
Statistical Unigram Analysis for Source Code
Repository

Weifeng Xu
Department of Computer Science

Bowie State University
Bowie, MD, USA

wxu@bowiestate.edu

Dianxiang Xu
Department of Computer Science

Boise State University
Boise, ID, USA

dianxiangxu@boisestate.edu

Omar El Ariss
Department of Computer Science

The Pennsylvania State University-
Harrisburg

Middletown, PA, USA
oue1@psu.edu

Yunkai Liu
Department of Computer &

Information Science
Gannon University

Erie, PA, USA
liu006@gannon.edu

Abdulrahman Alatawi
Department of Computer Science

Bowie State University
Bowie, MD, USA

Alatawi1116@students.bowiestate.e
du

Abstract—Unigram is a fundamental element of n-gram in
natural language processing. However, unigrams collected from
a natural language corpus are unsuitable for solving problems in
the domain of computer programming languages. In this paper,
we analyze the properties of unigrams collected from an ultra-
large source code repository. Specifically, we have collected 1.01
billion unigrams from 0.7 million open source projects hosted at
GitHub.com. By analyzing these unigrams, we have discovered
statistical patterns regarding (1) how developers name variables,
methods, and classes, and (2) how developers choose
abbreviations. Our study describes a probabilistic model for
solving a well-known problem in source code analysis: how to
expand a given abbreviation to its original indented word. It
shows that the unigrams collected from source code repositories
are essential resources to solving the domain specific problems.

Keywords—programming language; source code; n-gram;
unigram; abbreviations; ultra-large-scale analysis

I. INTRODUCTION
Natural languages and computer programming languages

are both used to communicate and solve real-world problems.
In the domain of software engineering, solutions to real-world
problems specified in requirements documentation are often
expressed in a natural language. However, natural languages
cannot be used for implementing the software solutions due to
the ambiguity, either semantically or syntactically [1] [2]. The
implementation of such solutions uses the source code, which
can be written in various computer programming languages.
Programming languages are formally constructed languages
designed to communicate with a specific machine. For
example, the following Python and Java source code describe a
solution to printing guests’ names from a list of invited people.
Python
class MyDemo:

print list of invited people
 def display(self, people):

 for guest_name in people :
 print(guest_name)
//Java
public class Demo {
 // print the names of the guests
 // from a list of invited people
 void printGuest(ArraryList<String> ipl){
 for(string gstName : ipl){
 println(gstName)
 }}

Nevertheless, from a linguistic perspective and based on
Chomsky’s hierarchy for languages [3], programming
languages are similar to natural languages since most of the
grammatical features of both types of languages can be
represented using a context-free grammar. In addition,
developers use the vocabularies of a natural language, i.e.,
English words, including print, guest, invited, and
name, to name identifiers, such as variables, methods, and
classes. The terms variable, method, and class are formally
defined constructs in objected-oriented languages. Reusing
English words in source code ensures the readability of source
code because (1) structured programming [4] requires
meaningful names for identifiers (2) English words are
meaningful for communication in the real-world (3) English
names persevere the same or similar meanings in both real-
world and the domain of software engineering. In the previous
sample code, developers use the English words guest and
display to name a variable and a method for displaying
information.

In practice, naming program constructs is more
complicated than simply picking up English words: (1) The
names of the constructs are often mixtures of a single English
word, multiple English words, and abbreviations. For example,
the variable name gstName consists of one abbreviation gst
and one English word name to represent the name of a guest.
(2) The same English word used in the domain of natural
language may represent different meaning in programming
languages, for example, the word class. The difference
impacts the understandability of source code. Regardless of the

2017 IEEE Third International Conference on Multimedia Big Data

978-1-5090-6549-3/17 $31.00 © 2017 IEEE

DOI 10.1109/BigMM.2017.13

1

syntactical and semantical complexity of the constructs’
names, its elements mainly consist of one or more unigrams.
Each unigram is either an English word or an English
abbreviation. Therefore, we are interested in investigating the
properties of unigrams in computer programs, aiming to
understand: (1) how developers name variables, methods and
classes and (2) how developers choose abbreviations.

We conduct our study using the variable, method and class
names extracted from the entire source code repository hosted
on GitHub.com [5] during the year of 2015. The GitHub
repository contains 699,331 open source projects [6]. Each
project can be written in different programming languages. The
contributions of the paper are as follows:

(1) This is the first attempt to analyze the properties of
unigrams in computer programs at such an ultra-large
scale.

(2) The unigrams collected from the source code repository in
this study can solve such domain specific problem, as
expanding name abbreviations using unigram models.

