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Abstract— Community detection is an important research 

topic in graph analytics that has a wide range of applications. A 

variety of static community detection algorithms and quality 

metrics were developed in the past few years. However, most 

real-world graphs are not static and often change over time. In 

the case of streaming data, communities in the associated graph 

need to be updated either continuously or whenever new data 

streams are added to the graph, which poses a much greater 

challenge in devising good community detection algorithms for 

maintaining dynamic graphs over streaming data. In this paper, 

we propose an incremental community detection algorithm for 

maintaining a dynamic graph over streaming data. The 

contributions of this study include (a) the implementation of a 

Distributed Weighted Community Clustering (DWCC) 

algorithm, (b) the design and implementation of a novel 

Incremental Distributed Weighted Community Clustering 

(IDWCC) algorithm, and (c) an experimental study to compare 

the performance of our IDWCC algorithm with the DWCC 

algorithm. We validate the functionality and efficiency of our 

framework in processing streaming data and performing large 

in-memory distributed dynamic graph analytics. The results 

demonstrate that our IDWCC algorithm performs up to three 

times faster than the DWCC algorithm for a similar accuracy. 

Keywords—Distributed graph processing, dynamic graphs, 

streaming data, weighted community clustering 

 

I. INTRODUCTION  

 Distributed processing of large-scale graphs has gained 

considerable attention in the last decade [1]. This is mainly 

due to the (i) unprecedented increase in the size of graph data 

such as the Web based social media networks, (ii) evolution 

of systems for processing massive graph data such as Pregel 

[2] and GraphX [3], and (iii) huge increase in the number of 

applications that utilize graph data such as traffic and social 

network analysis [4]. According to Heidari et al. [5], a typical 

graph processing system executes graph algorithms such as 

graph traversal over a graph dataset across five different 

logical phases, which include reading graph data, pre-

processing, partitioning, computation, and error handling. 

Regardless of the size and type of framework or algorithms 

used, Heidari et al. reported [5] that large-scale graph data can 

be processed in offline, online, or real-time mode. Offline 

processing is the popular mode and is achieved by loading the 

graph dataset in memory from disk storage and processing it. 

Online processing allows users to update, maintain, and re-

process the graph data automatically with new values either 

periodically or based on user-defined events. Real-time 

processing is similar to online processing except it also  

enables instant incremental updates to be made to the graph 

data. Thus, it requires the computation to be done immediately 

after changes happen to the data and the updated analytics 

results are returned with very short delays. 

Several graph processing frameworks utilize static 

partitioning, which means that they consider the graph and the 

processing environment to remain unchanged [1][2][5]. 

However, most real-world graphs are dynamic as they change 

over time with new data producing new vertices and edges that 

need to be merged into existing graphs. The changes in 

dynamic graphs are further complicated by the need for real-

time guarantees for applications such as real-time disease 

spreading and anomaly detection. Traditional static graph 

analytics approaches face a major limitation in meeting this 

demand [6]. Dynamic graph scenarios require novel online or 

real-time graph update and analytics algorithms since the 

traditional offline graph analytics approaches require first the 

whole graph to be updated with the new data, and then 

analytics algorithms to be applied to the whole graph, which 

is extremely computation-intensive and hence impractical.  

Dynamic graph [7] updates can be node-grained or edge-

grained. In node-grained dynamic graphs, new nodes or 

vertices are simultaneously added to the graph with all their 

incident edges. An example of such graphs is a network of 

scientific papers and their references. Once a paper is 

published, all the papers that it references are known as well 

and no new references (connections) are added later. In edge-

grained dynamic graphs, new edges are added or removed for 

already existing vertices. Social networks are a good example 

of these graphs, people add new friends and "un-friend" old 

ones all the time. Thus, the assumption of knowing all the 

connections of a person when we add them to the graph is not 

viable. In these networks, the sequence of adding new edges 

is important and influences the evolution of the graph 

structure. 

Recently, the problem of distributed processing of large 

dynamic graphs has gained considerable attention [7]. Several 

traditional graph operations such as the k-core decomposition 

[8-11], partitioning [12], and maximal clique computation 

[13] have been extended to support dynamic graphs. However, 

many graph processing frameworks do not support several 

graph operations in the context of dynamic graphs [4]. One 

such operation is community detection in graphs, which is the 

process of identifying groups of nodes that are highly 

connected among themselves and sparsely connected to the 

rest of the graph [14]. Such groups are referred to in the 

literature as “communities" and occur in various types of 

graphs. Several research studies on networks modeling real-

world phenomena have shown that the networks are organized 

according to community structure and their structures evolve 

with time [15]. Therefore, community detection within large-



scale graphs has become an important research problem 

[7][16][17]. It helps to discover new structural properties 

about the graph that cannot be found otherwise such as 

identification of the highly influential nodes known as 

community centroids [18]. It is also used for targeted 

marketing [14], distributed graph management [9][10], 

uncovering tightly connected entities in a graph [7], and 

finding major sub-graphs indicating special relationships that 

are generally obscured by the complex structure of the original 

graph [19].  

