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Abstract—Unigram is a fundamental element of n-gram in 
natural language processing. However, unigrams collected from 
a natural language corpus are unsuitable for solving problems in 
the domain of computer programming languages. In this paper, 
we analyze the properties of unigrams collected from an ultra-
large source code repository. Specifically, we have collected 1.01 
billion unigrams from 0.7 million open source projects hosted at 
GitHub.com. By analyzing these unigrams, we have discovered 
statistical patterns regarding (1) how developers name variables, 
methods, and classes, and (2) how developers choose 
abbreviations. Our study describes a probabilistic model for 
solving a well-known problem in source code analysis: how to 
expand a given abbreviation to its original indented word. It 
shows that the unigrams collected from source code repositories 
are essential resources to solving the domain specific problems.  

Keywords—programming language; source code; n-gram; 
unigram; abbreviations; ultra-large-scale analysis 

 

I. INTRODUCTION  
Natural languages and computer programming languages 

are both used to communicate and solve real-world problems. 
In the domain of software engineering, solutions to real-world 
problems specified in requirements documentation are often 
expressed in a natural language. However, natural languages 
cannot be used for implementing the software solutions due to 
the ambiguity, either semantically or syntactically [1] [2]. The 
implementation of such solutions uses the source code, which 
can be written in various computer programming languages. 
Programming languages are formally constructed languages 
designed to communicate with a specific machine. For 
example, the following Python and Java source code describe a 
solution to printing guests’ names from a list of invited people.  
# Python 
class MyDemo: 

# print list of invited people 
    def display(self, people): 

        for guest_name in people : 
            print(guest_name) 
//Java 
public class Demo { 
    // print the names of the guests  
    // from a list of invited people  
    void printGuest(ArraryList<String> ipl){ 
        for(string gstName :  ipl){ 
            println(gstName) 
    }}  

Nevertheless, from a linguistic perspective and based on 
Chomsky’s hierarchy for languages [3], programming 
languages are similar to natural languages since most of the 
grammatical features of both types of languages can be 
represented using a context-free grammar. In addition, 
developers use the vocabularies of a natural language, i.e., 
English words, including print, guest, invited, and 
name, to name identifiers, such as variables, methods, and 
classes. The terms variable, method, and class are formally 
defined constructs in objected-oriented languages. Reusing 
English words in source code ensures the readability of source 
code because (1) structured programming [4] requires 
meaningful names for identifiers (2) English words are 
meaningful for communication in the real-world (3) English 
names persevere the same or similar meanings in both real-
world and the domain of software engineering. In the previous 
sample code, developers use the English words guest and 
display to name a variable and a method for displaying 
information.  

In practice, naming program constructs is more 
complicated than simply picking up English words: (1) The 
names of the constructs are often mixtures of a single English 
word, multiple English words, and abbreviations. For example, 
the variable name gstName consists of one abbreviation gst 
and one English word name to represent the name of a guest. 
(2) The same English word used in the domain of natural 
language may represent different meaning in programming 
languages, for example, the word class. The difference 
impacts the understandability of source code. Regardless of the 
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syntactical and semantical complexity of the constructs’ 
names, its elements mainly consist of one or more unigrams. 
Each unigram is either an English word or an English 
abbreviation.  Therefore, we are interested in investigating the 
properties of unigrams in computer programs, aiming to 
understand: (1) how developers name variables, methods and 
classes and (2) how developers choose abbreviations. 

We conduct our study using the variable, method and class 
names extracted from the entire source code repository hosted 
on GitHub.com [5] during the year of 2015. The GitHub 
repository contains 699,331 open source projects [6]. Each 
project can be written in different programming languages. The 
contributions of the paper are as follows:  

(1) This is the first attempt to analyze the properties of 
unigrams in computer programs at such an ultra-large 
scale. 

(2) The unigrams collected from the source code repository in 
this study can solve such domain specific problem, as 
expanding name abbreviations using unigram models. 

(3) The entire corpus, including unigrams, abbreviations, and 
results, are available online. It provides a useful 
benchmark for future research.  

The rest of this paper is organized as follows: Section II 
reviews the related work. Section III describes the process of 
unigram collection from GitHub. Section IV analyzes the 
properties of unigrams. Section V presents the empirical study. 
Section VI concludes this paper. 

