ComplexCTTP: Complexity Class Based Transcoding Time Prediction for Video
Sequences Using Artificial Neural Network

Anatoliy Zabrovskiy*, Prateek Agrawal*T, Roland Matha*, Christian Timmerer*¥, and Radu Prodan*
* University of Klagenfurt, Klagenfurt, Austria
ovely Professional University, Punjab, India
t Lovely Professional University, Punjab, Indi
i Bitmovin, Klagenfurt, Austria
Email: *anatoliy.zabrovskiy @aau.at, *Tprateek.agrawal@aau.at, *roland.matha @ aau.at,
*ichristian.timmerer@aau.at, *radu.prodan@aau.at

Abstract—HTTP Adaptive Streaming of video content is
becoming an integral part of the Internet and accounts for
the majority of today’s traffic. Although Internet bandwidth is
constantly increasing, video compression technology plays an
important role and the major challenge is to select and set up
multiple video codecs, each with hundreds of transcoding pa-
rameters. Additionally, the transcoding speed depends directly
on the selected transcoding parameters and the infrastructure
used. Predicting transcoding time for multiple transcoding
parameters with different codecs and processing units is a
challenging task, as it depends on many factors. This paper
provides a novel and considerably fast method for transcoding
time prediction using video content classification and neural
network prediction. Our artificial neural network (ANN) model
predicts the transcoding times of video segments for state of
the art video codecs based on transcoding parameters and
content complexity. We evaluated our method for two video
codecs/implementations (AVC/x264 and HEVC/x265) as part
of large-scale HTTP Adaptive Streaming services. The ANN
model of our method is able to predict the transcoding time
by minimizing the mean absolute error (MAE) to 1.37 and
2.67 for x264 and x265 codecs, respectively. For x264, this is
an improvement of 22% compared to the state of the art.

Keywords-Transcoding time prediction; adaptive streaming;
video transcoding; neural networks; video encoding; video
complexity class; HTTP adaptive streaming; MPEG-DASH

I. INTRODUCTION

The demand of video applications and services is con-
stantly increasing. Today it is a commodity to encode,
distribute, share, and consume video content anywhere,
anytime, and on any device [1]. Many of these services
adopt a streaming paradigm typically deployed over the
open, unmanaged Internet [2]. An important technical break-
through and facilitator is certainly HTTP Adaptive Streaming
(HAS). In HAS, video assets are provided in multiple
versions called representations that are divided into short-
term segments (e.g., 2s to 10 s) and are requested by a client
device individually based on its contextual conditions (e.g.,
network characteristics, viewing device, efc.) in a dynamic,
adaptive manner [3, 4]. Moreover, in some implementa-
tions, such as MPEG-DASH [3], the HAS technology is

independent of video compression methods and can utilize
various codecs. This is especially important because we are
now in a situation where we can choose from several video
codecs, such as Advanced Video Coding (AVC) [5], High
Efficiency Video Coding (HEVC) [6], VP9 [7], AOMedia
Video 1 (AV1) [8], and Versatile Video Coding (VVC) [9].
Typically, the transcoding of video segments is a parallel
process running on a high-performance infrastructure such
as the cloud [10, 11]. Unfortunately, transcoding of multiple
segments of a single video for adaptive streaming can take
seconds or even days, depending on many technical aspects,
such as video content complexity, transcoding parameters,
and processing units [12]. In fact, predicting the transcoding
time for the many combinations of transcoding parameters
for different codecs and content types (i.e., genres) is a com-
plex task and big challenge for streaming services [13, 14].

