
Illicit item detection in X-ray images for security
applications

1st Georgios Batsis
Department of Informatics and Telematics

Harokopio University of Athens
Athens, Greece
gbatsis@hua.gr

2nd Ioannis Mademlis
Department of Informatics and Telematics

Harokopio University of Athens
Athens, Greece

imademlis@hua.gr

3rd Georgios Th. Papadopoulos
Department of Informatics and Telematics

Harokopio University of Athens
Athens, Greece

g.th.papadopoulos@hua.gr

Abstract—Automated detection of contraband items in X-ray
images can significantly increase public safety, by enhancing the
productivity and alleviating the mental load of security officers
in airports, subways, customs/post offices, etc. The large volume
and high throughput of passengers, mailed parcels, etc., during
rush hours make it a Big Data analysis task. Modern computer
vision algorithms relying on Deep Neural Networks (DNNs) have
proven capable of undertaking this task even under resource-
constrained and embedded execution scenarios, e.g., as is the case
with fast, single-stage, anchor-based object detectors. This paper
proposes a two-fold improvement of such algorithms for the X-
ray analysis domain, introducing two complementary novelties.
Firstly, more efficient anchors are obtained by hierarchical
clustering the sizes of the ground-truth training set bounding
boxes; thus, the resulting anchors follow a natural hierarchy
aligned with the semantic structure of the data. Secondly, the
default Non-Maximum Suppression (NMS) algorithm at the end
of the object detection pipeline is modified to better handle
occluded object detection and to reduce the number of false
predictions, by inserting the Efficient Intersection over Union
(E-IoU) metric into the Weighted Cluster NMS method. E-IoU
provides more discriminative geometrical correlations between
the candidate bounding boxes/Regions-of-Interest (RoIs). The
proposed method is implemented on a common single-stage object
detector (YOLOv5) and its experimental evaluation on a relevant
public dataset indicates significant accuracy gains over both the
baseline and competing approaches. This highlights the potential
of Big Data analysis in enhancing public safety.

Index Terms—Illicit item detection, X-ray image analysis, Deep
Neural Networks, Object detection, Non-Maximum Suppression

I. INTRODUCTION

Detecting contraband items using X-ray scanning of lug-
gage, parcels, etc. is a crucial requirement for ensuring public
security (e.g. preventing terrorist attacks, fighting smuggling
of illegal goods, etc.). X-rays are electromagnetic waves with
wavelengths shorter than thee visible light, able to pene-
trate most materials; X-ray scanners exploit this fundamental
property to screen items, such as luggage or packages (e.g.,
in airports, post/customs offices, etc.). Human operators are
able to detect a wide range of potential threats, such as

explosives, weapons, or sharp objects, using high-resolution
images generated by scanning machines [1]. However, fully
manual screening has important shortcomings: the quality of
the scan image can be influenced by several factors, such
as occluded objects, cluttered environment or certain material
properties of the scanned items [2], while heavy traffic during
rush hours may mentally overload human security officers.
Thus, illicit items may be missed, due to the need for “the line
to keep moving” or because of perceptual limitations. The high
volume and high throughput of X-ray scans in such scenarios
render manual screening ineffective and demand automated
Big Data analysis solutions.

Efficient automated X-ray image analysis/screening for au-
tomatic illicit item detection is nowadays possible thanks
to the advances of computer vision and machine learning.
Deep Neural Networks (DNNs) have proven to be remarkably
capable in supporting human operators for similar tasks, thus
greatly increasing their productivity and reducing the possi-
bility of mistakes. Both whole-image recognition and object
detection methods have been proposed for illicit/contraband
item detection in X-ray images, based on DNNs. While the
former ones simply classify an entire image and assign it
an overall class label, algorithms of the latter type identify
Regions-of-Interest (RoIs), i.e., bounding boxes that localize
(in 2D pixel coordinates) specific objects visible in an input
image. While there have been significant advancements in
object detection algorithms over the last few decades, achiev-
ing sufficient performance in real-world scenarios continues
to be a challenge [3]. The majority of the proposed methods
incorporates mechanisms designed to handle domain-specific
aspects (e.g., high occlusions, very cluttered backgrounds,
large class imbalance, etc.). Additionally, due to the typically
cluttered background of X-ray scan images of luggage, mailed
parcels, etc., Non-Maximum Suppression (NMS) is also par-
ticularly important for security applications. NMS is the final
refinement step incorporated to almost every visual object
detection framework, assigned the duty of merging/filtering
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any spatially overlapping detected RoIs which correspond to
a single visible object [4] [5].

