
CONCATENATED FEATURE PYRAMID NETWORK FOR INSTANCE SEGMENTATION

Yongqing Sun ? Pranav Shenoy K P ?† Jun Shimamura ? Atsushi Sagata?

? Media Intelligence Lab, NTT Corporation, Japan
† Georgia Institute of Technology, USA

{yongqing.sun.fb, jun.shimamura.ec, atsushi.sagata.hw}@hco.ntt.co.jp pskp3@gatech.edu

ABSTRACT

Low level features like edges and textures play an impor-
tant role in accurately localizing instances in neural networks.
In this paper, we propose an architecture which improves fea-
ture pyramid networks commonly used instance segmentation
networks by incorporating low level features in all layers of
the pyramid in an optimal and efficient way. Specifically,
we introduce a new layer which learns new correlations from
feature maps of multiple feature pyramid levels holistically
and enhances the semantic information of the feature pyra-
mid to improve accuracy. Our architecture is simple to im-
plement in instance segmentation or object detection frame-
works to boost accuracy. Using this method in Mask RCNN,
our model achieves consistent improvement in precision on
COCO Dataset with the computational overhead compared to
the original feature pyramid network.

Index Terms— Instance Segmentation, Concatenation,
Feature Pyramids, Inception

1. INTRODUCTION

Instance segmentation is one of the most important develop-
ments in computer vision. It combines object detection and
semantic segmentation and finds its application in a wide vari-
ety of applications ranging from autonomous driving to med-
ical imaging to video surveillance. One of challenges faced
by instance segmentation is detecting and segmenting objects
at vastly different scales. An efficient way to overcome this
challenge would be to create feature pyramids from multi-
ple layers of the CNN [1, 2, 3, 4]. This type of framework
combines low resolution but semantically strong features with
high resolution but semantically weak features in a top-down
pathway with lateral connections from lower layers.

Mask RCNN[5] and Path Aggregation Networks or
PANet[6] are popular state-of-the-art frameworks used for
instance segmentation[7]. Mask RCNN extends Faster
RCNN[8] by adding a Fully Cconvolutional Network[9]
branch for predicting an object mask in parallel with the
existing branch for bounding box recognition and utilizes
feature pyramids[1] to achieve high accuracy. PANet en-
hances this architecture by adding a bottom-up pathway with

lateral connections after the top-down pathway along with
other improvements to Mask RCNN. By adding a bottom-
up pathway, the features in low levels which are helpful for
identifying large objects take a shorter path to reach higher
levels and improve localization. However, in both of these
frameworks, the features are added to subsequent layers one
after the other and by using element-wise addition. Also due
to this process of addition, there are no layers which contain
the correlation between high-level and low-level features.
Experiments have shown that utilizing correlations between
different levels of features can potentially further improve
the performance of the network[10]. Experiments and pa-
pers such as [11, 12] have shown that concatenation is more
flexible compared to element-wise addition and can improve
the performance of the network. DenseNet[12] uses concate-
nations or dense connections to achieve parameter efficiency
and feature reuse which can give better performance with
lesser or similar computational resources.

The motivation behind this paper is to improve the per-
formance and mask quality of the network by overcoming the
drawbacks of existing frameworks. To achieve this, we pro-
pose the following:

1. A new convolutional layer to learn correlations between
different levels of features.

2. A bottom-up pathway to infuse low-level features from
the lower pyramid levels to the higher levels in a com-
putationally efficient way.

1.1. Feature Pyramids

Analysis by M. D. Zeiler and R. Fergus[13] on feature maps
have shown that neurons in the higher layers of the network
are activated by entire objects or large regions of objects while
neurons in lower layers are more likely to be activated by
edges, local texture, patterns and other lower level features.
The localization accuracy of a framework can be further en-
hanced by propagating strong activations of low-level features
to higher layers since strong activations to edges or object
parts are good indicators to accurately localize objects; par-
ticularly small objects. Hence by adding low-level features

ar
X

iv
:1

90
4.

00
76

8v
1

 [
cs

.C
V

]
 1

6
M

ar
 2

01
9

Fig. 1: Illustration of our network. (a) FPN backbone. (b) Bottom-up pathway. (c) Inception module. (d) ROI Align.

to higher levels of the feature pyramid, we can achieve better
performance for mask generation.

Networks like FPN[1], U-Net[14] and TDM[2] improve
the accuracy by infusing features from lower layers. FPN
augments a top-down path with lateral connections creating a
feature pyramid for building high-level semantic feature maps
at all scales. The top-down pathway hallucinates higher reso-
lution features by upsampling feature maps from higher pyra-
mid levels and adding them features from lower levels with
lateral connections. Through this, the features from higher
features reach the lower layers of the pyramid. However,
lower level features do not reach the upper levels since the
layers are added in a single direction. In figure 1, section (a)
is the framework of the original feature pyramid network.