II. RELATED WORK 
An n-gram is a contiguous sequence of n items from a 

given sequence of text.  N-grams, particularly unigrams and 
bigrams, collected from texts are extensively used in text 
mining and natural language processing, including machine 
translation, speech recognition, spelling correction, etc. 
Linguistics Data Consortium has published the n-gram data in 
2006, including 16 million of unigrams and 315 bigrams 
collected from one Terabyte web collection [7]. The Google N-
gram Viewer [8] is an online tool that charts frequencies of 
given unigrams or bigrams found in printed sources between 
the years 1500 and 2008.  

Although n-gram analysis has been introduced in other 
domains, n-gram analysis has not been well-studied in the 
context of programming languages and specifically for the 
analysis of the naming conventions of identifiers. Therefore, 
there is very little research done that is closely related to our 
proposed work. Allamanis and Sutton [9] use a trigram 
language model based on a corpus of 14,807 Java programs to 
come up with various metrics including code complexity and 
variable originality. On the other hand, the authors use n-grams 
on single projects to suggest proper coding conventions such as 
formatting and identifier naming [10]. Allamanis et al. [11] use 
a neural logbilinear model to improve existing code by 
suggesting names for methods and classes. Finally, Raychev et 
al. [12] introduce a statistical model based on conditional 
random fields (CRFs) to predict the types of variable names 
and the names of variables in obfuscated JavaScript code.  

III. UNIGRAM COLLECTION 
Variables, methods, and classes are essential to construct 

types of source code. The names of these constructs are 
categorized into two groups shown below:  

• Unigram name: a name of construct that consists of a 
single unigram, which is either an English word or an 
abbreviation of an English word. They are referred to 
as unigram English names and unigram abbreviation 
names, respectively. For example, a single English 
word display can be used for naming a method; the 
abbreviation demo is used to name a class (see Table 
1).  Thus, the word display is a unigram English 
name and demo is a unigram abbreviation name.  

• Multigram name: a name of a construct that consists of 
multiple unigrams. For example, gstName is a 
multigram name, which consists of two unigrams gst 
and name. The unigram gst is the abbreviation of the 
English word guest.  Other examples are shown in 
Table 1.  

Table 1. Categories and examples of variable, method, and class 
names 

 Variable Method Class 
Unigram name guest, people, gst display demo 

Multigram name guest_name, gstName, 
ipl 

printGuest  myDemo 

We use unigrams collected from source code repository, 
i.e., GitHub, to analyze patterns of unigram names and 
multigram names. Figure 1 shows the process of unigram 
collection and analysis.  

 
Figure 1. Block diagram of unigram collection and analysis 

The process mainly consists of three components: 

• Boa Framework [13]. It is a language and 
infrastructure for extracting syntactic information from 
source code in GitHub, including variable, method, 
and class names. The framework converts source code 
to AST trees, and then a visitor traverses the trees to 
collect names. 

• Word segmentation [14]. This phase determines where 
the word boundaries are for a given multigram name. 
Processing natural language, such as English, doesn’t 
normally need to perform word segmentation because 
words in English sentences are most of the time 
separated by white spaces. However, a construct’s 
name often is a multigram name without spaces. For 
example variable names such as username and 
user_name require segmentation.  
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• Unigram analysis. This phase utilizes Apache Hadoop 
framework [15] to study the properties of unigrams 
collected from source code. The properties will be used 
to solve domain specific problems, e.g., expanding 
abbreviations used in source code, which will be 
covered in section V. 

Table 2 shows: (1) 0.70 billion constructs are extracted 
from nearly 0.7 million projects. (2) Over one billion unigrams 
are collected from the constructs. 

Table 2. The total number of constructs, unigrams extracted from 
GitHub (in millions) 

 Variable  Method Class Total
The number of constructs 419 161 21 701 

The number of unigrams extracted 
from constructs 

636 396 57 1069 

IV. ANALYSIS OF UNIGRAMS 
Unigrams collected from the GitHub source code 

repository are different from unigrams collected from natural 
language corpus, i.e., news archives. In this section, we 
compute the most commonly used English words and 
abbreviations in the source code, and then we reveal two 
important statistical properties of abbreviations.  