Regarding image recognition, the method of [6] addressed
the issue of limited training data by employing a pretrained
CNN and fine-tuning it in the X-ray domain, while the method
of [7] introduced a module named Class-balanced Hierarchical
Refinement (CHR) to enhance the prediction capacity of the
CNN under extreme class imbalance. This is an important
issue in automated X-ray screening, since negative images
(where no illicit item is present) are typically significantly
more than the positive ones, with this fact reflected in the
relevant available datasets. CHR is separately evaluated on
top of three different CNNs: Res-Net101 [8], Inception-v3 [9]
and Dense-Net [10].

Common DNNs for object detection have also been evalu-
ated with regard to their discrimination capacity and trans-
ferability between different X-ray scanners [11]; examples
include Faster R-CNN [12], Mask R-CNN [13] and Reti-
naNet [14]. However, modifying fast, anchor-based, single-
stage object detectors such as Single Shot MultiBox Detector
(SSD) [15] or You Only Look Once (YOLO) [16] is the most
common approach, due to their ability to operate in real-time
even in embedded computer hardware. Such modifications
may have various forms. For instance, a Cascaded Structure
Tensor (CST) is proposed in [17] which took advantage of
contour-based information to extract object proposals; the
latter ones are then classified using a CNN. An alternative
lightweight object detector, called LightRay, is introduced in
[18] as a modified version of the YOLOv4 model for small
illicit item detection in complex backgrounds. It consisted of a
fast MobileNetV3 [19] backbone CNN and a feature enhance-
ment network that includes a Lightweight Feature Pyramid
Network (LFPN) [20], to obtain information of objects at
different scales, and a Convolutional Block Attention Module
(CBAM) [21], for refining feature maps through a spatial
attention mechanism.

A different approach was followed in [22], where a novel
mechanism called Foreground and Background Separation
(FBS) was proposed for separating illicit items from com-
plex/cluttered backgrounds. This is achieved by using a feature
extraction DNN combined with Spatial Pyramid Pooling (SPP)
and a Path Aggregation Network, which extracts high-level
features. These feature maps serve as an input to two neural de-
coders, which reconstruct the background and the foreground
simultaneously. Then, an attention module directs the overall
model’s focus on the foreground objects. In an orthogonal
direction, the De-occlusion Attention Module (DOAM) [23]
is a neural module designed to overcome occlusion in X-ray
images; this is important because occlusions are common,
due to the absorption of X-rays by certain materials, such
as metals, and the visual overlap of multiple objects within
densely packed parcels. DOAM consists of two sub-modules,
named Edge Guidance (EG) and Material Awareness (MA),
which identify edge and material cues for all visible objects.
An alternative domain-specific module is Lateral Inhibition
Module (LIM) [24], which includes two components: Bidirec-

tional Propagation (BP) and Boundary Activation (BA). The
former one minimizes the impact of neighboring regions, by
isolating irrelevant information and the latter one captures ob-
ject boundaries. Both DOAM and LIM have shown promising
results in overcoming object occlusion issues in X-ray scan
images.

NMS has also been modified in object detectors for X-ray
scan image analysis. For instance, the framework of [25] is
a modified YOLOv4 detector adopting deformable convolu-
tions [26], the Gradient Harmonizing Mechanism (GHM) loss
[27] and an augmented NMS algorithm combining Soft-NMS
[28] with the Distance-Intersection-over-Union (DIoU) metric.
Focusing on real-time performance, YOLOv5 was modified in
[29] using the Stem [30] and CGhost [31] modules, resulting in
a model with reduced number of parameters that still achieves
competitive results in comparison with the baseline method.
Finally, the integrated illicit Object Detection (POD) method
[32] for X-ray image analysis combines a learnable Gabor
layer for edge information retrieval, a spatial attention module
for directing focus on low-level features, a Global Context
Feature Extraction (GCFE) module and a Dual Scale Feature
Aggregation (DSFA) module to enhance semantic information
from high-level features.