1.2. DenseNet

Densely connected convolutional [12] networks or DenseNet
connects all layers in the network directly with each other us-
ing concatenation to ensure improved flow of information and
gradients between layers. Each layer in the network obtains
additional inputs from all preceding layers and passes on its
own feature-map to all subsequent layers. This network has
direct access to the gradients from loss function and the orig-
inal input signal leading to an implicit deep supervision[11].
These dense connections also condense the model and make
it easy to train and highly parameter-efficient. Concatenating
feature-maps learned by different layers increases variation
in input of subsequent layers and improves efficiency. Since
the bottom layers have a shorter path to the top layers, the
gradients reach the bottom layers more efficiently and reduce
training error.

2. FRAMEWORK

2.1. Concatenated Feature Pyramid Network

Concatenated Feature Pyramid Network(CFPN) is an en-
hanced version of Feature Pyramid Network designed to

overcome the drawbacks of FPN by adding an addition fea-
ture pyramid. In this additional pyramid, the features are
added in the reverse direction, i.e., from bottom to top. To re-
duce computation and to further enhance the performance, we
have used a combination of concatenation and downsampling
to propagate features. The advantage of using concatenation
over addition (which is used in bottom-up path augmenta-
tion [7]) is that the features are added more flexibly, i.e., the
network learns the optimal ratio to infuse the features which
boosts performance. However, we use element-wise addition
in the original top-down pyramid, since using concatenation
did not impact the performance and also required more com-
putation. Finally, we append a 3x3 post-hoc convolution on
each concatenated map ([Ii, Pi]) to generate the final feature
map. This is done to reduce the aliasing effect of upsampling
in top-down layers.

To solve the issue of finding correlation between high-
level and low-level features, we introduce a convolutional
layer between the top-down pyramid and the new bottom-up
pyramid structure as shown in figure 1(c). Here we upsample
the top two layers of the top-down pyramid and concatenate
them with the third layer. We chose not to include the bottom-
most layer because this layer is concatenated and processed
just after the Inception module. Adding this layer increases
cost and also did not affect the final performance. Instead
of using a 3x3 convolutional layer, we chose to use an In-
ception module [15]. The Inception module [16] learns from
cross-channel correlations and spatial correlations of the fea-
ture map by using multiple kernel sizes for learning features
with different field of views[13]. This is particularly useful
since the feature of the concatenated layer contain features of
different spacial dimensions due to upsampling and also due
to their hierarchy in the backbone ResNet. The output of the
Inception module is then concatenated to the bottom-most
layer of the top-down module as shown in figure 1(b).

We take ResNet backbone as the basic structure and use
P2, P3, P4, P5 to denote the layers of the top-down pathway
generated by the FPN. The top most layer of the top-down

pyramid can be represented as

P5 = H5(B5) (1)

Where H5 denotes the 1x1 convolution function followed by
Relu activation. The other lower layers are added with the
higher layers using addition. Hence these layers can be rep-
resented as

Pl = Hl(Bl) + Ul(Pl−1) (2)

Where Ul is the nearest neighbor upsampling function. We
use I2, I3, I4, I5 to denote the layers of the newly generated
Inception pyramid from the output of the Inception module. A
detailed illustration of the bottom-up pathway is given in fig-
ure 3. The output of the Inception module forms the bottom-
most layer of the Inception pyramid. It can be written as a
function of concatenation of P5 to P3.

I2 = G2([P5, P4, P3]) (3)

Here [., .] is the concatenation operation and G2 denotes the
function of the Inception module followed by Relu activation.
Each layer in the Inception pyramid Ii+1 is created by com-
bining lower layers of the Inception pyramid Ii and Feature
pyramid Pi and then downsampling it. This process is itera-
tive and terminated after I5 is generated. This can be repre-
sented as

Il = Fl([Dl(Il−1), Pl]) (4)

Where Dl represents the downsampling function using strided
3x3 convolution. On the other hand, the Bottom-up path aug-
mentation of PANet uses element-wise addition to combine
layers. This is represented as

Il = Dl(Il−1) + Pl (5)

We can observe that both equations 7 and 8 are recursive. In
equation 8 (Bottom-up augmentation), as the layers proceed,
more features are added. However in our model (equation
7), in addition to this we notice that the function Fl has more
features to choose from due to concatenation with Pl com-
pared to bottom-up path augmentation method which doesn’t
use concatenation. Features from all of the previous layers
get reused similar DenseNet. Hence we are able to achieve
better performance for the same computational cost of mask
RCNN and for lower computational cost of bottom-up path
augmentation.In our model, the combined Inception and Fea-
ture Pyramid layers form the layers of the feature pyramid.
Post hoc 3x3 convolutions are applied to these layers to re-
duce aliasing caused by upsampling.