A. Most Commonly Used English Words in Source Code  
We have extracted the most commonly used English words 

from identifier names: variable, method, and class names, 
respectively.  Table 3 shows the top 70 most frequently used 
English words for naming variables from 636 million unigrams 
extracted from variable names.   

Table 3. The top 60 most frequently used English words for naming 
variables  

Word Freq
. (k) 

Word Freq
. (k) 

Word Freq
. (k) 

Word Freq
. (k) 

name  9865 node  2306 class  1572 respons
e  

1333 

id 7920 count  2301 parent  1560 code  1320 
value  7354 item  2255 element  1550 line  1306 
type  5847 field  2239 length  1549 action  1292 
key  4235 messag

e  
2238 source  1534 height  1286 

result  3983 to  2228 string  1533 instance 1282 
data  3681 view  2206 input  1515 current  1282 

index  3680 start  2179 default  1510 log  1259 
contex

t  
3399 state  2078 target  1501 test  1249 

file  3155 event  1941 max  1482 number  1227 
list  3115 time  1935 service  1446 listener  1220 
in  3055 map  1909 offset  1410 column  1218 

text  2590 out  1864 end  1393 content  1210 
new  2530 request  1758 width  1387 label  1204 
size  2502 user  1643 date  1382 last  1191 
is  2390 info 1640 tag  1371 buffer  1175 

path  2334 object  1613 serial 
versioni

d  

1342 error  1009 

Table 4 shows that the same English words are ranked 
differently in GitHub and natural language corpus. For 
example, the English word name is ranked the first in GitHub 
and the 108th in the natural language corpus [16], respectively. 
Similarly, we have computed the top 100 most frequently used 
English words for naming methods and classes (see Appendix).  

Table 4. Different word frequency ranks in source code (SC) and natural 
language corpus (NC) 

Word Ranking Word Ranking Word Ranking 
SC NC SC NC SC NC 

name 1 108 node 18 3407 class 35 388 
id 2 654 count 19 2011 parent 36 1771 

value 3 1146 item 20 214 element 37 2222 
type 4 253 field 21 574 length 38 1155 
key 5 569 message 22 149 source 39 419 

result 6 611 to 23 4 string 40 1567 
data 7 131 view 24 79 input 41 1438 

index 8 276 start 25 474 default 42 1538
context 9 2022 state 26 111 target 43 1584 

file 10 281 event 27 624 max 44 1428 
list 11 107 time 28 50 service 45 97 
in 12 6 map 29 197 offset 46 5179 

text 13 349 out 30 60 end 47 317 
new 14 27 request 31 627 width 48 3060 
size 15 337 user 32 185 date 49 102 
is 16 8 info 33 160 tag 50 2454 

path 17 1790 object 34 1150 serial 
versionid 

51 - 

 

Without surprise, we have observed the following: 

(1) Over 95% of the English words for naming variables 
and classes are nouns.   

(2) 53% of English words are used for naming both 
variables and classes.  

(3) Among all the top 100 most frequently English words 
used for naming variables, 42% of them is used for 
naming methods, 34% of them are verbs, and 12% are 
prepositions.  It is consistent with the purpose of the 
method construct in object-oriented programming: the 
manipulation of variables.  

B. Patterns of Choosing Abbreviations in Source Code 
In this subsection, we will observe patterns between 

abbreviations and their original intended English words from 
small examples, develop an algorithm to extract all possible 
abbreviation and English word pairs from the ultra-large-scale 
source code repository. Table 5 shows a small set of 
applications used to observe abbreviation patterns. They were 
selected because of their relative popularity, diversity in terms 
of development maturity and application domain, and 
availability publicly in open source software repositories.  

Table 5. Subject programs used in our experiments to observe patterns 
[17]  

Program Version KLOC Description 
JasperReports 2.0.4 34.04 Dynamic content  

JFreeChart 1.0.19 57.83 Data rep. 
SoapUI 2.0.1 30.48 Web service 
Freecol 0.7.3 27.21 Game 

GanttProject 2.7 28.30 Scheduling 
Junit 4.4 0.948 Software dev. 