(3) The entire corpus, including unigrams, abbreviations, and
results, are available online. It provides a useful
benchmark for future research.

The rest of this paper is organized as follows: Section II
reviews the related work. Section III describes the process of
unigram collection from GitHub. Section IV analyzes the
properties of unigrams. Section V presents the empirical study.
Section VI concludes this paper.

II. RELATED WORK
An n-gram is a contiguous sequence of n items from a

given sequence of text. N-grams, particularly unigrams and
bigrams, collected from texts are extensively used in text
mining and natural language processing, including machine
translation, speech recognition, spelling correction, etc.
Linguistics Data Consortium has published the n-gram data in
2006, including 16 million of unigrams and 315 bigrams
collected from one Terabyte web collection [7]. The Google N-
gram Viewer [8] is an online tool that charts frequencies of
given unigrams or bigrams found in printed sources between
the years 1500 and 2008.

Although n-gram analysis has been introduced in other
domains, n-gram analysis has not been well-studied in the
context of programming languages and specifically for the
analysis of the naming conventions of identifiers. Therefore,
there is very little research done that is closely related to our
proposed work. Allamanis and Sutton [9] use a trigram
language model based on a corpus of 14,807 Java programs to
come up with various metrics including code complexity and
variable originality. On the other hand, the authors use n-grams
on single projects to suggest proper coding conventions such as
formatting and identifier naming [10]. Allamanis et al. [11] use
a neural logbilinear model to improve existing code by
suggesting names for methods and classes. Finally, Raychev et
al. [12] introduce a statistical model based on conditional
random fields (CRFs) to predict the types of variable names
and the names of variables in obfuscated JavaScript code.

III. UNIGRAM COLLECTION
Variables, methods, and classes are essential to construct

types of source code. The names of these constructs are
categorized into two groups shown below:

• Unigram name: a name of construct that consists of a
single unigram, which is either an English word or an
abbreviation of an English word. They are referred to
as unigram English names and unigram abbreviation
names, respectively. For example, a single English
word display can be used for naming a method; the
abbreviation demo is used to name a class (see Table
1). Thus, the word display is a unigram English
name and demo is a unigram abbreviation name.

• Multigram name: a name of a construct that consists of
multiple unigrams. For example, gstName is a
multigram name, which consists of two unigrams gst
and name. The unigram gst is the abbreviation of the
English word guest. Other examples are shown in
Table 1.

Table 1. Categories and examples of variable, method, and class
names

 Variable Method Class
Unigram name guest, people, gst display demo

Multigram name guest_name, gstName,
ipl

printGuest myDemo

We use unigrams collected from source code repository,
i.e., GitHub, to analyze patterns of unigram names and
multigram names. Figure 1 shows the process of unigram
collection and analysis.

Figure 1. Block diagram of unigram collection and analysis

The process mainly consists of three components:

• Boa Framework [13]. It is a language and
infrastructure for extracting syntactic information from
source code in GitHub, including variable, method,
and class names. The framework converts source code
to AST trees, and then a visitor traverses the trees to
collect names.

• Word segmentation [14]. This phase determines where
the word boundaries are for a given multigram name.
Processing natural language, such as English, doesn’t
normally need to perform word segmentation because
words in English sentences are most of the time
separated by white spaces. However, a construct’s
name often is a multigram name without spaces. For
example variable names such as username and
user_name require segmentation.

2

• Unigram analysis. This phase utilizes Apache Hadoop
framework [15] to study the properties of unigrams
collected from source code. The properties will be used
to solve domain specific problems, e.g., expanding
abbreviations used in source code, which will be
covered in section V.

Table 2 shows: (1) 0.70 billion constructs are extracted
from nearly 0.7 million projects. (2) Over one billion unigrams
are collected from the constructs.

Table 2. The total number of constructs, unigrams extracted from
GitHub (in millions)

 Variable Method Class Total
The number of constructs 419 161 21 701

The number of unigrams extracted
from constructs

636 396 57 1069

IV. ANALYSIS OF UNIGRAMS
Unigrams collected from the GitHub source code

repository are different from unigrams collected from natural
language corpus, i.e., news archives. In this section, we
compute the most commonly used English words and
abbreviations in the source code, and then we reveal two
important statistical properties of abbreviations.

A. Most Commonly Used English Words in Source Code
We have extracted the most commonly used English words

from identifier names: variable, method, and class names,
respectively. Table 3 shows the top 70 most frequently used
English words for naming variables from 636 million unigrams
extracted from variable names.