Typically, servers and big data platforms [15] are used
for distributed video transcoding without any prediction of
the transcoding time. For example, Stride [15] is a dis-
tributed video transcoding system that leverages the Apache
Spark [16] to speedup a video segment processing time.
Adding a segment transcoding time prediction feature to
Stride scheduling module can significantly improve the
overall transcoding time. Cloud platforms, dedicated servers,
and low-energy Internet of Things devices [11, 17] are some
application domains where predicting transcoding time has
a significant impact on the provisioning and scheduling of
thousands of transcoding tasks [10]. Accurate prediction
of transcoding times for multiple tasks allow services to
avoid the load imbalance and inefficient use of resources.
Moreover, modern scheduling methods [18, 19] exploit the
information about task completion time to make better
use of the processing infrastructure. Such information is
particularly useful for those transcoding services which
require multiple transcoding parameters and video content
with different characteristics [14].

To decrease and improve the transcoding time prediction
for videos, we propose a novel and accurate method called
ComplexCCTP, a Complexity Class based Transcoding



Time Prediction, which consist of two main phases: (i)
data generation and (ii) transcoding time prediction using
an artificial neural network (ANN). The main purpose of the
first phase is data generation and video content complexity
classification. The second phase predicts the transcoding
time using the developed sequential ANN model. The ANN
model is able to predict the time of video transcoding task
for multiple codecs taking into account the complexity of
content in the context of HAS. The main contributions of
our ComplexCTTP method are summarized as follows:

o We propose a video complexity classification, with
respect to the video segment’s spatial information (SI)
and temporal information (TI) [20, 21].

« We introduce a fast approach to measure spatial and
temporal information of video segments by computing
them for a transcoded segment with a low bitrate and
resolution.

o The developed sequential ANN model uses the most
important parameters that influence the transcoding
time as input data, i.e., information about the complex-
ity of the video content, properties of the input video
file, and transcoding parameters of a video codec.

To assess our method, we used a set of ten different video se-
quences of different types with different duration and frame
rate. We evaluated our approach for the two most commonly
deployed video codecs/implementations (i.e., AVC/x264 and
HEVC/x265) and in anticipation of the results our proposed
approach achieved a mean absolute error (MAE) of 1.37 for
x264 and 2.67 for x265, respectively. For x264 codec, this
is an improvement of 22% compared to the state of the art
results [14].

The remainder of this paper is structured as follows.
Section II highlights related work. Our proposed method-
ology is explained in Section III. Section IV describes
its implementation and evaluation results are provided in
Section V. Section VI concludes the paper and highlights
future work.

II. RELATED WORK

Several methods for predicting transcoding time using
machine learning algorithms and neural networks for codecs
x264, MPEG-4 Part 2, VP8, and H.263 are proposed
in [14, 22]. The authors use the following parameters as
inputs for their ANN: bitrate, framerate, resolution, codec,
number and size of I, P and B frames. They achieved
accuracy of MAE as 1.75 4 2.834. Zakerinasab et al. [23]
conduct an analysis of the influence of video file size on
transcoding efficiency and processing time. They suggest
that for faster video transcoding, the size of the video
segment should be dynamically selected according to the
similarity of the video frames. In their work, they make
some recommendations for improving the video transcoding
process, but do not predict the video processing time. Li et
al. [24] find that the processing time of a Group of Pictures

(GoP) has a good correlation with the execution time of
other GOPs for the same video sequence. They propose
a method for predicting video transcoding time for live
streaming services based on the execution time history of
GOPs. Several other works [25, 26] also present history-
based predictive models. Nevertheless, due to the significant
variability in the workload of continuous processing tasks,
history-based models often provide low accuracy. Ma et
al. [27] propose a video transcoding time prediction method,
with respect to video segment length and targeted bitrates.
The authors make predictions based on collected statistics
and probabilistic theory and do not take into account the
complexity of the content. Paakkonen et al. [28] present
an architecture for predicting video transcoding metrics in
a Docker-based system. The authors predict CPU utilization
and transcoding time for live video transcoding tasks on vir-
tual machine instances using machine learning models. They
show that the video transcoding time for x264 codec for
different instances can be predicted with average accuracy
of 3-6%. Zhao et al. [29] proposed a model for predicting
the complexity of transcoding video segments by analyzing
I,P and B frames of the video sequences. The authors
make predictions for MPEG-4 Part 2 and H264 codec, and
use a limited number of videos and more focus on video
transcoding task scheduling. Benkacem et al. [30] propose
virtual video transcoders and approach for load balancing the
transcoding tasks. The authors study transcoding behavior in
different cloud environments and investigate the impact of
the video duration on a video transcoder performance in
terms of transcoding time. Krishnappa et al. [31] present
several policies for online video streaming and suggest to
transcode only the video bitrates that are actually requested
by the client. They show that the increase in transcodig time
of a single segment is almost linear with the increase in
video segment duration. In turn, the authors use a limited
number of transcoding parameters and presets.