However, to the best of the authors’ knowledge, no object
detector devised for the security domain has attempted to
modify one basic building block of most single-stage detection
frameworks: the anchor boxes. This is particularly important
for X-ray screening of luggage or mailed parcels, because
better matching between the anchor boxes and the distribution
of object sizes/shapes in the training dataset leads to better
detection performance on test images. Additionally, despite
certain attempts to improve NMS for security applications, the
results remain typically sub-optimal under object occlusions,
which are common in this domain. Thus, this paper proposes
a two-fold improvement of anchor-based, single-stage object
detectors for automatically detecting contraband items in X-
ray scan images, contributing the following two novelties:

• Anchor box optimization by applying Hierarchical Clus-
tering (HC) on the ground-truth object RoIs of the train-
ing set. By clustering the ground-truth bounding boxes
based on their similarity in terms of size, shape, and
position, the resulting clusters can be used to define a
natural hierarchy, with larger clusters representing more
general object shapes and smaller clusters capturing finer
details and variations. The resulting hierarchy can also
provide information about the relationships between dif-
ferent object classes.

• NMS modification to handle occluded object detection
and to reduce false predictions, by computing richer
geometrical correlations among candidate RoIs before
final bounding box prediction. This is achieved by in-
corporating the Efficient-IoU metric into the Weighted-
Cluster NMS method [33].

The remainder of the paper is organized as follows. Section
II briefly presents the specific baseline algorithms which is



adopted for implementing the proposed novelties (YOLOv5,
Weighted-Cluster NMS). Section III details the proposed
method, consisting of an anchor box refinement approach
and a modified NMS algorithm. Section IV outlines the
experimental evaluation process, which was conducted on a
well-known public dataset, and discusses the obtained results.
Section V concludes the preceding discussion by identifying
the implications of these findings, the limitations of this study
and directions for future research.

II. PRELIMINARIES

In order to evaluate the proposed two-fold method, YOLOv5
[34] was adopted as a baseline object detector. The reason
behind this choice was solely practical; in principle, the pro-
posed method can be used to augment any other variant of the
general anchor-based, single-stage object detection framework,
as well.

A. YOLOv5 Architecture

You Only Look Once (YOLO) [16] is a series of fast anchor-
based, single-stage object detectors, where object localization
and classification are performed using a single CNN. This ar-
chitecture can, however, be divided into a backbone network, a
succeeding neck network and a final prediction head. YOLOv5
[34], which is an update of YOLOv4 [35], was inspired by
EfficientNet [36] and, thus, can be easily reconfigured for
different network complexity profiles. Out of the common
variants (YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x) the
one employed in this paper is YOLOv5l.

The backbone CNN of YOLOv5 is CSP-Darknet53, a mod-
ified version of Darknet53 [37] combined with Cross Stage
Partial (CSP). As presented in Fig. 1, the main convolutional
block of CSP-Darknet53 consists of convolutional layers,
residuals and the SiLU activation function, while the final
feature maps are refined using a Spatial Pyramid Pooling-
Fast (SPPF) module [38]. The neck network consists of a
Feature Pyramid Network (FPN) [20] and a Path Aggregation
Network (PAN) [39]. These modules repeatedly fuse feature
maps from different scales and depth levels, thus leading to
final image representations, which are simultaneously charac-
terized by accurate spatial localization details, rich semantics
and high invariance regarding object detection. Finally, the
prediction head outputs the candidate detected RoIs through a
set of convolutional operations. Overall YOLOv5 architecture
is presented in Fig. 2.