Table 3. The top 60 most frequently used English words for naming
variables

Word Freq
. (k)

Word Freq
. (k)

Word Freq
. (k)

Word Freq
. (k)

name 9865 node 2306 class 1572 respons
e

1333

id 7920 count 2301 parent 1560 code 1320
value 7354 item 2255 element 1550 line 1306
type 5847 field 2239 length 1549 action 1292
key 4235 messag

e
2238 source 1534 height 1286

result 3983 to 2228 string 1533 instance 1282
data 3681 view 2206 input 1515 current 1282

index 3680 start 2179 default 1510 log 1259
contex

t
3399 state 2078 target 1501 test 1249

file 3155 event 1941 max 1482 number 1227
list 3115 time 1935 service 1446 listener 1220
in 3055 map 1909 offset 1410 column 1218

text 2590 out 1864 end 1393 content 1210
new 2530 request 1758 width 1387 label 1204
size 2502 user 1643 date 1382 last 1191
is 2390 info 1640 tag 1371 buffer 1175

path 2334 object 1613 serial
versioni

d

1342 error 1009

Table 4 shows that the same English words are ranked
differently in GitHub and natural language corpus. For
example, the English word name is ranked the first in GitHub
and the 108th in the natural language corpus [16], respectively.
Similarly, we have computed the top 100 most frequently used
English words for naming methods and classes (see Appendix).

Table 4. Different word frequency ranks in source code (SC) and natural
language corpus (NC)

Word Ranking Word Ranking Word Ranking
SC NC SC NC SC NC

name 1 108 node 18 3407 class 35 388
id 2 654 count 19 2011 parent 36 1771

value 3 1146 item 20 214 element 37 2222
type 4 253 field 21 574 length 38 1155
key 5 569 message 22 149 source 39 419

result 6 611 to 23 4 string 40 1567
data 7 131 view 24 79 input 41 1438

index 8 276 start 25 474 default 42 1538
context 9 2022 state 26 111 target 43 1584

file 10 281 event 27 624 max 44 1428
list 11 107 time 28 50 service 45 97
in 12 6 map 29 197 offset 46 5179

text 13 349 out 30 60 end 47 317
new 14 27 request 31 627 width 48 3060
size 15 337 user 32 185 date 49 102
is 16 8 info 33 160 tag 50 2454

path 17 1790 object 34 1150 serial
versionid

51 -

Without surprise, we have observed the following:

(1) Over 95% of the English words for naming variables
and classes are nouns.

(2) 53% of English words are used for naming both
variables and classes.

(3) Among all the top 100 most frequently English words
used for naming variables, 42% of them is used for
naming methods, 34% of them are verbs, and 12% are
prepositions. It is consistent with the purpose of the
method construct in object-oriented programming: the
manipulation of variables.

B. Patterns of Choosing Abbreviations in Source Code
In this subsection, we will observe patterns between

abbreviations and their original intended English words from
small examples, develop an algorithm to extract all possible
abbreviation and English word pairs from the ultra-large-scale
source code repository. Table 5 shows a small set of
applications used to observe abbreviation patterns. They were
selected because of their relative popularity, diversity in terms
of development maturity and application domain, and
availability publicly in open source software repositories.

Table 5. Subject programs used in our experiments to observe patterns
[17]

Program Version KLOC Description
JasperReports 2.0.4 34.04 Dynamic content

JFreeChart 1.0.19 57.83 Data rep.
SoapUI 2.0.1 30.48 Web service
Freecol 0.7.3 27.21 Game

GanttProject 2.7 28.30 Scheduling
Junit 4.4 0.948 Software dev.

Avuze 5.5.0.0 163.53 Online file share
Hibernate 2.1.8 21.49 Database

JEdit 4.2 32.60 Text editor
DataCraw 3.4.5 20.20 Data management

Xholon 0.7 23.39 Simulation
Jsch 0.1.51 7.39 Security

Domination 1.0.9.7 8.32 Game
JMencode 0.64 1.33 Video encoding

3

We review the source code and have observed the

following patterns (shown in Table 6) between abbreviations
and their original intended English words:

• Pattern one: There are mainly two types of strategies for
choosing abbreviations. (a) Consecutive Characters
Strategy, which uses the first n consecutive characters as
the abbreviation for a given English word and (b)
Nonconsecutive Characters Strategy, which uses n
nonconsecutive characters as the abbreviation. The two
different strategies produce two different abbreviation
types: Consecutive Characters Abbreviation (CCA) and
Nonconsecutive Characters Abbreviation (NCA).