Only a few studies deal with predicting video segment
transcoding times for x264 but without taking into account
encoding presets (e.g., as known in x264, x265, VP9) or
content complexity of segmented videos, such as spatial
and temporal information. Similarly, limited work has been
done so far for x265 and high bitrates/resolutions, which are
becoming increasingly popular.

III. METHODOLOGY

This section presents our methodology comprising two
phases as shown in Fig. 1: (i) data generation and (ii)
transcoding time prediction.

In the data generation phase, a first step is to select
videos of different complexity classes. Some sequences have
minor movements, e.g., moving head on a static black
background efc., while others have significant movements,
e.g., changing street view or riding jockeys, etc. The se-
lected video sequences should comprise different types of



Data generation
1 Ly 2 Video Feature
segmentation selection
Video &
sequences * *
selection 4 Segmen
gme .t Data
complexity | ageresation
classification BEres
Transcoding time prediction v
Predicted 7 ANN model Dat
transcoding < creationand @ r:C:SSm
time tuning prep 8
Figure 1. Process flow of proposed methodology.

video content, as represented by its spatial information and
temporal information [20]. The SI metric is a measure of the
spatial complexity of a video content, calculated as follows:

SI = max{o [Sobel (Fn)l}, (1

where F,, is a video frame at time instance n, o is the
standard deviation across all the pixels in the Sobel filter
of its luminance component, and max selects the maximum
standard deviation across all the frames in the video. The TI
metric represents the amount of motion in a video sequence,
defined based on a motion difference function M,, that
represents the difference between the luminance components
for identically located pixels in two consecutive frames F),
and F,,_1:

where F, (i, j) is the frame pixel located at row 4 and column
J at time instance n in the sequence. The TI metric is the
maximum value of standard deviation of M, (7, j) for all the
pixels:

T1 = max{c [M,(3,j)]}. 3)

The second step is to split the video sequence into
segments of, e.g., 2s or 4s length. The segment length is
one of the most important parameters in adaptive streaming,
because each segment usually begins with a random access
point to allow dynamic switching between representations
on the client side [32].

The feature selection step plays a pivot role in prediction
tasks. We extract important features for our data collec-
tion from each video segment. Each record in our dataset
contains the following fields: codec_type, segment_name,
encoding_bitrate, segment_duration, width, height, encod-
ing_preset, SI, TI, and transcoding_time.

For the segment complexity classification, we assign a
video complexity class to each video segment based on its
spatial information and temporal information [21]. We define
four complexity classes HH, LL, HL, LH referred to as high

Linear RelU

A A
R(z)=z 10 R(z) = max(0, z) 10
10 10
0 " 0 "
Figure 2. Linear and ReLU Activation function.

TI & high SI, low TI & low SI, high TI & low SI and low
TI & high SI, respectively.

After defining the complexity class and extracting the
remaining features of each video segment, we prepare the
entire dataset for the next phase, i.e., the transcoding time
prediction.

Before implementing an ANN training model to predict
the transcoding time of video segments, we first pre-process
the generated data, i.e., we reduce the number of records by
calculating only the maximum and minimum transcoding
time for the same combinations of transcoding parameters
and complexity class. Then we distribute the entire dataset
between training and testing dataset.

