WCC values. These

WCC values show only up to 5% decrease from their SCD

counterparts. On top of that, the IDWCC gives slightly better

results than the DWCC algorithm. We do not show the results

for the LiveJournal graph as both DWCC and IDWCC failed

to process the whole stream. In both cases, the computational

needs exceeded the available memory resources.

Experiment c was designed to prove the quality of the

results and the efficiency of the IDWCC algorithm compared

to the DWCC algorithm. For each graph and each micro-batch

in the stream as described in Table 2, we merged the micro-

batch with the full graph. Then we applied both DWCC and

IDWCC on the modified graph. In the streaming context,

0

0.1

0.2

0.3

0.4

Amazon DBLP YouTube

G
lo

b
al

 W
C

C

SCD DWCC IDWCC

Figure 3. Global WCC: SCD vs DWCC vs IDWCC

Figure 4. Comparing WCC values (DWCC vs IDWCC for (a) Amazon; (b)

DBLP; (c) YouTube; (d) LiveJournal

Figure 5. Comparing WCC execution time (DWCC vs IDWCC for (a)
Amazon; (b) DBLP; (c) YouTube; (d) LiveJournal

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 2. Execution time for each step in DWCC vs IDWCC

15.84

8.28

37.48

8.3

21.88

0

10

20

30

40

Vertex
Statistics

Graph
Optimization

Initial
Partition

Apply
Movements

Calculate
WCC

Ex
ec

u
ti

o
n

 T
im

e(
Se

co
n

d
s)

DWCC IDWCC

DWCC finds the communities for the whole graph again,

whereas our IDWCC finds communities only for the new

vertices and reflects these changes on the old vertices.

For each micro-batch, we compared the global WCC

values of the resulting graph generated by IDWCC and

DWCC in addition to the execution times. Fig. 4 and 5 show

the results of the experiments with streaming data. Missing

data points indicate that the algorithm was not able to continue

processing the graph due to insufficient memory problems

(lack of resources). Fig. 4 clearly demonstrates that IDWCC

produces communities with global WCC values that are very

close to the ones produced by DWCC. We can even see that

the results start to be better than DWCC in later iterations.

Regarding the execution time, IDWCC performed two to three

times better than DWCC. For the large LiveJournal graph, we

see that both algorithms failed to continue with the available

computational resources. However, IDWCC continued for 7

micro-batches before it crashed, while DWCC could only

process up to 3 micro-batches. This shows that IDWCC has

significantly less memory consumption than DWCC. The

experiments show that our dynamic graph processing

framework with IDWCC is capable of maintaining graphs up

to 100 million edges while updating them with streaming data

in under 50 seconds.

V. CASE STUDY

We further examined the communities produced by IDWCC

in a real-world application of dynamic graphs. As a case study,

we chose the scenario of generating recommendations for

product purchases using the Amazon streaming dataset [39].

The metadata for this graph is available on the SNAP website

[38] and contains the titles of the products.

Table 3. Examples of communities produced by IDWCC on Amazon

products data.

Community # Example 1 Example 2

community #1 Gulliver's Travels

Science Fiction Classics

of H.G. Wells

Swiss Family Robinson

The War of the Worlds

Anne of Avonlea

Robinson Crusoe: His Life and Strange

Surprising Adventures

Treasure Island

Gulliver's Travels

The Swiss Family Robinson

Robinson Crusoe: Life and Strange

Surprising Adventures

community #2 Merchant of Venice

The Merchant of Venice

Macbeth

Othello: The Applause

Shakespeare Library

Much Ado About

Nothing

Hamlet: The New Variorum Edition

Hamlet

The Merchant of Venice

A Midsummer Night's Dream

Othello

community #3 1984

A Separate Peace

Lord of the Flies

Romeo and Juliet

1984

To Kill a Mockingbird

John Knowles's a Separate Peace

Joseph Heller's Catch-22

The Grapes of Wrath

1984

The product recommendation problem aims to find

products that are usually bought together to suggest them to

the users. This graph represents a network of products. Each

vertex represents a product, and each edge connects two

products if they are frequently purchased together. Therefore,

the communities in the graph constructed using the Amazon

data would represent similar products that are frequently

purchased together and can be used to provide

recommendations about products to the customer. We ran the

IDWCC algorithm on the graph and chose three communities

which are reported in Table 3. Table 3 has 10 randomly

selected vertices from each community. In the case of the first

community, we see that it is formed of classic novels. The

second community consists of Shakespearean literature.