• Pattern two: The first letter matters. Regardless of the
different type of abbreviation choosing strategies, the first
letter of the abbreviation is always the first letter of its
original intended English word.

• Pattern three: The order of the characters in abbreviations
and its intended English word is consistent. Regardless of
the different types of abbreviations, developers choose the
characters from left to right from the intended English
word as its abbreviation. It is evident for CCA because it
uses n-consecutive characters from the original intended
English word as its abbreviation. For example, using str
as the abbreviation for the word string. For NCA, the
abbreviation src is picked up from the word source at
positions 0, 3, and 4.

• Pattern four: The majority of abbreviations use less than
four characters to represent unigram variable names. We
will verify the pattern in section C once we extract all
abbreviations and their intended words.

Table 6. Observed patterns between abbreviations and their original
intended English words

Abbreviation Type n = 1 n = 2
Name Abbr. Name Abbr.

n-Consecutive Characters
as Abbreviation (CCA)

node n exception ex
value v event ev
list l iterator it

handler h extent ex
n-Nonconsecutive

Characters as Abbreviation
(NCA)

 map mp
 button bt
 load ld
 list ls

Abbreviation Type n = 3 n = 4 n = 3 n = 4
Name Abbr. Name Abbr.

n-Consecutive Characters
as Abbreviation (CCA)

string str string str
buffer buf buffer buf
object obj object obj
array arr array arr

n-Nonconsecutive
Characters as Abbreviation

(NCA)

source src source src
event evt event evt

message msg message msg
button btn button btn

C. Algorithms for Extracting Abbreviations
Once we have discovered these abbreviations patterns, we

are interested in developing algorithms to extract all
abbreviations along with their intended words from GitHub.
Because nearly 60% of unigrams are used for naming variables
(see Table 2), we would like to extract abbreviations for

naming variables. The steps to generate such an abbreviation
list are described as follows:

1. Extract all pairs (variable name, the type of
the variable name) from GitHub. They are
candidates of pairs for extracting an English word and its
abbreviation. The basic assumption to compute
abbreviations is: when naming a variable, developers more
likely to choose an abbreviation based on the type of the
variable. The type can be a class, an interface, a primitive,
or an array. For example, we may use the abbreviations n,
it, and i, to represent the instance of Node class,
Iterator interface, and integer primitive,
respectively.

2. Segment the variable name and variable name type in each
pair. The step produces two unigram sets. Each set
contains one or more unigrams separated from the variable
name and the variable names type, respectively.

3. Find the abbreviations. Pick w and a from the two unigram
sets, respectively, and then count the frequency of the pair
(w,a) if isAbbre(w, a)returns true. Note that,
based on our experience, if a is an abbreviation of w, a is a
set. For example, the letter n can be the abbreviation of
classes Node and Number. On the other hand, a type can
be represented by multiple abbreviations. For example, the
class Node can be represented by n and nd. It depends on
individual developer’s preference. The function isAbbre
checks the patterns one and four, and then calls a function
isConsistent, which implements the first three
patterns recursively.
def isAbbre(w, a):
 if len(w)<= len(a):
 return False
 if len(a)<1:
 return False
 if len(a)==1 and len(w)>1 :
 return w[0] == a[0]
 else:
 return w[0] == a[0] and \
 isConsistent (w[1:], a[1:])

def isConsistent(w, a):
 if (len(a)==0):
 return True
 if len(w)>0:
 if w[0]==a[0] :
 return isConsistent (w[1:], a[1:])
 elif (w[0]!=a[0]):
 return isConsistent (w[1:], a)
 return False

D. Top Abbreviation Names
We have extracted 62 million abbreviations from 419

million variable names. It indicates nearly 15% of variable
names use abbreviations. Table 7 shows the top 100 most
frequently used abbreviations for naming variables. The results
are strongly consistent with developers’ naming behaviors. For
example, as a developer, we often use i and e for
representing int and exception, respectively. Specifically,
we have made the following conclusions based on the extracted
abbreviations from the GitHub repository:

4

• Only five abbreviations have length greater than four
characters among the top 100 most frequently used
abbreviations for naming variables. The conclusion is
consistent with our observation patterns four.

• Abbreviations are widely used for representing the
compressed information. Nearly 15% of variable
names use abbreviations.

• Some variable names, such as ioexception,
stringbuffer, and bytebuffer are considered
as unigrams in [16] because they have relatively high
frequencies in natural language corpus and contain no
space. For example, ioexception is ranked the
35661th with a frequency of 595675 in [16].