Avuze 5.5.0.0 163.53 Online file share 
Hibernate 2.1.8 21.49 Database 

JEdit 4.2 32.60 Text editor 
DataCraw 3.4.5 20.20 Data management 

Xholon 0.7 23.39 Simulation 
Jsch 0.1.51 7.39 Security 

Domination 1.0.9.7 8.32 Game 
JMencode 0.64 1.33 Video encoding 
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We review the source code and have observed the 

following patterns (shown in Table 6) between abbreviations 
and their original intended English words: 

• Pattern one: There are mainly two types of strategies for 
choosing abbreviations. (a) Consecutive Characters 
Strategy, which uses the first n consecutive characters as 
the abbreviation for a given English word and (b) 
Nonconsecutive Characters Strategy, which uses n 
nonconsecutive characters as the abbreviation. The two 
different strategies produce two different abbreviation 
types: Consecutive Characters Abbreviation (CCA) and 
Nonconsecutive Characters Abbreviation (NCA). 

• Pattern two: The first letter matters. Regardless of the 
different type of abbreviation choosing strategies, the first 
letter of the abbreviation is always the first letter of its 
original intended English word. 

• Pattern three: The order of the characters in abbreviations 
and its intended English word is consistent. Regardless of 
the different types of abbreviations, developers choose the 
characters from left to right from the intended English 
word as its abbreviation. It is evident for CCA because it 
uses n-consecutive characters from the original intended 
English word as its abbreviation. For example, using str 
as the abbreviation for the word string. For NCA, the 
abbreviation src is picked up from the word source at 
positions 0, 3, and 4.  

• Pattern four: The majority of abbreviations use less than 
four characters to represent unigram variable names. We 
will verify the pattern in section C once we extract all 
abbreviations and their intended words. 

Table 6. Observed patterns between abbreviations and their original 
intended English words 

Abbreviation Type n = 1 n = 2 
Name Abbr. Name Abbr. 

n-Consecutive Characters 
as Abbreviation (CCA) 

node n exception ex 
value v event ev 
list l iterator it 

handler h extent ex 
n-Nonconsecutive 

Characters as Abbreviation 
(NCA) 

  map mp 
  button bt 
  load ld 
  list ls 

Abbreviation Type n = 3 n = 4 n = 3 n = 4
Name Abbr. Name Abbr.

n-Consecutive Characters 
as Abbreviation (CCA) 

string str string str 
buffer buf buffer buf 
object obj object obj 
array arr array arr 

n-Nonconsecutive 
Characters as Abbreviation 

(NCA) 

source src source src 
event evt event evt 

message msg message msg 
button btn button btn 

C. Algorithms for Extracting Abbreviations  
Once we have discovered these abbreviations patterns, we 

are interested in developing algorithms to extract all 
abbreviations along with their intended words from GitHub. 
Because nearly 60% of unigrams are used for naming variables 
(see Table 2), we would like to extract abbreviations for 

naming variables. The steps to generate such an abbreviation 
list are described as follows:  

1. Extract all pairs (variable name, the type of 
the variable name) from GitHub. They are 
candidates of pairs for extracting an English word and its 
abbreviation. The basic assumption to compute 
abbreviations is: when naming a variable, developers more 
likely to choose an abbreviation based on the type of the 
variable. The type can be a class, an interface, a primitive, 
or an array. For example, we may use the abbreviations n, 
it, and i, to represent the instance of Node class, 
Iterator interface, and integer primitive, 
respectively.  

2. Segment the variable name and variable name type in each 
pair. The step produces two unigram sets. Each set 
contains one or more unigrams separated from the variable 
name and the variable names type, respectively.  

3. Find the abbreviations. Pick w and a from the two unigram 
sets, respectively, and then count the frequency of the pair 
(w,a) if isAbbre(w, a)returns true. Note that, 
based on our experience, if a is an abbreviation of w, a is a 
set. For example, the letter n can be the abbreviation of 
classes Node and Number. On the other hand, a type can 
be represented by multiple abbreviations. For example, the 
class Node can be represented by n and nd. It depends on 
individual developer’s preference. The function isAbbre 
checks the patterns one and four, and then calls a function 
isConsistent, which implements the first three 
patterns recursively.  
def isAbbre(w, a): 
  if len(w)<= len(a): 
      return False 
  if len(a)<1: 
      return False 
  if len(a)==1 and len(w)>1 : 
      return w[0] == a[0] 
  else: 
      return w[0] == a[0] and \ 
 isConsistent (w[1:], a[1:])  
 
def isConsistent(w, a): 
  if (len(a)==0): 
      return True 
  if len(w)>0: 
      if w[0]==a[0] : 
          return isConsistent (w[1:], a[1:]) 
      elif (w[0]!=a[0]): 
          return isConsistent (w[1:], a) 
  return False 