B. Non-Maximum Suppression

Similarly to the majority of object detectors, YOLO gener-
ates a large set of overlapping object proposals, in the form
of RoIs in pixel coordinates, along with the corresponding
class labels and confidence scores. Thus, these candidate
RoIs are filtered in a post-processing step based on certain
criteria; this is called Non-Maximum Suppression (NMS). The
conventional Greedy NMS algorithms processes the generated
candidate bounding boxes and their corresponding confidence
scores for each input image, sorting RoIs in descending

Fig. 1. Main YOLO components.

Fig. 2. YOLOv5 overall architecture.

confidence order. At first, the box with the highest confidence
score is selected and the IoU between itself and all other boxes
is calculated. All significantly overlapping RoIs, with an IoU
greater than a threshold, are removed. This process is repeated
until no bounding boxes remain in the sorted list. The NMS
algorithm is presented in Fig. 3.

III. PROPOSED METHOD

The proposed method is a two-fold improvement of anchor-
based, single-stage object detectors, which is highly suitable
for the X-ray security scan image analysis domain, due to the
peculiarities of such images (e.g., heavy occlusions, cluttered
background, etc.).

A. Anchor boxes refinement

Most anchor-based single-stage object detectors utilize ref-
erence anchor boxes of different sizes and aspect ratios, which
are placed at various positions across the input image. The
goal of these anchor boxes is to capture the variation in object
shapes and sizes present in the dataset. Typically, they are



Fig. 3. The Greedy Non-Maximum Suppression algorithm.

predefined (e.g., in the case of YOLOv5, they have been
calculated based on prior knowledge of the sizes, aspect ratios,
and distributions of ground-truth objects in the COCO dataset
[40]). In many implementations (e.g., YOLOv5) the match
between these predefined anchor boxes and the training dataset
is verified before training, by computing the achievable recall
rate if the object detector using these anchors had access to
the ground-truth for all objects in the dataset. If this recall rate
is too low, the predefined anchors are assumed to be unfit and
a new set of dataset-specific anchor boxes is estimated. This
is performed via a run of K-Means to group the ground-truth
dataset RoIs into clusters, based on their dimensions in pixel
space. The resulting cluster centers are selected as the new
anchor boxes, with additional optimizations being possible
(e.g., in YOLO a genetic algorithm refines them further). K-
Means++ [41] can be utilized instead of classic K-Means [42].

In the current work, Hierarchical Clustering (HC) is used
to obtain anchor boxes in a dataset-specific manner, according
to Algorithm in Fig. 4. The goal is to generate anchor boxes
that both fit the distribution of ground-truth object sizes/shapes
and reflect their arrangement into a natural hierarchy, aligned
with the spatial interrelations between the dataset’s object
classes. Thus, the hierarchy of anchor boxes can provide
the detector an explicit template of the dataset’s semantic
structure, as expressed by the spatial relationships between
different object classes. For example, in illicit item detection,
RoIs corresponding to classes such as “knife” and “wrench”
will likely fall under different sub-clusters of a common super-
cluster, containing all small-sized handheld items. Since a
selection of anchor boxes that better match the dataset’s object
sizes and shapes is known to lead to better object detection
accuracy [42], it is reasonable to expect further improvements
by obtaining an arrangement of anchors that not only fit the
distribution of the dataset’s object sizes and shapes, but also
reflect the natural hierarchy of the dataset’s semantic classes
(at least in terms of RoI shape/size).

Algorithm of Fig. 4 adopts an agglomerative HC method

[43] and adapts it to the anchor box refinement task. Its
goal is to hierarchically group the training dataset’s ground-
truth bounding boxes, where each RoI is described as a 2D
feature vector: [w, h]T , where w/h is the RoI width/height,
respectively. First, the pairwise Euclidean distances between
all RoIs in the entire training dataset are computed and a
linkage matrix is constructed using Ward’s minimum variance
[44]. Then, bounding boxes are assigned to clusters using the
maximum cluster criterion and the mean of each cluster is
calculated to obtain a new set of corresponding anchor boxes
(one per cluster). The total number of target clusters is set to
9, according to experimental evaluation. HC generates a tree-
like arrangement of clusters and sub-clusters. The leaves and
the root of the clustering tree are not included in the final set
of formed anchor boxes.