• Developers may choose different abbreviations for a
given word. For instance, for the most frequently used
unigram int, developers may pick i or in. However,
developers are more likely to use i as abbreviation
because the pair (int, i) has a higher frequency
than (int, in).

• The same abbreviation can be used for representing
different words, e.g., in is used for presenting either
int or input. For a given abbreviation in, it is more
likely to represent input if we consider the frequency
as the only criteria to determine abbreviations.

Table 7. The top 100 most frequently used abbreviations for naming variables
Abb. Word Freq.

(k)
Abb. Word Freq.

(k)
Abb. Word Freq.

(k)
Abb. Word. Freq.

(k)
i int 9878 f float 341 m map 129 rect rectangle 91
e exception 5584 ctx context 341 e element 127 it int 87
s string 1575 conn connection 322 cal calendar 123 caps capabilities 87

str string 1069 rs result 308 m method 120 mgr manager 86
l long 1061 f file 297 l list 120 f field 85

obj object 1037 msg message 294 re recognition 119 cmd command 85
ex exception 937 b boolean 273 q query 111 cls class 81
o object 781 ioe ioexception 263 c collection 108 img image 80
e event 561 sb stringbuffer 253 e encoding 108 s session 79
it iterator 535 i iterator 245 t thread 106 params parameters 78
in input 522 n node 233 btn button 104 br bufferedreader 77
v view 522 db database 233 elem element 104 comp component 77

out output 492 attrs attributeset 217 c cursor 103 h handler 77
evt event 487 props properties 210 l listener 103 e entity 77
in int 470 fs filesystem 205 m manager 102 m message 76
log logger 437 prot protocol 199 con connection 101 env environment 76
doc document 436 p point 193 attr attribute 100 m matcher 76
conf configuration 423 config configuration 191 app application 99 loc location 75

g graphics 420 ch char 176 prefs preferences 97 cert certificate 74
b byte 414 e entry 171 buffer bytebuffer 96 v visitor 74
t throwable 401 stmt statement 153 t type 92 c context 73
c char 399 req request 152 c component 92 p player 73
sb stringbuilder 377 c class 150 e enumeration 92 addr address 73
d double 372 v vector 144 e error 91 a array 72

iter iterator 346 ref reference 131 sql sqlexception 91 nfe numberformatexception 71

E. Statistical Properties of Abbreviations

When developers decide to use an abbreviation to represent
its original intended word, they need to make two decisions:
(1) determine which type of abbreviation they want to choose,
either CCA or NCA (2) determine how much effort they want
to save if abbreviations are used compared to original intended
English words. Two statistical properties of abbreviations need
to be studied to understand the decision process:

• The percentage of CCA versus NCA is used to help
us understand how likely developers are to choose
CCA or NCA. The percentage of CCA and NCA is
the probability of developers to choose CCA and
NCA for a given word w. Formally, we compute
P(E), where E is an event of choosing an
abbreviation for w.

• The Typing Effort Saving (TES). TES computes how
much effort developers can save if abbreviations are

used. Formally, the TES value for a given pair (a,
w)is defined as:

������ �	
 � �

������
�
	

�������
�
	

��	

For example, TES(i, int)=66.67%, and
TES(in, int)=33.33%. The range of the TES is
between 0 and 1, excluding 0 and 1. Zero means no
abbreviation is used.

Table 8 shows the total number of 62253k abbreviations
used for naming variable names. Nearly 84% of the
abbreviations are CCA, i.e., P(E=CCA)=84%. The number of
unique abbreviations is 103k. Over 62% of these unique
abbreviations are CCA. Figure 2 shows the frequency
distribution of TES. The x-axis represents the ratio of TES.
The y-axis is the frequency of TES measured in percentage.
For example, let X be the event of computing TES(a,w), then
the frequency of TES(i,int) is

5

P(X=TES(i,int))=P(X=66.67%)= 19%. Overall, this
figure indicates that 75% of the abbreviations have a TES
between 50% and 89%. It implies that developers often use no
more than the half size of the English word as abbreviations.

Table 8. The total number abbreviations extracted from variables
Abbreviation Type Unique Abb. (k) Total Abb. (k)

% # %
n-Consecutive Characters

Abbreviation (CCA)
64 62.17 52234 83.91

n-Nonconsecutive Characters
Abbreviation (NCA)

39 37.83 10019 16.09

Total 103 62253

Figure 2. Distribution of TES

It is worth noting that one can argue that abbreviation
convention [18] [19]is another reason to naming abbreviation,
e.g., the string re should be used as the abbreviation of the
word result due to the convention. However, there are
several reason not to consider convention during programming:

(1) Unless there is a wide-accepted list of standard
abbreviations in source code, such as int and
integer, it is challenge for developers to think of
abbreviation convention during development. For the
re example, other people may use the string res as
the abbreviation for result, as the string res has
more readability than re. Others may also argue the
string res can only be used for representing word
response.