After preparing training and testing data, the next step
is to select an appropriate neural network model [33]. We
choose a sequential model for training because in this model
only the first layer needs to receive the information about
the input shape while the remaining layers do infer the input
shapes automatically. Once the model is fixed based on the
data, the next step is to select an appropriate activation
function [34] for the neural network training. We use two
types of activation functions for our model, i.e., linear and
non-linear. In the linear activation function, the output does
not confine between any range and the function produces
a line as shown in Figure 2 and, thus, we use it as output
layer activation function. For hidden layers we use a rectified
linear unit (ReLU) as non-linear activation function. From
Figure 2, we see that the ReLU curve is half rectified. It
means that for all negative input values, it turns the value
into zero immediately.

To evaluate the output results of the proposed ANN
model, we use MAE as shown in Eq. (4) that represents
the absolute model prediction error in units of the variable,
and mean squared error (MSE) as shown in Eq. (5) as
the squared average difference between the actual and the
predicted values.

1 <& .
MAE = = " |y; — 34 “
nj:1
1 n ) 9
MSE = ~ -
SE=—> (v; — 1) ®)

j=1



< o ReadySetGo
p=
S 25p--Jockey
€ ° DrivingPQV e
8 20+
i
£
— YachtRide
g 15+ .
g‘ 10} Beauty qu
S oo ° BBB
s Sintel
51 - H
HoneyBee WindAndNature

0
10 15

20 25 30

35

Spatial information

40 45

Figure 3. Average spatial information (SI) and temporal information (TI)
for video sequences.
Table I
ORIGINAL VIDEO FILE CHARACTERISTICS.
Video Video Frames | Duration
description category per second | (in sec)
BBB Animation 30 60
Beauty Moving head 30 20
DrivingPOV Moving cars 60 20
HoneyBee Nature 30 20
Jockey Sports 30 20
Sintel Animation 24 60
TOS Animation and real 24 60
WindAndNature | Rotating wind vanes 60 20
ReadySetGo Sports 30 20
YachtRide Moving yacht 30 20

Where, n is number of input instances, y; is the target
output and §; is the actual output. Based on MAE and MSE
values, we tune and update the training parameters of the
ANN model. We repeat this process until we get consistent
and optimal ANN performance.

IV. IMPLEMENTATION

This section describes the implementation of our work
based on the proposed methodology.

A. Data generation

In the data generation phase, we selected ten video se-
quences available from a public dataset [12], which comprise
different types of video content, as represented by their
spatial and temporal information as depicted in Fig. 3. Thus,
we can state that we used the videos that represent a wide
range of possible use cases. The main characteristics of the
original video sequences are given in Table I.

Using FFmpeg [35] v4.1.3, we decoded all video se-
quences into raw YUV format and split each sequence into
segments of 2s and 4s duration resulting in 240 segments
in total. The segment length is one of the crucial param-
eters in HTTP Adaptive Streaming because usually, each
segment starts with a random access point to enable dynamic
switching to other representations at segment boundaries. A
segment length of 4s shows a good trade-off with respect
to streaming performance and coding efficiency [36] and is
also adopted within deployments. A segment length of 2s

14

: : T T T -
- = SI150% boundary \g
121|= = T150% boundary ee ! 9
C ® SI, Tl of segment e : :
o S e 1 e
T of ! l ! .ol °o 0 Z ! q
1
€ / %y 1 o o
O sr o © ege : 0% o
=3 N R ORI S N R
— 0@ b e o ©
© 6l ¥ o ho. @
) e &S °o o2 e e
Q 1 9 _¢ o
£l LLE " . T,
()] ® o 1
= 5 ° 8 e
r e e @i
°, o @ oo °
o ° % °
0 . . . 1 . . .
0 20 40 60 80 100 120 140

Spatial information

Figure 4. Video segment complexity classes (HL, HH, LH, LL).

