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Abstract—Evasion attacks on deep neural networks (DNN)
use artificial data to manipulate common neural network layers
(e.g., convolution operations) to create higher losses. This allows
targets to evade detection and/or classification across a wide
range of DNNs without the need for a backdoor attack or to know
specific type used. Most of the existing work in evasion attacks
have focused on planar images (e.g., photo, satellite imaging) in
relatively consistent lighting conditions. More recent work have
recognised the need to create patterns that are more easily printed
or work in diverse lighting environments.

Here, we build printable evasion patterns for fabric clothing
to highlight the risks to autonomous systems and provide data
for future adversarial training. These novel evasion attacks are
for soft body human stakeholders, where patterns are designed
to take into account body rotation, fabric stretch, printable, and
lighting variations. We show that these are effective and robust
to different human poses. This poses a significant threat to safety
of autonomous vehicles and adversarial training should consider
this new area.

Index Terms—Deep Learning, Human Detection, Evasion At-
tack, Safety, Security

I. INTRODUCTION

Increased autonomy in transportation means that the inter-

action between autonomous piloting and humans is a critical

safety area. Examples include but are not limited to detecting

pedestrians [1], monitoring driver presence for human-in-loop

autonomy [2], and ensuring safe social distancing [3]. Most

autonomous platforms use a range of sensors (e.g., vision,

IR, lidar) to fuse data and create a holistic understanding

the surrounding environment. However, low-end platforms and

some commercial operators (e.g., Tesla) have plans to use a

camera only system [4]. Here, the back-end analytics is often

performed by convolution neural networks (CNNs), where

deep layers of convolution operations extract meaningful deep

features in image sequences [1].

Evasion attacks are a class of attacks that use small data

manipulations to create false results or null results (nothing

detected) for general classes of DNNs, such as CNNs [5].

The data manipulations can manifest themselves in digital

changes (e.g., a digital display) or physically (e.g., graffiti,

spray camouflage, or printed patterns). These attacks do not
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Fig. 1. Deep Learning using CNN for human Detection. (Green) human
without any evasion patterns is easily detected by deep learning object
detector. (Red) human holding a physical evasion pattern can escape detection
by deep learning object detector.

need to know the specific CNN architecture being used, nor

any extraction or back-door access. As shown in Fig. 1, a

vision-based CNN human detection model uses camera data

as input to determine the existence of objects according to the

object confidence and detection threshold. However, physical

evasion patterns could easily interfere with the model decision

by changing the colour information locally in camera data. In

practice, these evasion patterns can arise due to: (1) unintended

use (urban evasion of CCTV for privacy enhancement) [6],

(2) intended malicious use on or by others, and (3) accidental

patterns emerging as part of art or fashion. In all these cases,

humans maybe missed and serious considerations to how we

can include evasion attacks in CNN training is needed.

A. Review of Evasion Pattern

Adversarial evasion attack methods mislead the inference

process of DNN models by adding visible or imperceptible

perturbation noise to images. This modifies the latent features

in images and leads to interfered model decision errors [7]–

[9]. Adversarial patch methods [10], attack CNNs by applying
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Fig. 2. The Process of Training Evasion Patterns for DL human Detection

a visible evasion pattern digitally or physically on an image

or object, with different purposes (e.g., reduce the accuracy of

classification, detection or both).

There are many studies in recent years related to evasion

attacks. Authors in [5] propose a basic patch method to fool

a YOLO v2 CNN detector, and provide a demo that a person

escapes from detection by holding a physical patch. Authors

in [11] design a practical neural stealth T-shirt which considers

both the deformation of evasion patterns caused by certain hu-

man movements and the color difference between RGB color,

printed color and recaptured color by cameras. Authors in [12]

propose a method to discover the most efficient local evasion

texture from patterns and use Toroidal Cropping to produce

clothes that are full of textures. There are several novel variants

of patch training such as using GAN [13] to generate multiple

patches at the same time; generating butterfly-shape patches

with GAN [14]; data independent method to generate patches

[15]; train face-mask-shape patches [16]; train deformable

patches [17]; train transferable patches with one white-box

and several black-box models [18].

However, these methods ignore several factors in the phys-

ical world that influence the effectiveness of evasion patterns.

Firstly, as studied in [19], the perspective of patches caused

by object rotations influences the effectiveness of evasion

patterns. Secondly, different shooting distances cause changes

in image resolutions (e.g., clarity of optical features). High-

resolution patches can easily reach a higher performance

during virtual training compared with lower ones, but the

meticulous features could easily destroy due to resolution

changes. Thirdly, the deformation of clothes can lead to de-

formation in evasion patterns. This influences the distribution

of pattern features and reduces the effectiveness of evasion

patterns.

B. Contributions and Novelty

In this research, we wish to highlight the dangers of evasion

patterns that can lead to missing humans by autonomous

platforms. In particular, we study and discuss the feasibility

of current evasion pattern training methods for real-world

usage on humans that have soft bodies, different postures, and

clothing that will distort the evasion patterns via elastic de-

formation. This had the novel advantage of being functionally

effective in 3D on soft bodies with different postures, but also

having different printing shapes that can make shape filtering

detection ineffective.