(2) The four patterns have already formed the foundation
for abbreviation convention.

(3) The abbreviation ranking in Table 7 can be used as a
reference for a standard abbreviation convention.

F. Size Distribution of Multigram Names
Besides unigrams, developers often use multigrams to

name identifiers (constructs) to improve the readability of their
code. The size of a multigram is the number of the unigrams
that the multigram consists of. The size distribution of
multigrams indicates how likely developers name constructs
with various sizes.

 To compute the size of a multigram, we first utilize a word
segmentation algorithm to break the multigram into segments,
and then we simply count the number of the segments. Figure 3
shows the size distribution of variable names, method names,
and class names. The x-axis is the size of a name. The y-axis is
the frequency of the name size in percentage. The size

distribution is generated using the 701 million names that are
shown in Table 1. The figure shows:

• The most likely choice, i.e., with the probability of 65%,
developers use a unigram to name a variable.

• 34% of variable names are multigrams.

• The majority, i.e., 69%, of multigram variable names has
the size of two.

• When naming methods and classes, developers often use,
i.e., with the probability of over 80%, multigrams.

• There is no significant difference regarding size when
naming methods and classes.

Figure 3. Size distribution of variable, method, and class names

V. EMPIRICAL STUDY: ABBREVIATION EXPANSION USING
UNIGRAMS

Although the use of abbreviations can help developers to
implement faster, it may create confusion in the source code
and therefore a decrease in program readability. For example,
the variable abbreviation v in Table 7 can be interpreted as
view (522k), vector (144 k), or visitor (74k). Different
approaches [20] have been proposed to expand abbreviations,
and however, these approaches have not considered the
properties of program languages in the context of linguistics. In
this empirical study, we demonstrate that utilizing the
properties of unigrams collected from the ultra-large scale
source code repository can solve domain specific problem,
such as expanding the abbreviations used in a source code.

Table 9. Example candidate words for abbreviation re and their
frequencies

Candidate Frequency in unigram
SC NC

% # %
result 3,983,282 0.626 127,425,045 0.022

request 1,758,393 0.277 124,620,318 0.021
response 1,333,290 0.210 84,065,293 0.014
resource 822,922 0.129 99,964,083 0.017

read 443,324 0.070 322,331,766 0.055
repository 211,294 0.033 8,892,664 0.002

rule 531,175 0.084 97,658,641 0.017
range 374,764 0.059 128,314,924 0.022

A. A Probabilistic Language Model to Expand Abbreviations
Assume that we have a task that needs to figure out what

the abbreviation re stands for. Based on the patterns of
English words and their abbreviations, Table 9 lists eight
examples of possible words that match the abbreviation

6

computed from the source code and natural language corpus
[16]. These words are referred to as the candidates of the
abbreviation. Table 9 also includes the candidates’
corresponding frequencies in two sets of unigrams,
respectively. Note that the total number of unigrams in the
source code and natural language corpus are 636 million and
588,118 million, respectively.

If only considering the frequency, we choose the English
words result and read as the intended words in the domain
of programming and the natural languages, respectively. They
have the highest probability regarding frequency. However,
these results lack compelling evidence. We use the Naive
Bayes probabilistic model instead to solve the uncertain
problem. Formally, the problem can be described as follows:
given an abbreviation, a, determine what word c was the most
likely original word. For example, if a is re, then request
is c, which is the most likely word in the domain of
programming languages. The language model for choosing the
best candidate among all candidates is shown as follows:

argmaxc P(c | a) = argmxc P(a | c) * P (c) (2)

where P(c) is the probability of c, the candidate English
word in the source code unigrams.

argmaxc P(c | a): the highest P(c | a).

P(a | c) is the probability that a developer will use the
abbreviation a to represent c. It is called the abbreviation
representation model. The representation model is based on the
frequency distribution of TES ratio that is shown in Figure 2,
and the distribution of abbreviation types (which we will
discuss in details in subsection C). Note that experts may
disagree with the abbreviation representation model. Therefore
there is no complete model. We only use the model to
demonstrate the importance of the unigrams that are generated
from source code. In other words, the properties of unigrams
can help us to solve domain specific problems.