D. Top Abbreviation Names 
We have extracted 62 million abbreviations from 419 

million variable names. It indicates nearly 15% of variable 
names use abbreviations. Table 7 shows the top 100 most 
frequently used abbreviations for naming variables. The results 
are strongly consistent with developers’ naming behaviors.  For 
example, as a developer, we often use i and e for 
representing int and exception, respectively. Specifically, 
we have made the following conclusions based on the extracted 
abbreviations from the GitHub repository: 
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• Only five abbreviations have length greater than four 
characters among the top 100 most frequently used 
abbreviations for naming variables. The conclusion is 
consistent with our observation patterns four. 

• Abbreviations are widely used for representing the 
compressed information. Nearly 15% of variable 
names use abbreviations.  

• Some variable names, such as ioexception, 
stringbuffer, and bytebuffer are considered 
as unigrams in [16] because they have relatively high 
frequencies in natural language corpus and contain no 
space. For example, ioexception is ranked the 
35661th with a frequency of 595675 in [16].   

• Developers may choose different abbreviations for a 
given word. For instance, for the most frequently used 
unigram int, developers may pick i or in. However, 
developers are more likely to use i as abbreviation 
because the pair (int, i) has a higher frequency 
than (int, in).   

• The same abbreviation can be used for representing 
different words, e.g., in is used for presenting either 
int or input. For a given abbreviation in, it is more 
likely to represent input if we consider the frequency 
as the only criteria to determine abbreviations. 

Table 7. The top 100 most frequently used abbreviations for naming variables 
Abb. Word Freq. 

(k) 
Abb. Word Freq. 

(k) 
Abb. Word Freq. 

(k) 
Abb.  Word. Freq. 

(k) 
i  int 9878 f float 341 m map 129 rect rectangle 91 
e exception 5584 ctx context 341 e element 127 it int 87 
s string 1575 conn connection 322 cal calendar 123 caps capabilities 87 

str string 1069 rs result 308 m method 120 mgr manager 86 
l long 1061 f file 297 l list 120 f field 85 

obj object 1037 msg message 294 re recognition 119 cmd command 85 
ex exception 937 b boolean 273 q query 111 cls class 81 
o object 781 ioe ioexception 263 c collection 108 img image 80 
e event 561 sb stringbuffer 253 e encoding 108 s session 79 
it iterator 535 i iterator 245 t thread 106 params parameters 78 
in input 522 n node 233 btn button 104 br bufferedreader 77 
v view 522 db database 233 elem element 104 comp component 77 

out output 492 attrs attributeset 217 c cursor 103 h handler 77 
evt event 487 props properties 210 l listener 103 e entity 77 
in int 470 fs filesystem 205 m manager 102 m message 76 
log logger 437 prot protocol 199 con connection 101 env environment 76 
doc document 436 p point 193 attr attribute 100 m matcher 76 
conf configuration 423 config configuration 191 app application 99 loc location 75 

g graphics 420 ch char 176 prefs preferences 97 cert certificate 74 
b byte 414 e entry 171 buffer bytebuffer 96 v visitor 74 
t throwable 401 stmt statement 153 t type 92 c context 73 
c char 399 req request 152 c component 92 p player 73 
sb stringbuilder 377 c class 150 e enumeration 92 addr address 73 
d double 372 v vector 144 e error 91 a array 72 

iter iterator 346 ref reference 131 sql sqlexception 91 nfe numberformatexception 71 

 
E. Statistical Properties of Abbreviations  

When developers decide to use an abbreviation to represent 
its original intended word, they need to make two decisions: 
(1) determine which type of abbreviation they want to choose, 
either CCA or NCA (2) determine how much effort they want 
to save if abbreviations are used compared to original intended 
English words. Two statistical properties of abbreviations need 
to be studied to understand the decision process:  

• The percentage of CCA versus NCA is used to help 
us understand how likely developers are to choose 
CCA or NCA. The percentage of CCA and NCA is 
the probability of developers to choose CCA and 
NCA for a given word w. Formally, we compute 
P(E), where E is an event of choosing an 
abbreviation for w. 