Finally, the third one is mostly political and allegorical novels.

We observe that the algorithm can perform a good selection

of the relations in the graphs to give meaningful communities.

VI. CONCLUSION

 Detecting communities in very large graphs offers

computational challenges and existing algorithms do not offer

a feasible solution for large dynamic graphs [7]. In this paper,

we propose the IDWCC algorithm as a solution to the

community detection problem for large dynamic distributed

graphs that need to be updated continuously from streaming

data. We demonstrate the efficacy of our solution by

implementing a prototype using cutting edge Spark, Spark

Streaming and GraphX to create and maintain a large in-

memory distributed graph over a multi-cluster distributed

infrastructure. We begin by conducting a study on the use of

the Weighted Community Clustering (WCC) metric to detect

communities with Apache Spark. Next, we present the

implementation of a Distributed WCC (DWCC) optimization

using Apache Spark and GraphX to detect communities in

static graphs. Finally, we propose and demonstrate a novel

Incremental Distributed WCC (IDWCC) algorithm for

detecting communities in large node-grained dynamic

distributed graphs. IDWCC improves the DWCC

optimization by assigning the newly added vertices to the most

suitable communities in a distributed graph and by optimizing

some of the computational steps. The algorithm is

implemented in Scala using the in-memory GraphX structure

and is executed on a distributed multi-cluster environment

using Apache Spark. The experiments showed that IDWCC

outperforms DWCC for large dynamic graphs. IDWCC

produced the same or better WCC values compared to DWCC.

It was also two to three times faster than DWCC. The memory

consumption was more optimized in IDWCC as well. To the

best of our knowledge, IDWCC is the best performing

incremental community detection algorithm for node-grained

dynamic distributed graphs. We also demonstrated and

validated the usability of dynamic community detection using

IDWCC for a real-life e-commerce use case scenario of

product recommendations using Amazon product data.

As future work, we like to study the stability of the quality

of IDWCC over a long period of time with a goal to assess the

need of applying the DWCC optimization periodically on the

full graph to maintain high accuracy of the results in the case

of result degradation. We also aim to address the memory

consumption problem of the IDWCC algorithm which causes

a bottleneck when computing new communities for each

vertex. We plan to further optimize the iteration phase by

limiting the number of vertices for which we update the

communities in each iteration. This may be done by using

statistics calculated from the previous iterations. We only

addressed undirected unweighted node-grained dynamic

graphs in this research. We would like to extend our

framework to work with edge-grained dynamic graphs and

explore the effect of the edge weights in the community

detection process.

ACKNOWLEDGMENT

The authors wish to thank the Queen’s University Centre

for Advanced Computing (CAC) for providing access to

computing resources to run our experiments.

REFERENCES

[1] Aridhi, S. and Nguifo, E. M., "Big graph mining: Frameworks and

techniques," Big Data Research, vol. 6, pp. 1-10, 2016.

[2] Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser,
N., & Czajkowski, G., "Pregel: a system for large-scale graph

processing," in Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, 2010: ACM, pp. 135-146.
[3] Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J.,

& Stoica, I., "GraphX: Graph Processing in a Distributed Dataflow

Framework," in OSDI, 2014, vol. 14, pp. 599-613.
[4] Aridhi, S., Montresor, A., & Velegrakis, Y., "BLADYG: A graph

processing framework for large dynamic graphs," Big Data Research,

vol. 9, pp. 9-17, 2017.
[5] Heidari, S., Simmhan, Y., Calheiros, R. N., and Buyya, R., "Scalable

Graph Processing Frameworks: A Taxonomy and Open Challenges,"

ACM Computing Surveys (CSUR), vol. 51, no. 3, p. 60, 2018.
[6] Sengupta, D., Sundaram, N., Zhu, X., Willke, T. L., Young, J., Wolf,

M., & Schwan, K. (2016, August). Graphin: An online high

performance incremental graph processing framework. In European
Conference on Parallel Processing (pp. 319-333). Springer, Cham.