Metrics for shaping communities often follow two 

approaches, either by maximizing the internal density of the 

communities by including heavily connected nodes into the 

community, or by reducing intra-community connectivity by 

removing weak connections among different communities 

[20]. Most of the existing community detection algorithms 

involve heavy computation and hence are time-consuming 

[21]. As the graphs being operated on become larger, the 

ability to process them in memory on a single machine 

becomes infeasible due to both time and memory constraints 

[14][17]. In dynamic graphs, the problem becomes more 

complex because the data keeps changing and the 

communities need to be adjusted by reapplying the solution to 

the whole graph every time the data changes [15]. With 

streaming data, communities need to be updated continuously 

or whenever a new micro-batch (too large of a batch size will 

lead to poor generalization, so micro-batches are needed to 

provide some basic intuition) of streaming data gets added to 

the graph. This poses a much greater challenge in devising a 

good community detection algorithm for dynamic graphs over 

streaming data. 

In this paper, we propose an incremental community 

detection algorithm as a solution to the community detection 

problem for large dynamic graphs over streaming data. It 

gradually propagates new incoming data in the graph and 

adjusts the existing communities. The contributions of this 

study are as follows. 

• We implemented the Distributed Weighted Community 

Clustering (DWCC) algorithm using Apache Spark [22] 

and GraphX [3][23] in Scala on a multi-cluster 

environment. The DWCC was proposed by Saltz et al. 

[14] which was implemented on the Pregel platform for 

static data.   

• We conducted an extensive performance study of the 

DWCC algorithm to identify the costly operations to 

optimize the processing time and memory consumption. 

• Based on the results of the above study, we developed a 

novel Incremental Distributed WCC (IDWCC) algorithm 

for undirected and unweighted node-grained dynamic 

distributed graphs. IDWCC applies the Weighted 

Community Clustering (WCC) optimization technique to 

add new vertices from the streaming data to the most 

suitable communities in an existing distributed graph. We 

implemented the algorithm in Scala using GraphX to 

work with Spark Streaming. To the best of our 

knowledge, this is the first node-grained incremental 

distributed community detection algorithm. 

• We experimentally validated both DWCC and IDWCC 

algorithms and compared their performances using real-

world datasets with ground-truth communities. The 

evaluation addresses the performance, quality, and 

applicability aspects. 

The remainder of this paper is organized as follows. We 

outline the existing solutions for the community detection 

problem and explain the WCC metric in Section II. In Section 

III we describe our implementation of the DWCC algorithm 

using Spark and GraphX and the propose the IDWCC 

algorithm. Next, we present a complexity analysis and 

experimental evaluation of the two algorithms in Section IV. 

Section V presents a case study of WCC optimization in 

dynamic graphs for product recommendations. Finally, we 

conclude this study and outline further improvements in 

Section VI. 

II. BACKGROUND & TERMINOLOGY 

 Community detection is a widely studied problem [24]. It 

is one of the most relevant topics in the field of graph data 

processing due to its importance in many fields such as 

biology, social networks, or network traffic analysis [20]. In 

this section, we present a brief literature review of some of the 

work in this area and explain the key concepts behind the 

WCC optimization technique.  

A. Literature Review 

A variety of community detection algorithms have been 

developed based on different graph update strategies during 

the past few years. Label Propagation [25][26] is one of the 

most popular community detection methods, which is 

implemented in GraphX [3]. This algorithm chooses the 

community of the current node using the labels of its 

neighboring nodes. Initially, each node is initialized with a 

unique label and at every iteration of the algorithm, each node 

adopts the label that most of its neighbors have. As the labels 

propagate through the network, densely connected groups of 

nodes form a consensus on their labels. At the end of the 

algorithm, nodes having the same labels are grouped as 

communities. Another popular community detection method 

based on random walks is Infomap [27]. Finding community 

structure in networks using Infomap is equivalent to solving 

an information flow problem. Rosvall and Bergstrom [27], 

exemplified this by making a map of science, based on how 

information flows among scientific journals through citations. 

A detailed survey and guided tour through the main aspects of 

community detection methods and their applications have 

been outlined by Harenberg et al. [28] and Fortunato et al. [29] 

respectively. 

Many centralized community-detection methods have been 

proposed in the literature, however, recent dramatic growth in 

real-world network size requires community detection to be 

performed in a distributed environment [30]. Apart from the 

huge sizes, modern networks are characterized by high 

dynamics, which challenges the efficiency of community 

detection algorithms [31]. These challenges have led to 

several research solutions on distributed community detection 

in both static and dynamic graphs. Hung et al. [32] modeled 

community detection on edge-labeled graphs as a tensor 

decomposition problem and proposed a fast, accurate, and 

scalable distributed system for community detection in large 



static graphs based on the Spark framework. Clementi et al. 

[30] introduced a dynamic community detection framework 

that relies on the Label Propagation algorithm [26][27]. 

However, the framework was evaluated using randomly 

generated networks rather than real-world graphs.  

Recently, Jian et al. [31] designed an algorithm based on 

the Label Propagation method [26][27] that can incrementally 

detect communities over distributed and dynamic graphs. 

According to Jian et al., besides detecting high-quality 

communities, the algorithm can incrementally update the 

detected communities after a batch of edge insertion and 

deletion operations. The algorithm was implemented by using 

the MapReduce model. The evaluation results on real-world 

datasets show that the algorithm can detect communities 

incrementally with a running time that is sublinear to the 

changed edge number. What is not clear, however, in the 

evaluation is the measure of the indicator of the quality of the 

communities for a real-world dataset.  

Several metrics such as modularity and conductance have 

been proposed as indicators of the quality of a community in 

a graph [19]. Modularity is considered the most prominent 

quality measure for community detection [24][33]. It 

prioritizes communities based on their internal edge density. 