• The Typing Effort Saving (TES). TES computes how 
much effort developers can save if abbreviations are 

used. Formally, the TES value for a given pair (a, 
w)is defined as: 

������ �	 
 � �

������
�
	

�������
�
	








��	 

For example, TES(i, int)=66.67%, and 
TES(in, int)=33.33%. The range of the TES is 
between 0 and 1, excluding 0 and 1. Zero means no 
abbreviation is used.   

Table 8 shows the total number of 62253k abbreviations 
used for naming variable names.  Nearly 84% of the 
abbreviations are CCA, i.e., P(E=CCA)=84%. The number of 
unique abbreviations is 103k. Over 62% of these unique 
abbreviations are CCA. Figure 2 shows the frequency 
distribution of TES. The x-axis represents the ratio of TES. 
The y-axis is the frequency of TES measured in percentage. 
For example, let X be the event of computing TES(a,w), then 
the frequency of TES(i,int) is 
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P(X=TES(i,int))=P(X=66.67%)= 19%. Overall, this 
figure indicates that 75% of the abbreviations have a TES 
between 50% and 89%. It implies that developers often use no 
more than the half size of the English word as abbreviations.  

Table 8. The total number abbreviations extracted from variables  
Abbreviation Type Unique Abb. (k)  Total Abb. (k) 

# % # %
n-Consecutive Characters 

Abbreviation (CCA) 
64 62.17 52234 83.91 

n-Nonconsecutive Characters 
Abbreviation (NCA) 

39 37.83 10019 16.09 

Total 103  62253  

 

 
Figure 2. Distribution of TES 

 

It is worth noting that one can argue that abbreviation 
convention [18] [19]is another reason to naming abbreviation, 
e.g., the string re should be used as the abbreviation of the 
word result due to the convention. However, there are 
several reason not to consider convention during programming: 

(1) Unless there is a wide-accepted list of standard 
abbreviations in source code, such as int and 
integer, it is challenge for developers to think of 
abbreviation convention during development. For the 
re example, other people may use the string res as 
the abbreviation for result, as the string res has 
more readability than re.   Others may also argue the 
string res can only be used for representing word 
response.  

(2) The four patterns have already formed the foundation 
for abbreviation convention.  

(3) The abbreviation ranking in Table 7 can be used as a 
reference for a standard abbreviation convention. 

F. Size Distribution of Multigram Names 
Besides unigrams, developers often use multigrams to 

name identifiers (constructs) to improve the readability of their 
code. The size of a multigram is the number of the unigrams 
that the multigram consists of. The size distribution of 
multigrams indicates how likely developers name constructs 
with various sizes. 

 To compute the size of a multigram, we first utilize a word 
segmentation algorithm to break the multigram into segments, 
and then we simply count the number of the segments. Figure 3 
shows the size distribution of variable names, method names, 
and class names. The x-axis is the size of a name. The y-axis is 
the frequency of the name size in percentage. The size 

distribution is generated using the 701 million names that are 
shown in Table 1.  The figure shows: 

• The most likely choice, i.e., with the probability of 65%, 
developers use a unigram to name a variable.  

• 34% of variable names are multigrams. 

• The majority, i.e., 69%, of multigram variable names has 
the size of two. 

• When naming methods and classes, developers often use, 
i.e., with the probability of over 80%, multigrams. 

• There is no significant difference regarding size when 
naming methods and classes.  

 
Figure 3. Size distribution of variable, method, and class names 

 

V. EMPIRICAL STUDY: ABBREVIATION EXPANSION USING 
UNIGRAMS 

Although the use of abbreviations can help developers to 
implement faster, it may create confusion in the source code 
and therefore a decrease in program readability. For example, 
the variable abbreviation v in Table 7 can be interpreted as 
view (522k), vector (144 k), or visitor (74k). Different 
approaches [20] have been proposed to expand abbreviations, 
and however, these approaches have not considered the 
properties of program languages in the context of linguistics. In 
this empirical study, we demonstrate that utilizing the 
properties of unigrams collected from the ultra-large scale 
source code repository can solve domain specific problem, 
such as expanding the abbreviations used in a source code.  