Fig. 4. Anchor boxes refinement using Hierarchical Clustering.

B. Modified Non-Maximum Suppression

The default Greedy NMS method suffers in the presence of
occlusions and gives rise to false positives, triggering various
improvements that have been proposed over the years. For
instance, Soft-NMS [28] modifies the candidate RoI scores by
a Gaussian decay based on the degree of overlap, instead of
directly setting the score of all overlapping bounding boxes
to zero. This generates more accurate RoIs, even if they are
occluded by other objects. Weighted-NMS [45] utilizes the
weighted combination of scores and IoU values to define the
merged coordinates of the predicted bounding boxes; the result
is higher accuracy at the expense of increased time complexity,
due to the number of iterations. To mitigate this, Weighted-
Cluster NMS (WC-NMS) [33] has been developed: WC-NMS
groups the detected candidate bounding boxes according to
the IoU values and then selects the final RoIs according to
the maximum score within each group. Implementation-wise
this is done with SIMD parallelism and by exploiting cache
locality, thanks to formulating the process as a series of matrix
operations instead of naive iterative loops, resulting in the
fast NMS Algorithm presented in Fig. 5. Thus, suppression
is implemented by calculating the so-called IoU matrix. The
latter is a symmetric matrix M, where mi,j is the IoU between
the i-th and the j-th candidate RoI. Exploiting the symmetry
of M, Algorithm in Fig. 5 retains only its upper triangular
part.

Considering the importance of an efficient NMS method in
the X-ray security image analysis domain, due to the densely
packed nature of typical luggage and mailed parcels, this



Fig. 5. EIoU Weighted-Cluster NMS algorithm.

paper adopts WC-NMS and improves it, by employing the
Efficient-IoU (E-IoU) [46] as the overlap metric. E-IoU is
an improvement of Complete-IoU (C-IoU) [33] and captures
richer geometrical information about overlapping candidate
bounding boxes, taking into account their overlapping area,
their distance and their aspect ratios. Eqs. (1)-(2) define the
overlapping criterion according to the so-called E-IoU matrix.

X = MIoU −REIoU , (1)

where MIoU is the IoU matrix, while REIoU derives from
the E-IoU loss [46]. Both matrices are calculated using the
predicted candidate RoIs (in top-left, bottom-right pixel coor-
dinates format), as follows:

REIoU =
Dcenters

(Wc)2 + (Hc)2
+

Dw

(Wc)2
+

Dh

(Hc)2
, (2)

where , Dcenters ∈ RN×N is a matrix containing the pair-
wise Euclidean distances between all N candidate RoIs, with
di,j being the Euclidean distance between the centers of the
i-th and the j-th predicted bounding boxes. Wc ∈ RN×N and
Hc ∈ RN×N contain the width and the height, respectively,
of the smallest enclosing box covering each pair of candidate
ROIs. Thus, wc

i,j and hc
i,j are the width and height of the

smallest bounding box that can contain both the i-th and
the j-th RoI. Dw ∈ RN×N contains the pairwise Euclidean
distances between the widths, whereas Dh ∈ RN×N contains
the pairwise Euclidean distances between the heights of all N
candidate RoIs. Similarly to X, all of the matrices mentioned
above are symmetric and only their upper triangular part is
important for computations and the final result is calculated
using element-wise division between the nominator and the
denominator, at each term of the sum in Eq. (2). Power
operations in the denominators are element-wise as well. To

sum up, the first term of in Eq. (2) captures information about
the distance between candidate regions, while the remainder
about aspect ratio.

Grouping the candidate RoIs based on their E-IoU values
means that rich geometrical information, regarding the spatial
interrelations and the arrangement of the detected bound-
ing boxes in 2D pixel space, are inherently considered for
grouping them more efficiently. In comparison with D-IoU,
which only describes the overlapping area and the distance
between candidate boxes, E-IoU captures information about
the overlapping area, distance and aspect ratios between the
compared RoIs. Although C-IoU also takes into account such
geometrical factors, it is computed by estimating the simple
difference in aspect ratio between the compared bounding
boxes. Such a naive approach may not accurately reflect the
actual relationship between the RoI shapes [46]. In order to
handle these issues, the second and the third term in Eq. (2)
capture more sufficiently the similarity between the compared
bounding boxes, in terms of their aspect ratio.