One of the most popular algorithms based on modularity 

optimization is the Louvain algorithm, which is presented in 

detail by Blondel et al. [33]. This algorithm is a greedy 

optimization that can be used for weighted graphs. The 

algorithm starts with each vertex as its own community. Then 

it progresses in an iterative manner where each iteration 

consists of two phases. The first phase calculates the gain in 

modularity (see Eq. 1) by adding each vertex to a neighboring 

community and to a community that produces the highest 

gain. 

 
                                                                             (1) 

This gain in modularity ΔQ when a node is moved into a 

community C is calculated using Eq. 1. Σin is the sum of the 

weights of the links inside C, Σtot is the sum of the weights of 

the links incident to nodes in C, ki is the sum of the weights of 

the links incident to node i, ki,in is the sum of the weights of 

the links from i to nodes in C, and m is the sum of the weights 

of all the links in the network. 

More recently another metric called the Weighted 

Community Clustering (WCC) was introduced by Prat-Pérez 

et al. [20] to evaluate the quality of communities based on their 

density in terms of triangles. Unlike Louvain, WCC 

optimization does not consider edge weights in the 

computations. The WCC metric ensures that communities are 

cohesive, structured, and well defined. It is used in the 

Scalable Community Detection (SCD) algorithm [17] for 

detecting communities in undirected unweighted graphs of 

unprecedented size in a short execution time. A distributed 

version of the algorithm based on the vertex-centric paradigm 

was developed later by Saltz et al. [14] on the Pregel platform 

[2]. This approach performs well on static graphs of over one 

billion edges. However, most real-world graphs are not static 

but often change over time. The changes are usually 

represented as streaming networks where data need to be 

added to a network incrementally in real-time while updating 

the graph community structure [7]. Therefore, a solution is 

needed to add new data and update communities in distributed 

dynamic graphs in a multi-cluster environment for streaming 

data.  
For incremental community detection, many modularity-

based solutions have been proposed but very few solutions 

exist for node-grained graphs. Shang et al. [36] introduced an 

algorithm that depends on the Louvain algorithm for detecting 

an initial community structure as well as the communities for 

new vertices. Pan et al. [37] developed a method for edge-

grained graphs. The problem with this method is that it 

assumes the edges are added in a certain order. As a result, it 

cannot handle node-grained graphs properly where the edges 

are added simultaneously, and gives poor performance [7]. A 

recent method called the Node-Grained Incremental (NGI) 

community detection based on modularity optimization was 

proposed by Yin et al. [7] for node-grained dynamic graphs. 

However, it was only implemented for centralized but not 

distributed processing.  

In this paper, we propose an incremental community 

detection algorithm for large distributed dynamic graphs on a 

multi-cluster environment based on the WCC optimization 

technique. The WCC optimization algorithm is explained in 

detail by Prat-Perez et al. [14][17]. In this section, we 

summarize the fundamental concepts of the WCC metric, its 

applications in community detection in large graphs, and the 

processing steps namely pre-processing and partitioning.  

B. WCC 

Prat-Pérez et al. [20] [19] first introduced the metric called 

Weighted Community Clustering (WCC) to evaluate the 

quality of community partitioning based on the distribution of 

triangles in the graph. The WCC optimization approach 

constructs triangles of vertices in the graph to measure the 

density of vertices. WCC optimization has gained a lot of 

attention due to less computational complexity as it does not 

consider edge weights in the computations and demonstrates 

superior results over other commonly used metrics like 

modularity [17]. 

Given a graph G(V, E) composed of a set of vertices V and 

a set of edges E, t(x, V) denotes the number of triangles that 

pass through the vertex x and links it to neighbouring vertices 

in a set of V vertices. (triangle count for x), and vt(x, V) denotes 

the number of neighboring vertices that close at least one 

triangle with x for each vertex in the graph. Given a 

community C in graph G, t(x, C) and vt(x, V) are the same as 

the previous measurements considering the vertices inside C 

only. Based on these four measurements, the WCC value for 

a vertex x in a community C can be calculated using Eq. 2 as 

explained by Prat-Pérez et al [17]. 

 

        

(2) 

 

 

The WCC value for the whole graph is calculated from the 

average of the WCC of all the vertices in all the communities 

in the graph as described in Eq. 3. 



     (3) 

 

Prat-Pérez et al. [20] introduced a set of basic properties 

that any community cohesion metric for social networks 

should fulfill. These properties include (i) clustering 

coefficient, defined as the probability that two neighbors of a 

given individual are also neighbors themselves [24], (ii) the 

dynamics of community formation, (iii) presence of a bridge, 

an edge which if removed from the graph, creates two separate 

connected components, (iv) presence of a cut vertex, a node 

whose removal splits the graph into two or more connected 

components, and (v) presence of clique, a vertex connected to 

another vertex with an edge which forms a maximal clique. 

The authors further proved that WCC is a good candidate to 

distinguish communities in social networks. In terms of the 

clustering coefficient, they discovered that WCC reacts to the 

internal structure of the communities, and in particular, to the 

presence of triangles. Regarding the appearance of a new node 

in a community, WCC was found to have a better value for a 

node with fewer connections if the node was included in the 

community. It has, however, a better value for a node with 

many connections if the node was kept outside the 

community. They also discovered that WCC was resistant to 

bridges, and an optimal community in social networks can not 

contain a bridge. Finally, WCC was found to be able to 

separate communities into two cliques. 