Table 9. Example candidate words for abbreviation re and their 
frequencies    

Candidate Frequency in unigram 
SC NC 

# % # % 
result 3,983,282 0.626 127,425,045 0.022 

request 1,758,393 0.277 124,620,318 0.021 
response 1,333,290 0.210 84,065,293 0.014 
resource 822,922 0.129 99,964,083 0.017 

read 443,324 0.070 322,331,766 0.055 
repository 211,294 0.033 8,892,664 0.002 

rule 531,175 0.084 97,658,641 0.017 
range 374,764 0.059 128,314,924 0.022 

A. A Probabilistic Language Model to Expand Abbreviations 
Assume that we have a task that needs to figure out what 

the abbreviation re stands for. Based on the patterns of 
English words and their abbreviations, Table 9 lists eight 
examples of possible words that match the abbreviation 
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computed from the source code and natural language corpus 
[16]. These words are referred to as the candidates of the 
abbreviation. Table 9 also includes the candidates’ 
corresponding frequencies in two sets of unigrams, 
respectively.  Note that the total number of unigrams in the 
source code and natural language corpus are 636 million and 
588,118 million, respectively.   

If only considering the frequency, we choose the English 
words result and read as the intended words in the domain 
of programming and the natural languages, respectively. They 
have the highest probability regarding frequency. However, 
these results lack compelling evidence. We use the Naive 
Bayes probabilistic model instead to solve the uncertain 
problem. Formally, the problem can be described as follows: 
given an abbreviation, a, determine what word c was the most 
likely original word. For example, if a is re, then request 
is c, which is the most likely word in the domain of 
programming languages. The language model for choosing the 
best candidate among all candidates is shown as follows:  

argmaxc P(c | a) = argmxc P(a  | c) * P (c)                    (2)  

where  P(c) is the probability of c, the candidate English 
word in the source code unigrams. 

argmaxc P(c | a): the highest  P(c | a). 

P(a | c) is the probability that a developer will use the 
abbreviation a to represent c.  It is called the abbreviation 
representation model. The representation model is based on the 
frequency distribution of TES ratio that is shown in Figure 2, 
and the distribution of abbreviation types (which we will 
discuss in details in subsection C). Note that experts may 
disagree with the abbreviation representation model. Therefore 
there is no complete model. We only use the model to 
demonstrate the importance of the unigrams that are generated 
from source code. In other words, the properties of unigrams 
can help us to solve domain specific problems.   

B. Search Candidates for Language Model 
It is unwise to pick up all English words in the unigrams 

that match the abbreviation patterns as candidates because 
there are too many possible matches. For example, the 
candidates for the given abbreviation re will include all the 
English words that start with r and contain e (consecutively 
or nonconsecutively). In fact, it makes more senses to pick up 
candidates based on the locations of the given abbreviation in 
the source code. There are two approaches to search 
candidates: static and dynamic approaches. Static approach 
searches for candidates within a certain radius of the 
abbreviation, e.g., the method or class in which the 
abbreviation is used. Dynamic approach generates the data 
flow diagrams or control flow diagrams from source code first 
and then searches for the candidates within the radius of the 
abbreviations in these diagrams. Once the candidates search 
radius is determined for the given abbreviation a, we pick each 
English word c in the radius, using isAbbre(c, a) to test 
if the c is candidate.  For example, assume we have chosen the 
static approach where the method is the candidate search radius 
for the given abbreviation re. Table 10 contains ten candidate 
unigrams for the abbreviation re in a method. The first eight 
unigrams are CCA and the last two are NCA.  

C. Compute the Best Candidates as the Expanded Word 
Our goal is to compute argmaxcP(c|a). The challenge 

of computing argmaxcP(c|a) is to compute P(a|c) 
basedon formula 2.  We could simply use the frequency of pair 
(a,c) to compute P(a|c). However, the pair (a,c) may 
not exist. Hence we use the two statistical properties of 
abbreviation that were discussed earlier to generalize the 
process of calculating P(a |c). The properties describe how 
developers choose an abbreviation for a given English word. 
Formally,   

P(a|c)=P(E=AbbType)×P(X=TES(a,c))                       (3) 

Table 10.  Computing the best candidate for expanding abbreviation re using different unigrams generated from source code and natural language 
corpus  
Abbr. 