B. Search Candidates for Language Model
It is unwise to pick up all English words in the unigrams

that match the abbreviation patterns as candidates because
there are too many possible matches. For example, the
candidates for the given abbreviation re will include all the
English words that start with r and contain e (consecutively
or nonconsecutively). In fact, it makes more senses to pick up
candidates based on the locations of the given abbreviation in
the source code. There are two approaches to search
candidates: static and dynamic approaches. Static approach
searches for candidates within a certain radius of the
abbreviation, e.g., the method or class in which the
abbreviation is used. Dynamic approach generates the data
flow diagrams or control flow diagrams from source code first
and then searches for the candidates within the radius of the
abbreviations in these diagrams. Once the candidates search
radius is determined for the given abbreviation a, we pick each
English word c in the radius, using isAbbre(c, a) to test
if the c is candidate. For example, assume we have chosen the
static approach where the method is the candidate search radius
for the given abbreviation re. Table 10 contains ten candidate
unigrams for the abbreviation re in a method. The first eight
unigrams are CCA and the last two are NCA.

C. Compute the Best Candidates as the Expanded Word
Our goal is to compute argmaxcP(c|a). The challenge

of computing argmaxcP(c|a) is to compute P(a|c)
basedon formula 2. We could simply use the frequency of pair
(a,c) to compute P(a|c). However, the pair (a,c) may
not exist. Hence we use the two statistical properties of
abbreviation that were discussed earlier to generalize the
process of calculating P(a |c). The properties describe how
developers choose an abbreviation for a given English word.
Formally,

P(a|c)=P(E=AbbType)×P(X=TES(a,c)) (3)

Table 10. Computing the best candidate for expanding abbreviation re using different unigrams generated from source code and natural language
corpus
Abbr.

(a)
Candidate
unigram

(c)

a | c Abb.
Type

P(AbbType) TES
(a, c)

P
(TES(a, c))

p
(a | c)

p(c) P(c|a) =P(a | c) *P(c)
SC NC SC NC

re result re | result CCA 0.84 0.67 0.19 0.1596 0.6263 0.0217 0.09995748 0.00346332
re request re | request CCA 0.84 0.71 0.2 0.168 0.2765 0.0212 0.046452 0.0035616
re response re | response CCA 0.84 0.75 0.2 0.168 0.2097 0.0143 0.0352296 0.0024024
re resource re | resource CCA 0.84 0.75 0.2 0.168 0.1294 0.017 0.0217392 0.0028560
re reader re | reader CCA 0.84 0.67 0.19 0.1596 0.0957 0.0087 0.01527372 0.00138852
re read re | read CCA 0.84 0.5 0.14 0.1176 0.0697 0.0548 0.00819672 0.00644448
re results re | results CCA 0.84 0.71 0.2 0.168 0.0624 0.0046 0.0104832 0.0007728
re repository re | repository CCA 0.84 0.8 0.22 0.1848 0.0332 0.0015 0.00613536 0.0002772
re rule re |rule NCA 0.16 0.5 0.14 0.0224 0.0835 0.0167 0.0018704 0.00037408
re range re |range NCA 0.16 0.67 0.19 0.0304 0.0589 0.0218 0.00179056 0.00066272

Bold Numbers: Top candidates Italic Numbers: Different ranks between P(c) and P(c|a)

Table 10 shows the expanding of abbreviations using

different unigrams. Our observations are as follows:

• The best candidates for the given abbreviation re may be
different in different language domains. The words
results and read have the highest probabilities of
being the original English words in source code and
natural language corpus, respectively. Bold numbers are

the highest probabilities of candidates in source and
natural language corpus, respectively.

• Regardless of the type of language, the frequency of a
unigram is an essential fact in determining the best
candidate. For example, both of the best candidates for re
have the highest frequencies among all candidates in their
corresponding unigram models.

7

• TES determines the best candidate if two of the same type
of candidates have similar frequency in its language
domains. For example, the two words read and
results in the programming language domain are both
CCA, the word results is considered as the better
candidate even the word read has a slightly higher
frequency than results does. Similarly, the word
request is a better candidate than result in the
domain of natural language (see Italic numbers in Table
9).

Note that (1) we only consider expanding a given
abbreviation that is chosen from a simple English word due to
the page limitation. The comprehensive approach to expanding
other types of abbreviations, including abbreviations selected
from multigram names, as well as the empirical study will be
addressed in the future work and (2) we only demonstrate the
importance of utilizing the properties of unigrams to solve
well-known problems, such as understanding abbreviations.
Empirical study regarding the comparison of different
approaches for expanding abbreviations will be included in the
future work.