As stated before, several metrics such as modularity and 

conductance have been proposed as indicators of the quality 

of a community in a graph. However, we chose the WCC 

metric and its optimization method to be the basis of our 

distributed dynamic graph community detection algorithm 

because of its performance, increasing popularity in the graph 

processing community, and potential in ensuring that 

communities are cohesive, structured, and well-defined [20]. 

WCC provides a good trade-off between performance and 

quality [14][16][17]. In addition, the optimization process of 

WCC can be distributed easily; the calculations of the best 

movement and the WCC value for each vertex can be done 

locally, and thus the computations can be executed in parallel. 

To the best of our knowledge, it is the most efficient solution 

for community detection in large-scale graphs. 

III. SYSTEM DESIGN 

 WCC is used in the SCD algorithm [17] for community 

detection in centralized graphs. A distributed version of the 

algorithm exists for static distributed graphs, which was 

implemented by Saltz et al. [14] in Java for the Graph 

processing engine. In this paper, we propose an Incremental 

Distributed Weighted Community Clustering (IDWCC) 

algorithm for detecting communities incrementally in a 

distributed dynamic graph that is continuously updated from 

streaming data. Communities help in clustering very large 

graph data on a distributed infrastructure for better 

management and fast processing of analytical queries.  

We validate the algorithm using our existing multi-level 

streaming data processing framework. The framework uses 

Spark, GraphX, and GraphFrames to create and maintain a 

dynamic distributed graph. Since the implementation of the 

community detection algorithm based on WCC using these 

tools did not exist, we implemented one using Scala, GraphX, 

and GraphFrames for distributed processing on Spark. 

We describe the three basic steps of the WCC optimization 

algorithm. Then we illustrate the Spark implementation of the 

Distributed WCC (DWCC) algorithm for a static distributed 

graph. Finally, we explain and demonstrate our IDWCC for 

detecting communities incrementally in dynamic distributed 

graphs. 

A. Partitioning 

In this step, we compute an initial partition of the graph. 

First, the vertices are sorted by their clustering coefficients in 

descending order. Then the vertices are iterated on and for 

each vertex x not previously visited, we create a new 

community C that contains x and all its neighbors that were 

not visited before. The algorithm requires the following 

conditions to be met in an initial partition. 

• Every community should contain a single-center vertex 

and a set of border vertices connected to the center 

vertex. 

• The center vertex should be the vertex with the highest 

clustering coefficient in the community. 

• Given a center vertex x and a border vertex y in a 

community, the clustering coefficient of x must be higher 

than the clustering coefficient of any neighbor z of y that 

is the center of its own community. 

In the final step, the initial partition is improved iteratively 

using a hill-climbing method. The execution stops when no 

further improvements to the global WCC can be achieved, or 

when a predefined number of iterations do not provide any 

significant improvement as specified by a threshold. Next, we 

will discuss our distributed implementation of WCC 

optimization for GraphX. The proposed IDWCC algorithm is 

explained after that. 

The Pregel API in GraphX helps in executing the 

partitioning of a distributed graph while respecting all the 

initial partitioning conditions. It performs an iterative 

execution process in which dynamic vertices keep 

broadcasting changes in their communities to their neighbors 

while receivers update their communities depending on the 

change notifications, they receive from the neighbors until no 

further adjustments are needed.  

Computing the improvement of the global WCC using Eq. 

3 requires the computation of the internal triangles of each 

community of the graph, which makes it inefficient to 

compute all possible movements of each vertex. Prat-Perez et 

al. [17] present a heuristic for calculating WCC improvement 

caused by moving a single vertex to a new community using 

the statistics about the vertex and its neighboring 

communities. The heuristic as presented in Eq. 4, gives an 

approximated value and does not require the computation of 

the internal triangles of each community. Instead, it depends 

on calculating the following statistics: din: the number of edges 

that connect the vertex v to the vertices inside the community 

C where it is moving, dout : the number of edges that connect v 

to the vertices outside C, b: the number of edges that are in the 

boundary of C, 𝛿 : the edge density of C, r: the number of 

vertices in C, and w: the clustering coefficient of the graph. 

We use the same heuristic due to its efficiency. Since this 



computation occurs independently within each vertex, all 

vertices may perform their movements simultaneously, 

meaning that this part of the algorithm can be distributed 

effectively on multiple compute nodes to be executed in 

parallel to improve the performance of the algorithm. 

                

(4)   

 

Prat-Pérez et al [17] described Θ1, Θ2, and Θ3 as the WCC 

improvements of the vertices in C that are connected to x, the 

vertices in C that are not connected to x, and the vertices v 

respectively, where v represents the set of vertices to be added 

to community C. 

B. Optimization 

We implement DWCC optimization for Apache Spark 

using its distributed in-memory graph structure, GraphX. The 

implementation is somewhat influenced by the existing graph 

processing libraries in Spark and the properties of the GraphX 

structure. We calculated the execution time for each small step 

of DWCC as shown in Figure 2. Based on these calculations, 

we developed an algorithm that works in three phases. First, it 

merges the batch with the maintained evolving graph, updates 

the vertex statistics, and optimizes the graph. Second, it 

assigns the new vertices to initial communities. Finally, it 

optimizes the WCC metric to generate better communities.  