[7] Yin, S., Chen, S., Feng, Z., Huang, K., He, D., Zhao, P., & Yang, M.

Y. (2016, November). Node-grained incremental community detection
for streaming networks. In 2016 IEEE 28th International Conference

on Tools with Artificial Intelligence (ICTAI) (pp. 585-592). IEEE.

[8] Aksu, H., Canim, M., Chang, Y. C., Korpeoglu, I., & Ulusoy, Ö.

(2014)."Distributed k-core view materialization and maintenance for

large dynamic graphs," IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 10, pp. 439-452, 2014.

[9] Aridhi, S., Brugnara, M., Montresor, A., & Velegrakis, Y., "Distributed

k-core decomposition and maintenance in large dynamic graphs," in
Proceedings of the 10th ACM International Conference on Distributed

and Event-based Systems, 2016: ACM, pp. 161-168.

[10] Li, R. H., Yu, J. X., & Mao, R., "Efficient core maintenance in large
dynamic graphs," IEEE Transactions on Knowledge and Data

Engineering, vol. 26, no. 10, pp. 2453-2465, 2014.

[11] Sariyüce, A. E., Gedik, B., Jacques-Silva, G., Wu, K. L., & Çatalyürek,
Ü. V., "Streaming algorithms for k-core decomposition," Proceedings

of the VLDB Endowment, vol. 6, no. 6, pp. 433-444, 2013.

[12] Sakouhi, C., Aridhi, S., Guerrieri, A., Sassi, S., & Montresor, A.,
"DynamicDFEP: a distributed edge partitioning approach for large

dynamic graphs," in Proceedings of the 20th International Database

Engineering & Applications Symposium, 2016: ACM, pp. 142-147.
[13] Xu, Y., Cheng, J., Fu, A. W. C., & Bu, Y., "Distributed maximal clique

computation," in Big Data (BigData Congress), 2014 IEEE

International Congress on, 2014: IEEE, pp. 160-167.
[14] Saltz, M., Prat-Pérez, A., & Dominguez-Sal, D. (2015,

May)."Distributed community detection with the wcc metric," in

Proceedings of the 24th International Conference on World Wide Web,
2015: ACM, pp. 1095-1100.

[15] Rossetti, G., & Cazabet, R., "Community discovery in dynamic

networks: a survey," ACM Computing Surveys (CSUR), vol. 51, no. 2,
p. 35, 2018.

[16] Prat-Pérez, A., Dominguez-Sal, D., Brunat, J. M., & Larriba-Pey, J. L.,

"Put three and three together: Triangle-driven community detection,"
ACM Transactions on Knowledge Discovery from Data (TKDD), vol.

10, no. 3, p. 22, 2016.

[17] Prat-Pérez, A., Dominguez-Sal, D., & Larriba-Pey, J. L., "High quality,
scalable and parallel community detection for large real graphs," in

Proceedings of the 23rd international conference on World wide web,

2014: ACM, pp. 225-236.
[18] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U.,

"Complex networks: Structure and dynamics," Physics reports, vol.

424, no. 4-5, pp. 175-308, 2006.
[19] Wang, T., Yang, B., Gao, J., Yang, D., Tang, S., Wu, H., ... & Pei, J.,

"Mobileminer: a real world case study of data mining in mobile

communication ". In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data (pp. 1083-1086).