2.2. Other Feature Pyramid Architectures

In the model discussed previously, we have used concatena-
tion to combine layers in the Bottom-up pathway and at the in-
put to the Inception module. Apart from the model (Model 1)

discussed previously, we have experimented on 3 other mod-
els to understand the effect of using concatenation to combine
layers. The first model (Model 2) uses concatenation to com-
bine layers in the Bottom-up pathway and uses addition to
combine layers for the Inception module input. That is, we
use the bottom-most layer of the top-down pathway which is
the element-wise sum of all other layers as an input to the
Inception module.

The next model (Model 3), uses element-wise addition to
combine layers in the bottom-up pathway. This method is
similar to the layer combining process used in the Top-down
pathway except that we downsample the lower layer using
strided 3x3 convolution and then add it to the upper layer us-
ing element-wise addition. This model can be seen as bottom-
up augmentation of PANet with our Inception module. The
last model (Model 1*) is similar to the Model 1 except that it
does not contain the 3x3 post-hoc convolution which is used
to reduce the aliasing effect of upsampling.

Fig. 2: Detailed illustration of Bottom-up pathway.

3. EXPERIMENTS

3.1. Dataset and Metrics

We have implemented all of the model using Caffe2 and
Detectron[18] framework. COCO dataset [19] is one of the
most popular dataset for instance segmentation and also one
of the most challenging with each image containing multiple
instances with complex spatial layout. The dataset consists
of 115k labeled images for training, 5k images for validation,
20k images for test dev and 20k images for test-challenge.
It has 80 classes with pixel-wise instance annotation. We
have trained all the models on train-2017 subset and reported
results on val-2017 subset.

3.2. Hyper-parameters

We trained all of the models with an image batch size of 4.
Based on the image batch size, we have used a learning rate
of 0.005 for 300k iterations, 0.0005 for the next 100k iter-
ations and 0.00005 for the last 50k iterations. The learning
rate and number of iterations are based on [20]. All models
are trained and tested with batch normalized [21] ResNet50

Mask Bounding Box
Model AP AP50 AP75 APS APM APL AP AP50 AP75 APS APM APL

Ours:Model 1 34.8 56.3 37.1 15.4 37.5 52.4 38.3 59.7 41.7 22.1 41.2 50.9
Ours:Model 2 34.7 56.4 36.9 15.5 37.2 52.2 38.3 59.6 41.6 21.9 41.3 50.9
Ours:Model 3 34.5 56.0 37.1 15.3 36.8 52.5 38.1 59.1 41.7 21.5 40.9 51.0
Ours:Model 1* 34.6 56.8 36.7 15.0 37.3 52.1 38.1 60.0 41.3 21.6 41.4 50.3
MRCNN + BPA 34.4 56.1 36.4 15.1 36.9 50.8 38.0 59.2 41.2 21.5 41.0 50.1
FCIS ++ [17] 33.6 54.5 - - - - - - - - - -
Baseline:MRCNN 33.9 56.0 35.6 15.1 36.4 51.2 37.8 59.4 40.9 21.6 40.7 49.9

Table 1: Comparison of our models with Mask RCNN and Mask RCNN with bottom-up path augmentation(BPA) on COCO
dataset. Model 1* is Model 1 without post hoc convolutions.

Model MAC Computa-
tions in FPN

FPN Parameters

Ours:Model 1 56.7x109 3.5x106

Ours:Model 2 58.2x109 3.4x106

Ours:Model 3 70.2x109 4.5x106

Ours:Model 1* 9.6x109 1.1x106
Mask RCNN 52.2x109 2.6x106

MRCNN + BPA 63.9x109 4.4x106

Table 2: Comparison of number of Multiply-Accumulate
computations assuming 1200x800 image size and parameters.

as backbone. For faster and more efficient training, we have
initialized our ResNet backbone with pretrained weights from
ImageNet 1k[22].

3.3. Experimental Results

Our first model (Model 1) gave the best precision overall and
is closely followed by second and third models. The first
model improves mask AP and bounding box AP[23] by 0.9
and 0.5 respectively over Mask RCNN, and by 0.4 and 0.3
over Mask RCNN with bottom-up path augmentation. In
figure 3, we can observe that the boundaries of the masks
are more likely to bound to the edges of the objects since
low-level features are used optimally for all sizes of object
proposal in contrast to only small object proposals in Mask
RCNN. This performance boost can be observed in APL

column of table 1, where it is the highest increase in AP.
Model 2 gives a slightly lower performance than Model 1.

This shows that the layer combination method for the Incep-
tion module is not critical. However both Model 1 and Model
2 give better performance compared to Model 3. Model 3 is
equivalent to the bottom-up augmentation of PANet with our
Inception module added. This proves that concatenation in-
deed gives better performance compared to element-wise ad-
dition if used to combine layers in a feature pyramid network.