As a first step, a new graph G* = (V*, E*) is generated from 

the newly arrived batch 𝛿*. The produced graph is then 

merged with the full graph to produce Gt+1 = (Vt ∪ V*, Et ∪ 

E*) as demonstrated in Fig. 1. 

 

We identify a set of vertices which we call the border 

vertices. These vertices exist in both Gt and G, are a part of the 

edges that connect the newly arriving batch with the old graph. 

Let us denote this set as Vb = Vt ∩ V*. We refer to the rest of 

the vertices in the new graph which are not part of the border 

vertices, as the inner vertices Vn = V*\Vb. The problem with 

the border vertices is that they have already been assigned to 

communities in Gt. But since they have new connections, they 

are likely to belong to different communities. We isolate each 

of these vertices in its own community in the full graph 

Gt+1.The merge phase also calculates t(x, Vt+1) and vt(x, Vt+1) 

for each vertex x in Gt+1. To perform the calculations 

efficiently, we recognize three possible situations. (a) 

Statistics of the old vertices stay the same as they were for the 

previous micro-batch t. (b) The inner vertices need to calculate 

the statistics. (c) The border vertices have new connections 

and thus might belong to new triangles and need to update 

their statistics. The definition of the stream batches, which is 

presented in Eq. 7, is important for updating the statistics of 

the border vertices as it assures that the graph holds the 

following conditions. Let's denote the set of triangles that pass 

through a vertex x in graph G as Tx,G and the set of vertices that 

form at least one triangle with x as VTx,G. Then the following 

holds true. 
 

 

where A is the set of vertices that are neighbors of x and 

form triangles with it in both Gt and G*. Based on these 

statements, the statistics for the border vertices are calculated 

as follows. 

            (5) 

            (6)  

Using these two measurements we can compute the local 

clustering coefficient for each vertex and the global clustering 

coefficient w which is needed to calculate WCC’I. At the end 

of this phase, we optimize the graph in the same way as it is 

done for DWCC to reduce the memory consumption and the 

processing required in the succeeding phases, which is a 

relatively cheap operation (see Fig. 2). 

 

Algorithm 1: Partitioning 

1: Let P be a set of communities generated at the last micro-batch; 

2: S  ← sort ByClusteringCoefficients(Vt+1); 

3: for all v in S do 

4:      if notVisited(v) then 

5:          markAsVisited(v); 

6:          if    v ∈ V * then 

7:               C ← {v}; 

8:          else 

9:               C ← P.getCommunity(v); 

10:          for all u in neighbors(v) do 

11:               if  notVisited(u) then 

12:                   markAsVisited(u); 

13:                   if u  ∈ V * then 

14:                       C.add(u); 

15:           P.add(C) 

 

We choose communities for the vertices that appear in the 

new batch. These vertices include the inner vertices Vn which 

have no communities assigned to them yet, and the border 

vertices Vb which were removed from their communities 

during the previous phase. We use the same algorithm as used 

in DWCC (see Algorithm 1), but we limit it to the above-

mentioned sets of vertices only. Hence, every vertex in the 

new batch chooses the vertex with the highest clustering 

coefficient that does not belong to a community of another 

vertex as its community center. 

Algorithm 2 follows the same steps as its counterpart 

Algorithm 1, the DWCC algorithm. However, it includes two 

Figure 1. Merging G* with Gt. 



optimizations since it is the most expensive processing phase 

in terms of computations: 

• Calculation of the community movements is still done on 

all the vertices, but we drop calculating the value of 

WCC in each iteration. 

• We use a fixed number of iterations rather than using 

more iterations when good WCC improvement appears.  

This might result in missing community movements that 

can have a good impact on WCC. However, as we process 

subsequent micro-batches, all the vertices start changing their 

communities again and any previous changes that were missed 

are subsequently recovered. This way, the degradation of 

WCC over time is avoided.  

 

Algorithm 2: Partitioning optimization 

1: Let P be the initial partition; 

2: iteration ← 1; 

3: Repeat 

4:      M ← ∅ 

5:      For all v in V do 

6:             M.add(bestMovement(v , P)) 

7:      P ← applyMovements(M , P); 

8:      Iteration = iteration+1; 

9: until iteration > maxIterations; 

C. Preprocessing 

This phase aims to calculate the t(x, V) and vt(x, V) values 

for each vertex of the graph. After these measurements are 

calculated, a graph optimization which is stated in the 

optimization section, is performed by removing edges that do 

not close any triangles. 

The Triangle Count algorithm in GraphX 1  requires the 

graph to be canonical which means that the graph should 

ensure the following: 

• Free from self-edges (edges with the same vertex as a 

source and a destination). 

• All its edges are oriented (the source vertex has a greater 

number of directly connected triangles than the 

destination vertex based on a pre-defined comparison 

method). 

• Has no duplicate edges. 

The cleaning is done using the subgraph API provided by 

GraphX. We keep the calculated statistics namely, the triangle 

count and the degree of vertex for later use. We took 

advantage of the fact that GraphX supports property graphs 

and hence we can save these statistics as properties of the 

graph vertices. 

D. Implementation 

We modify certain steps of the DWCC algorithm which 

incur high computational cost to make the algorithm more 

scalable so that we can apply it to distributed dynamic graphs. 

The key steps of the DWCC algorithm are as follows. 

• Step 1: Vertex Statistics (preprocessing): Count the 

triangles of vertices to identify communities and keep the 

statistics of triangle count and the degrees of vertices. 