VI. CONCLUSION
Unigrams collected from source code repository are useful

for dealing software development problems, such as
understanding the behaviors of developers and expanding
abbreviations to improve the code readability. We have
extracted 0.70 billion names from nearly 0.7 million projects.
The names include variable, method, and class names. A total
of 1.01 billion unigrams are generated from these constructs. In
addition, 62 million abbreviations are extracted from 419
million variable names. To demonstrate the importance of
unigrams, we have analyzed the patterns of how developers
choose abbreviations, and then, we have used the properties of
unigrams to expand abbreviations to original English words.
The completed analysis results, including unigrams collected
from variable, method, and class names, as well as
abbreviations, can be accessed at https://goo.gl/HUz06W. The
raw data extracted from GitHub can be accessed at
https://goo.gl/nxzqHd. All variable names, method names, and
class names are stored under the folders named variables,
methodName, and className. Concerning the future work,
we plan to expand our approach to collect and analyze bigrams
and trigrams from source code repository. We also plan to
conduct a larger empirical study to expand various types of
abbreviations.

REFERENCES

[1] D. Roth, "Learning to Resolve Natural Language Ambiguities:

A Unified Approach," in Fifteenth National Conference on
Artificial Intelligence, Madison, Wisconsin, 1998.

[2] H. Kamp and U. Reyle, From Discourse to Logic: Introduction
to Modeltheoretic Semantics of Natural Language, Formal
Logic and Discourse Representation Theory, Springer Science
Business Media, 2013.

[3] N. Chomsky, "On certain formal properties of grammars,"
Information and Control, vol. 2, no. 2, p. 137–167, 1959.

[4] M. L. Scott, Programming Language Pragmatics, 3rd ed. ed.,
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2009.

[5] "GitHub," [Online]. Available: www.github.com. [Accessed 20
5 2016].

[6] S. Yoo, "Boa Language," [Online]. Available:
http://web.cs.ucla.edu/~shyoo1st/boa/. [Accessed 2 8 2016].

[7] "Linguistics Data Consortium," Google.com, 2006. [Online].
Available: https://catalog.ldc.upenn.edu/LDC2006T13.
[Accessed 2 6 201].

[8] "Google Ngram Viewer - Google Books," Google.com, 5 2012.
[Online]. Available: https://books.google.com/ngrams.
[Accessed 20 5 2016].

[9] M. Allamanis and C. Sutton, "Mining source code repositories at
massive scale using language modeling," in 10th IEEE Working
Conference on Mining Software Repositories (MSR '13), 2013.

[10] M. Allamanis, E. T. Barr, C. Bird and C. Sutton, "Learning
natural coding conventions," in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE 2014), 2014.

[11] M. Allamanis, E. T. Barr, C. Bird and C. Sutton, "Suggesting
accurate method and class names," in In Proceedings of the
2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2015), 2015.

[12] V. Raychev, M. Vechev and A. Krause, "Predicting Program
Properties from "Big Code"," in roceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2015.

[13] R. Dyer, H. . A. Nguyen, H. Rajan and T. N. Nguyen, "Boa: A
Language and Infrastructure for Analyzing Ultra-Large-Scale
Software Repositories," in the 35th International Conference on
Software Engineering, Francisco, CA, 2013.

[14] T. Segaran and J. Hammerbacher, Beautiful Data: The Stories
Behind Elegant Data Solutions, O'Reilly Media, 2009.

[15] "Hadoop," The Apache Software Foundation, [Online].
Available: http://hadoop.apache.org/. [Accessed 20 5 2016].

[16] G. Jenks, "wordsegment 0.6.2," [Online]. Available:
https://pypi.python.org/pypi/wordsegment. [Accessed 22 5
2016].

[17] R. P. Buse and W. Weimer, "Learning a Metric for Code
Readability," IEEE Transactions on Software Engineering, vol.
36, no. 4, pp. 546-558, 2010.

[18] D. Pierret and D. Poshyvanyk, "An empirical exploration of
regularities in open-source software lexicons," in The
International Conference on Program Comprehension,
Vancouver, Canada, 2009.

[19] M. White, C. Vendome, M. L. Vásquez and D. Poshyvanyk,
"Toward Deep Learning Software Repositories," in
International Conference on Mining Software Repositories ,
Florence, Italy, 2015.

[20] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L.
Pollock and K. Vijay-Shanker, "AMAP: Automatically Mining
Abbreviation Expansions in Programs to Enhance Software
Maintenance Tools," in the 2008 international working
conference on Mining software repositories, Leipzig, Germany,
2008.

8