[20] Prat-Pérez, A., Dominguez-Sal, D., Brunat, J. M., & Larriba-Pey, J. L.,

"Shaping communities out of triangles," in Proceedings of the 21st
ACM international conference on Information and knowledge

management, 2012: ACM, pp. 1677-1681.

[21] Basuchowdhuri, P., Sikdar, S., Nagarajan, V., Mishra, K., Gupta, S., &
Majumder, S., "Fast detection of community structures using graph

traversal in social networks," Knowledge and Information Systems, pp.

1-31, 2017.
[22] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., ...

& Stoica, I. (2016). Apache spark: a unified engine for big data

processing. Communications of the ACM, 59(11), 56-65.

[23] Xin, R. S., Gonzalez, J. E., Franklin, M. J., & Stoica, I., "Graphx: A

resilient distributed graph system on spark," in First International

Workshop on Graph Data Management Experiences and Systems,
2013: ACM, p. 2.

[24] Fortunato, S., "Community detection in graphs," Physics Reports, vol.
486, no. 3–5, pp. 75-174, 2// 2010.

[25] Raghavan, U. N., Albert, R., & Kumara, S., "Near linear time algorithm

to detect community structures in large-scale networks," Physical
review E, vol. 76, no. 3, p. 036106, 2007.

[26] Zhu, X., & Ghahramani, Z., "Learning from labeled and unlabeled data

with label propagation," 2002.
[27] Rosvall, M., & Bergstrom, C. T., "Maps of random walks on complex

networks reveal community structure," Proceedings of the National

Academy of Sciences, vol. 105, no. 4, pp. 1118-1123, 2008.
[28] Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., Seay,

R., & Samatova, N. (2014). "Community detection in large‐scale

networks: a survey and empirical evaluation," Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 6, no. 6, pp. 426-439, 2014.

[29] Fortunato, S., & Hric, D., "Community detection in networks: A user

guide," Physics Reports, vol. 659, pp. 1-44, 2016.

[30] Clementi, A., Di Ianni, M., Gambosi, G., Natale, E., & Silvestri, R.,

"Distributed community detection in dynamic graphs," Theoretical

Computer Science, vol. 584, pp. 19-41, 2015.
[31] Jian, X., Lian, X., & Chen, L., "On Efficiently Detecting Overlapping

Communities over Distributed Dynamic Graphs," in 2018 IEEE 34th

International Conference on Data Engineering (ICDE), 2018: IEEE, pp.
1328-1331.

[32] Hung, S. C., Araujo, M., & Faloutsos, C., "Distributed community

detection on edge-labeled graphs using spark," in 12th International
Workshop on Mining and Learning with Graphs (MLG), 2016, vol. 113.

[33] Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E., "Fast

unfolding of communities in large networks," Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[34] Bagrow, J. P., "Communities and bottlenecks: Trees and treelike

networks have high modularity," Physical Review E, vol. 85, no. 6, p.
066118, 2012.

[35] Fortunato, S., & Barthelemy, M., "Resolution limit in community

detection," Proceedings of the National Academy of Sciences, vol. 104,
no. 1, pp. 36-41, 2007.

[36] Shang, J., Liu, L., Xie, F., Chen, Z., Miao, J., Fang, X., & Wu, C.

(2014). A real-time detecting algorithm for tracking community
structure of dynamic networks. arXiv preprint arXiv:1407.2683.

[37] Pan, G., Zhang, W., Wu, Z., & Li, S., "Online community detection for

large complex networks," PloS one, vol. 9, no. 7, p. e102799, 2014.
[38] "Supplemental Nutrition Assistance Program (SNAP) official website"

https://www.fns.usda.gov/snap/supplemental-nutrition-assistance-

program
[39] "Amazon streaming dataset" http://s3.amazonaws.com/aws-

publicdatasets/

https://www.fns.usda.gov/snap/supplemental-nutrition-assistance-program
https://www.fns.usda.gov/snap/supplemental-nutrition-assistance-program
http://s3.amazonaws.com/aws-publicdatasets/
http://s3.amazonaws.com/aws-publicdatasets/