 
1https://spark.apache.org/docs/latest/graphx-programming-   

guide.html#triangle-counting 

• Step 2: Graph Restructuring (preprocessing): Move 

vertices and remove redundant edges as a part of graph 

restructuring, optimizing, and cleaning. 

• Step 3: Iterative Partitioning (initial partitioning): Use 

broadcasting protocol for dynamic vertices to 

add/modify communities on distributed graphs. 

• Step 4: WCC Optimization (partition refinement): 

Compute the WCC metric or improvement for the graph. 

We investigate and calculate the execution time of each of 

the small steps of DWCC and propose changes to the DWCC 

algorithm to define the IDWCC for node-grained dynamic 

distributed graphs. The IDWCC algorithm has many similar 

steps as the DWCC. However, it has optimizations that avoid 

repeated calculations and consequently reduce the memory, 

data movement, and computational costs without sacrificing 

the quality of the result.  

In this paper, we limit our scope of interest to dynamic 

graphs that satisfy two properties. First, the graph progresses 

over a window of time in which a small batch of vertices and 

their edges are added. These edges connect the new vertices 

to each other and to the full graph generated from the last 

micro-batch. Second, the edges are equal in value i.e., the 

edges are not weighted or directed. We denote the graph from 

the previous iteration as Gt = (Vt, Et) where Vt and Et are its 

sets of vertices and edges at time t respectively. Let us refer to 

the vertices in the newly arriving batch as V* and the edges as 

E*. We define a micro-batch from the stream of a node-

grained dynamic graph d as follows:  

                                              

(7) 

Based on the cost of each step and the above-mentioned 

graph properties, we developed the IDWCC algorithm that 

works in three phases. First, it merges a micro-batch of the 

streaming data with the maintained evolving graph, updates 

the vertex statistics, and optimizes the graph. Second, it 

assigns the new vertices to the initial communities. Finally, it 

optimizes the WCC metric to generate better communities.  

Table 1. Properties of the test graphs 

Data Sources Vertices Edges 

Amazon 334,863 925,872 

DBLP 317,080 1,049,866 

YouTube  1,134,890  2,987,624  

 

IV. VALIDATION AND RESULTS 

A. Experimental Setup 

A distributed multi-cluster environment was used for our 

experiments applying Spark, Spark Streaming, and GraphX to 

implement the dynamic distributed graph. Eight identical 

machines were used, each having 8 cores 2.10 GHz Intel Xeon 

64-bit CPU, 30 GB of RAM, and 300 GB of disk space to host 

and perform computations on the distributed graph data 

structure. We installed Apache Spark v2.2.0 on all the 



machines. Both DWCC and IDWCC algorithms were 

implemented using Scala 2.112. 

B.  Data Source 

 We used a set of different real-life undirected graphs that 

have ground-truth communities. We took these graphs from 

the SNAP data repository3. The selected graphs and some 

statistics about them are presented in Table 1. The use of 

multiple graphs for the experiments allowed us to compare the 

results for different graph sizes. In addition, it gave us the 

ability to experiment with different sizes of micro-batches 

easily. After loading a graph from the experimental sets, we 

ensured that it is clean and free from duplicates and self-edges. 

We also sorted the edges by the source vertices which made 

the graph canonical from the start and ready for processing. 

C. Complexity Analysis 

We compare the complexity of sequential implementation 

of our incremental algorithm to its static counterpart when 

both are applied to detect communities in a dynamic graph. 

Let n be the number of vertices and m the number of edges in 

the graph. We assume that the average degree of the graph d 

at any point of time t is d = m/n and that real graphs (graphs 

are meant to be found in real-world with millions of vertices 

and edges) have a quasi-linear relation between vertices and 

edges O(m) = O(n.logn). Under these assumptions, the 

complexity of the static WCC optimization algorithm, as 

calculated in Prat-Perez et al. [17] is O(m.logn).  

Now we calculate the complexity of a centralized version 

of the sequential incremental WCC optimization algorithm. 

For the first phase, we do not consider the complexity of 

merging the graphs since the operation is necessary for any 

dynamic graph. That leaves the cost of computing the triangles 

and degrees for the vertices in the new batch as follows: 

O(m*.d + m*) = O(m*.log nt+1) 

The second phase requires sorting the vertices based on the 

local clustering coefficient. However, the vertices are already 

sorted from processing a previous micro-batch. Hence, the 

cost is only for organizing the new vertices in the right order 

which requires sorting the new vertices and then executing a 

full scan of the vertices in the worst-case O(n*+nt) = O(nt). 

For the third phase, let α be the number of iterations required 

to find the best possible communities, which is a constant. In 

each iteration, we compute in the worst-case d+1 movements 

for each vertex of type WCC’I which has a cost of O(1). That 

makes the total cost as follows: 

O(n.(d+1)) = O(m) 

Next, we apply all the movements which are equal to the 

number of vertices, so it costs O(nt+1). We also need to update, 

for each iteration in the second phase, the statistics w, cout, din, 

and dout for each vertex and community, which has a cost of 

O(mt+1). We sum all the costs to get the full cost of this phase 

O(α.(mt+1 + nt+1 +mt+1)) = O(mt+1). The full cost of the 

algorithm is the sum of the cost of the three phases: O(m*log 

nt+1 + nt + mt+1). Since m* << nt+1, then m*.lognt+1 << 

 
2https://github.com/TariqAbughofa/incremental_distributed_wcc 
3 http://snap.stanford.edu/ 

nt+1.lognt+1 < mt+1. The cost can be simplified to become 

O(mt+1). This cost is much smaller than O(mt+1.lognt+1) the 

cost of applying the static algorithm on the whole graph during 

the t th  iteration. 