(a) 
Candidate 
unigram 

(c)  

a | c  Abb. 
Type 

P(AbbType) TES 
(a,  c) 

P 
(TES(a,  c)) 

p 
(a | c) 

p(c) P(c|a) =P(a | c) *P(c) 
SC NC SC NC 

re result  re | result CCA 0.84 0.67 0.19 0.1596 0.6263 0.0217 0.09995748 0.00346332 
re request re | request CCA 0.84 0.71 0.2 0.168 0.2765 0.0212 0.046452 0.0035616 
re response re | response CCA 0.84 0.75 0.2 0.168 0.2097 0.0143 0.0352296 0.0024024 
re resource re | resource CCA 0.84 0.75 0.2 0.168 0.1294 0.017 0.0217392 0.0028560 
re reader re | reader CCA 0.84 0.67 0.19 0.1596 0.0957 0.0087 0.01527372 0.00138852 
re read re | read CCA 0.84 0.5 0.14 0.1176 0.0697 0.0548 0.00819672 0.00644448 
re results re | results CCA 0.84 0.71 0.2 0.168 0.0624 0.0046 0.0104832 0.0007728 
re repository re | repository CCA 0.84 0.8 0.22 0.1848 0.0332 0.0015 0.00613536 0.0002772 
re rule re |rule NCA 0.16 0.5 0.14 0.0224 0.0835 0.0167 0.0018704 0.00037408 
re range re |range NCA 0.16 0.67 0.19 0.0304 0.0589 0.0218 0.00179056 0.00066272 

Bold Numbers: Top candidates    Italic Numbers: Different ranks between P(c) and P(c|a) 

 
Table 10 shows the expanding of abbreviations using 

different unigrams. Our observations are as follows: 

• The best candidates for the given abbreviation re may be 
different in different language domains. The words 
results and read have the highest probabilities of 
being the original English words in source code and 
natural language corpus, respectively. Bold numbers are 

the highest probabilities of candidates in source and 
natural language corpus, respectively. 

• Regardless of the type of language, the frequency of a 
unigram is an essential fact in determining the best 
candidate. For example, both of the best candidates for re 
have the highest frequencies among all candidates in their 
corresponding unigram models. 
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• TES determines the best candidate if two of the same type 
of candidates have similar frequency in its language 
domains. For example, the two words read and 
results in the programming language domain are both 
CCA, the word results is considered as the better 
candidate even the word read has a slightly higher 
frequency than results does.  Similarly, the word 
request is a better candidate than result in the 
domain of natural language (see Italic numbers in Table 
9).  

Note that (1) we only consider expanding a given 
abbreviation that is chosen from a simple English word due to 
the page limitation. The comprehensive approach to expanding 
other types of abbreviations, including abbreviations selected 
from multigram names, as well as the empirical study will be 
addressed in the future work and (2) we only demonstrate the 
importance of utilizing the properties of unigrams to solve 
well-known problems, such as understanding abbreviations. 
Empirical study regarding the comparison of different 
approaches for expanding abbreviations will be included in the 
future work. 

VI. CONCLUSION 
Unigrams collected from source code repository are useful 

for dealing software development problems, such as 
understanding the behaviors of developers and expanding 
abbreviations to improve the code readability. We have 
extracted 0.70 billion names from nearly 0.7 million projects. 
The names include variable, method, and class names. A total 
of 1.01 billion unigrams are generated from these constructs. In 
addition, 62 million abbreviations are extracted from 419 
million variable names. To demonstrate the importance of 
unigrams, we have analyzed the patterns of how developers 
choose abbreviations, and then, we have used the properties of 
unigrams to expand abbreviations to original English words. 
The completed analysis results, including unigrams collected 
from variable, method, and class names, as well as 
abbreviations, can be accessed at https://goo.gl/HUz06W. The 
raw data extracted from GitHub can be accessed at 
https://goo.gl/nxzqHd. All variable names, method names, and 
class names are stored under the folders named variables, 
methodName, and className. Concerning the future work, 
we plan to expand our approach to collect and analyze bigrams 
and trigrams from source code repository. We also plan to 
conduct a larger empirical study to expand various types of 
abbreviations. 
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