We can observe that adding a post hoc convolution to re-
duce aliasing boosts precision, especially of small objects, but
comes at the cost of increased computational overhead. The

(a) Mask RCNN (b) Ours:Model 1

(a) Mask RCNN (b) Ours:Model 1

Fig. 3: Comparison of masks generated by Mask RCNN our
model. Our model consistently gives better mask quality
within the bounding boxes. Best viewed electronically. Zoom
in to see in more detail.

first model without post hoc convolution has better perfor-
mance over Mask RCNN and Mask RCNN with BPA. Most
importantly, it has fewer parameters and a very small compu-
tational overhead - much smaller than the original FPN itself!

4. CONCLUSION

In this paper, we propose a new framework to optimally in-
fuse low-level features into higher pyramid levels and gen-
erate better quality masks. Our experiment results demon-
strate that our model can improve the performance compared
to Mask RCNN and Bottom-up path Augmentation technique
of PANet because our framework takes advantage of optimal
combination of different levels of features of all layers of the
feature pyramid. All of these improvements are done without
any additional computational cost.

5. REFERENCES

[1] T. Lina, P. Dollar, R. B. Girshick, K. He, B. Hariharan,
and S. J. Belongie., “Feature pyramid networks for ob-
ject detection,” In CVPR, 2017.

[2] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta.,
“Beyond skip connections: Top-down modulation for
object detection,” arXiv:1612.06851, 2016.

[3] J. Long, E. Shelhamer, and T. Darrell., “Fully convolu-
tional networks for semantic segmentation.,” In CVPR,
2016.

[4] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun., “Large
kernel matters - improve semantic segmentation by
global convolutional network.,” In CVPR, 2017.

[5] K. He, G. Gkioxari, P. Dollar, and R. B. Girshick.,
“Mask R-CNN,” In ICCV, 2017.

[6] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path Aggre-
gation Network for Instance Segmentation.,” In CVPR,
2018.

[7] B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik.,
“Simultaneous detection and segmentation.,” In ECCV,
2014.

[8] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN:
Towards real-time object detection with region proposal
networks.,” In NIPS, 2015.

[9] J. Long, E. Shelhamer, and T. Darrell., “Fully convolu-
tional networks for semantic segmentation,” In CVPR,
2015.

[10] T. Kong, F. Sun, W. Huang, and H. Liu, “Deep Feature
Pyramid Reconfiguration for Object Detection.,” arXiv
preprint arXiv:1808.07993v1, 2018.

[11] S. Jegou, M. Drozdzal, D. Vazquez, A. Romero, and
Y. Bengio, “The One Hundred Layers Tiramisu: Fully
Convolutional DenseNets for Semantic Segmentation.,”
arXiv:1611.09326v3, 2017.

[12] G. Huang, Z. Liu, K. Q. Weinberger, , and L. van der
Maaten, “Densely Connected Convolutional Net-
works.,” CoRR,abs/1608.06993, 2016.

[13] M. D. Zeiler and R. Fergus, “Visualizing and Under-
standing Convolutional Networks,” ECCV, 2014.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Con-
volutional networks for biomedical image segmenta-
tion.,” In MICCAI, 2015.

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, “Re-
thinking the Inception Architecture for Computer Vi-
sion.,” arXiv:1512.00567v3, 2015.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich, “Going Deeper with Convolutions.,”
arXiv:1409.4842, 2014.

[17] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei., “Fully con-
volutional instance-aware semantic segmentation,” In
CVPR, 2017.

[18] Ross Girshick, Ilija Radosavovic, Georgia Gkioxari,
Piotr Dollár, and Kaiming He, “Detectron,”
https://github.com/facebookresearch/detectron, 2018.

[19] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollar, and C. L. Zitnick., “Microsoft
COCO: Common objects in context.,” In ECCV, 2014.

[20] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and
K. He., “Accurate, Large Minibatch SGD: Training Im-
ageNet in 1 Hour,” arXiv:1706.02677v2, 2017.

[21] S. Ioffe and C. Szegedy., “Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift.,” In ICML, 2015.

[22] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “ImageNet: A Large-Scale Hierarchical Image
Database,” In CVPR, 2009.

[23] “http://cocodataset.org/#detection-eval,” .

	1 Introduction
	1.1 Feature Pyramids
	1.2 DenseNet

	2 Framework
	2.1 Concatenated Feature Pyramid Network
	2.2 Other Feature Pyramid Architectures

	3 Experiments
	3.1 Dataset and Metrics
	3.2 Hyper-parameters
	3.3 Experimental Results

	4 Conclusion
	5 References