D. Experimental Details and Results 

 We conducted the following three sets of experiments. 

• Experiment a: We computed the efficiency of the 

optimizations used in IDWCC by comparing the 

execution time of each step of IDWCC with its 

counterpart in DWCC.  

• Experiment b: We compared the quality of the results of 

DWCC, IDWCC, and SCD.  

• Experiment c: Finally, we compared the quality of the 

results and the execution time of the DWCC and IDWCC 

algorithms for a dynamic distributed graph by executing 

the algorithms while updating the graph in real-time from 

a data stream. We executed 5 iterations of the DWCC and 

IDWCC algorithms based on the recommendations of 

Prat-Pérez et al. [19], the authors of the original WCC 

optimization algorithm. 

We experimented with different graph sizes to compare the 

performances of the algorithms for different sizes of graphs 

and micro-batches of the streaming data. Initially, we 

constructed the graph from a bulk of static data already 

downloaded from the selected data sources. For the bulk data, 

the first two columns in Table 2 show the number of vertices 

and edges added to the graph respectively. Next, we appended 

new data to the existing distributed graph from the streaming 

data sources using micro-batches of data at a time. The 

number of edges added from the data streams and the 

corresponding numbers of micro-batches of data used for the 

updates are shown in columns 3 and 4 in Table 2 respectively. 

It can be noticed that we chose to use fewer micro-batches 

with the smaller size bulk graphs, and greater micro-batches 

for the larger size bulk graphs to limit the use of the resources 

on each iteration. 

Table 2. Initial sizes and updated sizes of the test graphs 

 Bulk 

Vertices 

Bulk 

Edges 

Stream 

Edges 

# of Micro-

batches 

Amazon 258,464 576,718 349,154 10 

DBLP 253,119 852,754 197,112 10 

YouTube 903,959 2666,836 320788 10 

LiveJournal 768,792 13,997,342 20,683,847 30 

 

Experiment a shows the benefits of the optimization 

techniques we applied to our IDWCC as shown in the 

algorithm listing. For both DWCC and IDWCC, we calculated 

the time that each step took to be executed on the full Amazon 

graph and aggregated them to compute the total execution 

time as shown in Fig. 2. The results show that the IDWCC has 

a shorter execution time compared to the DWCC algorithm. 

The vertex statistics step as defined in the implementation part 

in Section III is the one responsible for calculating each vertex 

triangle count and degree. 

 

https://github.com/TariqAbughofa/incremental_distributed_wcc
http://snap.stanford.edu/


 

In Fig.2, we notice that the execution time was reduced in 

IDWCC by almost three times compared to DWCC as we 

counted the triangles and degrees only for the new vertices and 

the border vertices (vertices statistics Fig.2). The graph 

restructuring step had no change in execution time as no 

adjustments were made to the vertices. The iterative 

partitioning step had a small decrease in execution time caused 

by the way we altered this stage. The biggest gain was 

expected in memory consumption as proven later. Finally, the 

WCC optimization step, which calculates the WCC metric, an 

expensive operation, was eliminated completely (no column 

for IDWCC) from the IDWCC algorithm resulting in a great 

reduction in the computational cost. 

 

Experiment b aimed at comparing the quality of results of 

the distributed graph community detection algorithms, 

DWCC and IDWCC. The existing implementation of the SDC 

algorithm already proved that it had better quality than many 

other centralized community detection algorithms while 

having faster execution [17]. These studies compared the 

quality of the results of the SDC to that of Louvain [33] and 

Infomap [27]. Therefore, instead of repeating similar 

experiments and comparing the effectiveness of WCC 

optimization to that of the other approaches such as Louvain 

and Infomap, we compared the quality of the communities 

produced by the SCD, DWCC, and IDWCC. We measure the 

quality of the communities by calculating the global WCC on 

the full test graph after appending data from the last micro-

batch. The results are displayed in Fig. 3 which shows that 

both DWCC and IDWCC produced good WCC values. These 

WCC values show only up to 5% decrease from their SCD 

counterparts. On top of that, the IDWCC gives slightly better 

results than the DWCC algorithm. We do not show the results 

for the LiveJournal graph as both DWCC and IDWCC failed 

to process the whole stream. In both cases, the computational 

needs exceeded the available memory resources. 

Experiment c was designed to prove the quality of the 

results and the efficiency of the IDWCC algorithm compared 

to the DWCC algorithm. For each graph and each micro-batch 

in the stream as described in Table 2, we merged the micro-

batch with the full graph. Then we applied both DWCC and 

IDWCC on the modified graph. In the streaming context, 
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DWCC finds the communities for the whole graph again, 

whereas our IDWCC finds communities only for the new 

vertices and reflects these changes on the old vertices. 

For each micro-batch, we compared the global WCC 

values of the resulting graph generated by IDWCC and 

DWCC in addition to the execution times. Fig. 4 and 5 show 

the results of the experiments with streaming data. Missing 

data points indicate that the algorithm was not able to continue 

processing the graph due to insufficient memory problems 

(lack of resources). Fig. 4 clearly demonstrates that IDWCC 

produces communities with global WCC values that are very 

close to the ones produced by DWCC. We can even see that 

the results start to be better than DWCC in later iterations. 