IV. EXPERIMENTAL EVALUATION

This Section overviews the experimental setups used for
evaluating the proposed method and discusses the evaluation
results. As previously described, YOLOv5 was selected as the
baseline to be improved using the proposed method.

A. Experimental Dataset

The proposed method was implemented and tested using
SIXray [7], a publicly available X-ray security dataset con-
sisting of 1,059,231 X-ray images from subway stations. The
6 classes of illicit objects contained in these images are
“gun”, “knife”, “wrench”, “pliers” and “scissors”. Addition-
ally, a “negative” class includes all images without any illicit
item. Three different dataset subsets are typically utilized in
different experimental setups, namely SIXray10, SIXray100
and SIXray1000, where the number indicates the ratio of
negative against positive samples. SIXray contains ground-
truth whole-image class label annotations manually set by
human security inspectors, while their ground-truth object
RoIs/bounding boxes are available only for the test set. This
paper uses the revised object detection annotations for the
training subset provided by [47]. Despite the fact that only
images containing at least one contraband item were utilized,
official training-test set split was adopted.

B. Evaluation Metrics

The effectiveness of the proposed method is measured
using the precision, recall and mean Average Precision (mAP)
metrics. In object detection tasks, IoU is used to measure
the overlap between the predicted and the corresponding
ground-truth RoI. In addition, a threshold value was defined
in order to decide whether the prediction is actually correct.
True Positives (TP), False Positives (FP), and False Negatives
(FN) depend on the IoU, the predicted label and the ground-
truth label. These elementary metrics are utilized to calculate
Precision and Recall:



Precision =
TP

TP + FP
. (3)

Recall =
TP

TP + FN
. (4)

The Precision-Recall (PR) curve depicts the trade-off between
precision and recall for different discrimination thresholds.
Average Precision (AP) is the area under the PR curve and
its range is between 0 to 1. AP is defined as:

AP =

∫ 1

0

p(r) dr. (5)

mAP is calculated as the mean of AP over all classes:

mAP =
1

N

N∑
i

APi. (6)

C. Experimental Evaluation

Evaluation of all competing methods in the SIXray dataset
was conducted using the mAP metric at a 0.5 IoU threshold
and the average mAP value at a range of different IoU thresh-
olds. Comparisons were made against the baseline detector
implementation before it was augmented with the proposed
method (default YOLOv5 with anchor boxes obtained from the
COCO dataset and Greedy NMS), as well as with variations
using K-Means and K-Means++ clustering for obtaining the
anchor boxes, or employing basic (IoU-based) WC-NMS. Ad-
ditionally, a published YOLOv5 result on SIXray is included
for completeness.

Table I summarizes the accuracy of the baseline method,
which achieved a precision of 92.1%, a recall of 82.3%, a
mAP of 87.6% and an average mAP across different IoU
thresholds (from 0.5 to 0.95) of 72.3%. Table II compares the
proposed method against this baseline and against competing
approaches based on YOLOv5. The first method is a compet-
ing one published in [32], using YOLOv5 with default anchor
boxes, conventional Greedy NMS and a different mini-batch
size during training. The next two approaches use Greedy
NMS, with one of them employing K-Means-derived and one
employing K-Means++-derived anchor boxes. As it can be
seen, the proposed method outperforms all other approaches
in terms of mAP.

Additionally, Table III presents an ablation study of the
proposed method. The first three variants adopt HC-derived
anchor boxes in combination with three different IoU metrics
for WC-NMS, namely IoU, D-IoU and C-IoU, respectively.
Evidently, D-IoU outperforms the other two metrics in terms
of mAP. The last line of Table II demonstrates the results of
the full proposed method, integrating both HC-based anchors
and advanced E-IoU-based WC-NMS into YOLOv5, which
outperforms all other (partial) variants in terms of mAP.