To achieve the above, we propose a novel generation method

to train diverse shaped evasion patterns with high real-world

usability. We design experiments to verify the performance of

different evasion patterns and from the results we show that

our evasion patterns are with higher invariance and robustness

to pattern deformation and perspectives compared to other

techniques.

II. METHOD

We aim to generate evasion patterns in arbitrary shapes,

and stick the printed physical patterns with a suitable size

on clothes to attack the DL detector effectively. We first

introduce the method to form the evasion pattern with a certain

shape, and then introduce the augmentation tricks to enhance

the usability of evasion patterns in physical use. The overall

pattern training process is demonstrated in Fig. 2.

A. Shape the Evasion Pattern

As shown in the top-left Fig. 2. Firstly, the initialised format

of the evasion pattern is a 3D matrix with random noise

(size: 3×n×n. 3 channels for R, G, B colours respectively.

Each channel with a certain length and width n, express

the resolution of evasion pattern). Then, a shape matrix will



Fig. 3. The Training and Verification of Evasion Patterns: (a) training robust patterns with different shapes, (b) verification with different human poses.

be established with the same size as the evasion pattern.

The shape matrix is conducted by only 0 and 1, which use

black and white colours to express the expected shape of

the evasion pattern. Then, multiply the square-shape evasion

pattern with the shape matrix to eliminate the out-of-shape

colour information, and only leave the evasion pattern within

the expected pattern shape.

B. The Augmentation Tricks of Evasion Patterns

The baseline method used in this paper is proposed in

[5]. This method optimises evasion patterns to maximise the

detection loss of a pre-trained Yolo V2 object detector. Prior

to training, we applied several augmentations to the evasion

patterns to simulate the effects that a physical evasion pattern

might encounter during use. This is to grant the evasion pattern

more robustness through invariance to different environments,

human postures, and camera perspectives.

As shown in Fig. 2, the evasion pattern in a certain shape

will be applied with a set of random augmentation. The

augmentation includes rotation, scaling, perspective, noise,

color jitter, and elastic deformation respectively. Rotation,

scaling and perspective enhancements are applied to increase

the robustness of the evasion patterns to different pattern sizes

and human postures (e.g., different human body postures will

lead to changes in the relative position of the evasion patterns

and the human body). Adding random noise and color jitter is

to avoid the overfitting problem of the evasion pattern. At the

same time, color jitter can also partially simulate the influence

of different ambient lighting on the color performance of the

pattern in the camera. This enhances the robustness of evasion

patterns in different lighting environments. Normal elastic

deformation augmentation only changes the color patterns

within an image, without changing the image shape. Here,

we put the evasion pattern on a larger black background and

then do elastic augmentation. This can simulate the texture of

evasion patterns on everyday clothing, and the deformation of

evasion patterns caused by human posture and movements.

During the previous research and our experiments, there

exist differences among RGB color, printed color, and camera-

captured physical color. This will reduce the effectiveness of

evasion patterns in real-world attacks. The authors in [20]

proposed a method to use a regression model on the mapping

relationship between RGB color and physical color. This

method could simulate the color performance of a physical

evasion pattern in real-world attacks. As we only focus on

real-world attacks, we apply this method to evasion patterns

to enhance their real-world attack effectiveness.

C. The Optimization of Evasion Patterns by Designed Loss

As shown in Fig. 2, the processed evasion pattern will be

virtually stuck onto the humans in images with a suitable

size guided by labels (indicate the coordinates of humans in

images). Then we apply random resolution adjustment on the

whole post-evasion-pattern image to simulate the dropping in

resolutions caused by camera distance. Then, the processed

images will be fed into DL human detection models, and the

evasion pattern will be directly optimized by the backpropa-

gation of the designed loss. In the design of loss, we consider

the following aspects:

• Loss 1 (L1): Object detection loss. This loss is the max-

imum confidence score for all detection boxes classified

as humans in a picture labelled by DL object detectors

(e.g. Yolo V2). In each detection box, if the confidence

score is below a pre-defined confidence threshold in the

DL detector, the detector does not report objects detected

in that box. As the aim of evasion patterns is to let the



TABLE I
REAL-WORLD PERFORMANCE EVALUATION OF EVASION PATTERNS ON YOLO V2 GENERIC OBJECT DETECTORS (YOLO V2 THRESHOLD: 0.7,
ACCURACY - HUMAN DETECTION SUCCESS RATE, CONFIDENCE SCORE - AVERAGE MAXIMUM CONFIDENCE SCORE OF ALL DETECTION BOXES

CLASSIFIED AS HUMAN

Posture: Direct Posture: Oblique Posture: Perspective

Evasion Pattern Accuracy Confidence Score Accuracy Confidence Score Accuracy Confidence Score

None 100% 0.895 100% 0.895 99.7% 0.887

Pure Random Noise 100% 0.834 99.6% 0.828 99.6% 0.827

Baseline Method 75.8% 0.796 99.4% 0.808 99.6% 0.817

Our Method (Square) 42.6% 0.757 67.4% 0.768 73.2% 0.775

Our Method (Circle) 75.5% 0.798 73.7% 0.794 81.6% 0.801

Our Method (Star) 78.2% 0.801 75.1% 0.798 99.5% 0.816

Our Method (C-shape) 66.7% 0.774 70.2% 0.786 86.8% 0.805

human escape from CNN detection, the L1 is expected

to be minimized during the evasion pattern optimization.