Regarding the execution time, IDWCC performed two to three 

times better than DWCC. For the large LiveJournal graph, we 

see that both algorithms failed to continue with the available 

computational resources. However, IDWCC continued for 7 

micro-batches before it crashed, while DWCC could only 

process up to 3 micro-batches. This shows that IDWCC has 

significantly less memory consumption than DWCC. The 

experiments show that our dynamic graph processing 

framework with IDWCC is capable of maintaining graphs up 

to 100 million edges while updating them with streaming data 

in under 50 seconds. 

V. CASE STUDY 

We further examined the communities produced by IDWCC 

in a real-world application of dynamic graphs. As a case study, 

we chose the scenario of generating recommendations for 

product purchases using the Amazon streaming dataset [39]. 

The metadata for this graph is available on the SNAP website 

[38] and contains the titles of the products. 

Table 3. Examples of communities produced by IDWCC on Amazon 

products data.  

Community # Example 1 Example 2 

community #1 Gulliver's Travels  

Science Fiction Classics 

of H.G. Wells 

Swiss Family Robinson  

The War of the Worlds  

Anne of Avonlea 

Robinson Crusoe: His Life and Strange 

Surprising Adventures  

Treasure Island  

Gulliver's Travels  

The Swiss Family Robinson  

Robinson Crusoe: Life and Strange 

Surprising Adventures 

community #2 Merchant of Venice  

The Merchant of Venice  

Macbeth  

Othello: The Applause 

Shakespeare Library 

Much Ado About 

Nothing 

Hamlet: The New Variorum Edition  

Hamlet  

The Merchant of Venice  

A Midsummer Night's Dream  

Othello 

community #3 1984  

A Separate Peace  

Lord of the Flies  

Romeo and Juliet  

1984 

To Kill a Mockingbird  

John Knowles's a Separate Peace  

Joseph Heller's Catch-22  

The Grapes of Wrath  

1984 

 

The product recommendation problem aims to find 

products that are usually bought together to suggest them to 

the users. This graph represents a network of products. Each 

vertex represents a product, and each edge connects two 

products if they are frequently purchased together. Therefore, 

the communities in the graph constructed using the Amazon 

data would represent similar products that are frequently 

purchased together and can be used to provide 

recommendations about products to the customer. We ran the 

IDWCC algorithm on the graph and chose three communities 

which are reported in Table 3. Table 3 has 10 randomly 

selected vertices from each community. In the case of the first 

community, we see that it is formed of classic novels. The 

second community consists of Shakespearean literature. 

Finally, the third one is mostly political and allegorical novels. 

We observe that the algorithm can perform a good selection 

of the relations in the graphs to give meaningful communities. 

VI. CONCLUSION 

 Detecting communities in very large graphs offers 

computational challenges and existing algorithms do not offer 

a feasible solution for large dynamic graphs [7]. In this paper, 

we propose the IDWCC algorithm as a solution to the 

community detection problem for large dynamic distributed 

graphs that need to be updated continuously from streaming 

data. We demonstrate the efficacy of our solution by 

implementing a prototype using cutting edge Spark, Spark 

Streaming and GraphX to create and maintain a large in-

memory distributed graph over a multi-cluster distributed 

infrastructure. We begin by conducting a study on the use of 

the Weighted Community Clustering (WCC) metric to detect 

communities with Apache Spark. Next, we present the 

implementation of a Distributed WCC (DWCC) optimization 

using Apache Spark and GraphX to detect communities in 

static graphs. Finally, we propose and demonstrate a novel 

Incremental Distributed WCC (IDWCC) algorithm for 

detecting communities in large node-grained dynamic 

distributed graphs. IDWCC improves the DWCC 

optimization by assigning the newly added vertices to the most 

suitable communities in a distributed graph and by optimizing 

some of the computational steps. The algorithm is 

implemented in Scala using the in-memory GraphX structure 

and is executed on a distributed multi-cluster environment 

using Apache Spark. The experiments showed that IDWCC 

outperforms DWCC for large dynamic graphs. IDWCC 

produced the same or better WCC values compared to DWCC. 

It was also two to three times faster than DWCC. The memory 

consumption was more optimized in IDWCC as well. To the 

best of our knowledge, IDWCC is the best performing 

incremental community detection algorithm for node-grained 

dynamic distributed graphs. We also demonstrated and 

validated the usability of dynamic community detection using 

IDWCC for a real-life e-commerce use case scenario of 

product recommendations using Amazon product data.  

As future work, we like to study the stability of the quality 

of IDWCC over a long period of time with a goal to assess the 

need of applying the DWCC optimization periodically on the 

full graph to maintain high accuracy of the results in the case 

of result degradation. We also aim to address the memory 

consumption problem of the IDWCC algorithm which causes 

a bottleneck when computing new communities for each 

vertex. We plan to further optimize the iteration phase by 

limiting the number of vertices for which we update the 

communities in each iteration. This may be done by using 



statistics calculated from the previous iterations. We only 

addressed undirected unweighted node-grained dynamic 

graphs in this research. We would like to extend our 

framework to work with edge-grained dynamic graphs and 

explore the effect of the edge weights in the community 

detection process. 
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