Table IV presents the complete evaluation of the proposed
method across all classes, using HC-derived anchor boxes
and the E-IoU-based WC-NMS. It outperforms the default
YOLOv5-large by 2.3% in terms of mAP. Its mAP is 89.9%

TABLE I
BASELINE YOLOV5 RESULTS ACROSS ALL CLASSES.

Precision Recall mAP mAP50-95
Overall 0.921 0.823 0.876 0.723
Class AP AP50-95
Gun 0.978 0.916 0.944 0.882
Knife 0.925 0.758 0.813 0.659
Wrench 0.877 0.768 0.835 0.659
Pliers 0.919 0.845 0.916 0.728
Scissors 0.908 0.828 0.874 0.687

TABLE II
COMPARATIVE EVALUATION.

Method mAP mAP50-95
Baseline 87.6 72.3
YOLOv5 baseline of [32] 86.7 -
K-Means anchors + default NMS 88 73
K-Means++ anchors + default NMS 88.3 72.9
HC anchors + E-IoU WC-NMS (proposed) 89.9 75.7

at a 0.5 IoU threshold, while the average mAP across a range
of different IoU thresholds is 75.7%. The proposed method
significantly reduces the number of false predictions and is
more accurate in detecting contraband items, especially in
cases of occluded object detection. In Figure 6, the precision-
recall curve of the proposed framework is presented, which
highlights the performance of the model in the desired task.
The curve shows a high precision score for low recall values,
indicating that the model is very selective in its predictions.
However, as recall increases, the precision score decreases,
suggesting that the model struggles with correctly classifying
some samples. However, the Area Under the Curve (AUC)
value indicates that the model performs robust predictions.
The above findings suggest that the model exhibits potentials
for use in specific applications where high precision is critical,
such as contraband detection. Finally, our model was deployed
in the test subset of SIXray dataset and the predictions are
presented in Fig. 7. Notably, neither HC-derived anchor boxes
nor E-IoU-based WC-NMS have been proposed/investigated
before for object detection.

V. CONCLUSIONS

The large volume and high throughput of passengers or
mailed parcels during rush hours, in airports, subways or
post/customs offices, make the automated detection of con-
traband items in X-ray images a Big Data analysis task that
is critical for public safety. This paper proposed a novel

TABLE III
ABLATION STUDY.

Method mAP mAP50-95
HC anchors + IoU WC-NMS 89.2 75
HC anchors + D-IoU WC-NMS 89.7 75.4
HC anchors + C-IoU WC-NMS 89.5 75.2
HC anchors + E-IoU WC-NMS (full proposed) 89.9 75.7



Fig. 6. Precision-Recall curve of the proposed method.

Fig. 7. Predictions on the SIXray test subset.

TABLE IV
ACCURACY OF THE PROPOSED METHOD ACROSS ALL CLASSES.

Class Precision Recall mAP mAP 50-95
Overall 0.949 0.837 0.899 0.757

AP AP 50-95
Gun 0.977 0.945 0.971 0.917
Knife 0.954 0.789 0.841 0.692
Wrench 0.904 0.781 0.86 0.695
Pliers 0.955 0.833 0.924 0.75
Scissors 0.956 0.84 0.899 0.73

approach to improve the performance of single-stage, anchor-
based object detectors in the X-ray domain. It incorporated
two complementary improvements: dataset-specific hierarchi-
cal clustering of ground-truth training RoIs, so that the derived
anchor boxes better match the distribution and semantic hier-
archy of object sizes/shapes, and a modification of an efficient
NMS algorithm, so as to better handle occluded objects and
to reduce false predictions. According to a thorough experi-
mental evaluation on a relevant public dataset, the proposed
method outperforms both the baseline and various competing
approaches.

Future research will focus on addressing other limitations
of existing methods, such as low generalization ability under
domain shifts (e.g., if the detector has been trained with X-rays
from one type of scanner and is deployed in an airport using
a different scanner), as well as integration of the proposed
approach to more recent object detectors (e.g., YOLOv7).
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