• Loss 2 (L2): Non-printability score. L2 indicates to what

extent the RGB evasion pattern could be printed correctly

by common printers [21], as printers can only print a

limited number of colours compared with RGB colours.

Suppose each pixel in an evasion pattern P is represented

by p, and the printable colour set of a common printer is

C:

L2 =
∑

p∈P

min
c∈C

abs(p− c) (1)

To make sure the color could be printed accurately, the

L2 is expected to be reduced during the optimization of

the evasion pattern.

• Loss 3 (L3): Total variation score. L3 indicates how

smooth the colour transitions among close pixels [22].

This is to avoid noisy patterns, and also help to eliminate

meticulous features. This is calculated by:

L3 =
∑

i,j

√

(pi,j − pi+1,j)2 + (pi,j − pi,j+1)2 (2)

The L3 is expected to be reduced during the optimization

of the evasion pattern.

The overall designed loss function could be seen as follows:

L =
3

∑

i=1

wi × Li (3)

Each loss is granted with a weight to balance different evasion

pattern capabilities. During the optimization of evasion pat-

terns, the direction of gradient descent will lead to a reduction

of L. In our settings, the weights are set to 1, 0.1, and 0.5

respectively.

III. VERIFICATION EXPERIMENTS SETTING

A set of verification experiments is designed to compare the

effectiveness of evasion patterns trained with our method and

the baseline method in real-world attacks. As shown in Fig.

3 a), we prepare a set of physical evasion patterns that are

random noise pattern, baseline method pattern, and four dif-

ferent shape evasion patterns (square, circle, star and C-shape)

trained with our method (DL model: Yolo V2 object detector;

Evasion pattern resolution: 150*150; Training settings: start

learning rate 1e-2, batch size 12, 300 epochs) for comparison.

Then, as shown in Figure 3 b), we aim to test the performance

of evasion patterns on three posture scenarios:

• Direct (The pattern is placed horizontally on the clothes,

and the human directly facing the camera while moving)

• Oblique (the pattern is placed obliquely on the clothes,

and the human directly facing the camera while moving)

• Perspective (the pattern is placed obliquely on the clothes,

and the human facing the camera with perspective angles

while moving)

to control the variables for the comparison experiment, we

fixed the environment, character movement route and speed

during the camera data collection. Video data are recorded

with 2K resolution and 60 FPS. Videos are further processed

into image sets with a sampling rate of every 3 frames. Then,

we verify the evasion pattern performance with a pre-trained

Yolo V2 object detector with the threshold set to 0.7.

IV. VERIFICATION RESULTS

The verification result could be seen in Table. I. Although

pure random noise can steadily reduce the confidence score in

all three postures (avg confidence drops from 0.89 to 0.83),

it still exceeds the threshold which leads to non-effects on

the accuracy of the Yolo detector. The baseline method is

proven to be effective in direct posture experiments (accuracy

drops from 100% to 75.8%), but fails in other postures due

to the training process not considering the deformation and

perspective of evasion patterns.

The square shape evasion pattern shows the best perfor-

mance in all three postures. The best performance of square

shape pattern is in direct posture experiments (accuracy drops

from 100% to 43%), while in oblique and perspective ex-

periments still fairly effective (average accuracy drops from

99.7% to 70%). The other three evasion patterns in circle, star

and C-shape show similar performance in direct and oblique

experiments (average accuracy drops from 100% to 70%), but

not as good as the square shape evasion pattern in perspective

experiments.



V. CONCLUSIONS AND FUTURE WORK

Evasion attacks on deep neural networks (DNN) use ar-

tificial data to manipulate common CNN architectures to

create higher losses. This allows targets to evade detection

and/or classification and can have safety and security impact

across transportation value chain. Most of the existing work

in evasion attacks have focused on planar images in relatively

consistent lighting conditions.

Here, we build printable evasion patterns for fabric clothing.

These are for soft body humans, designed to be rotation,

stretch, and lighting invariant. We show that these are effective

and robust to different human poses. The preliminary research

here show that diverse patterns can poses a significant threat to

safety of autonomous vehicles by eroding detection accuracy

from 100% to 42-77% depending on posture.

From an adversarial perspective, we will in the future

develop more postures and crowd dynamics for training,

with widespread applications in both counter-surveillance and

providing adversarial training samples for surveillance. We

believe defence strategies [23] should be considered in future

research to improve transportation engineering’s safety in

this new area. Potential future work direction include using

Topological Data Analysis [24] to identify evasion features,

adversarial training, and detection strategies [25].
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