Table I
BITRATE LADDER (BITRATE/RESOLUTION PAIRS). BITRATE VALUES
ARE IN KBPS.

# Bitrate Resolution # Bitrate Resolution
1 100 256x144 11 4300 1920x1080
2 200 320x180 12 5800  1920x1080
3 240 384x216 13 6500 2560x1440
4 375 384x216 14 7000 2560x1440
5 550 512x288 15 7500  2560x1440
6 750 640x360 16 8000  3840x2160
7 1000  768x432 17 12000 3840x2160
8 1500 1024x576 18 17000 3840x2160
9 2300 1280x720 19 20000 3840x2160
10 3000 1280x720

is also used in todays’ deployments and confirms the trend
towards low-latency requirements [32].

After creating the YUV segments, we encoded each
segment using the FFmpeg x264 library with the veryslow
preset in order to maintain highest quality compared to
the original/input video sequence. Both codecs x264 and
x265 contain the same set of presets as follows: ultrafast,
superfast, veryfast, faster, fast, medium (default preset), slow,
slower, veryslow, placebo; such that, for the same video file
and transcoding bitrate with slower preset, there will be the
slower transcoding speed and better video quality. In our
work, we did not use placebo as it does not give significant
quality improvement compared to veryslow according to the
official FFmpeg documentation [37]. For all segments, we
calculated SI and TI metrics [21] as shown in Fig 4. Differ-
ent segments that belong to the same video can have different
TI and SI values. This happens because the segments of
one video may contain entirely different visual complexity
content. Further in this paper, we consider all these prepared
segments as the source segments, and use them for multiple
transcoding tasks.

We performed the transcoding on a Intel Xeon Gold 6148
2.4 GHz processor. Each segment was transcoded using
FFmpeg’s single-threaded mode which is also used in prac-
tice in a distributed cloud-based environment [11, 15]. The



focus of our work is related to HTTP Adaptive Streaming
and, thus, we adopted the bitrate ladder as shown in Table II
which consists of a wide range of bitrates/resolutions. This
selection is based on existing datasets proposed in the
literature [38] and in industry best-practices and guide-
lines [39, 40].

We performed transcoding for both x264 and x265 on
FFmpeg software and Python scripts in order to measure
segment transcoding time. In total, we executed 82080
transcoding tasks. The number of tasks were 54 720 (2 video
codecs * 19 bitrates * 9 encoding presets * 160 segments)
for 2s segments and 27 360 (2 video codecs * 19 bitrates * 9
encoding presets * 80 segments) for 4s segments. The total
execution time for all transcoding tasks was approximately
580 hours. For all of the performed transcoding tasks, we
formed the Raw Transcoding Dataset with 82080 records
containing transcoding parameters, output metrics and SI,
TI information of each segment. Each record in our dataset
contains the following fields: codec_type, segment_name,
encoding_bitrate, segment_duration, width, height, encod-
ing_preset, SI, TI, and transcoding_time.

The next step determines the video complexity class for
each segment using SI and TI value. Calculating SI and
TI metrics for the original high-resolution video segments
is very time-consuming. For example, the average time
to calculate the SI and TI values of a 2s segment is
about 14.2 s. Therefore, before calculating these two metrics,
we quickly encoded each source video segment using the
ultrafast preset with a low bitrate (100 kbps) and a low
resolution (144p), which takes 1.07s for 2s segments on
average. Then, we calculated SI and TI metrics with an
average of 0.21s for the same encoded video segments. By
doing this, we saved almost 13s (14.2—(1.07+0.21)) on an
average for each segment. The optimization of determining
the content complexity is also subject to future work. In this
paper, the aim is to show that content complexity, such as
TI and SI, can be used to better predict transcoding time.

We calculated the correlation coefficient (Pearson corre-
lation) of TI and SI when transcoding at different quality
representations according to the bitrate ladder and found
a significantly strong correlation between these represen-
tations. The correlation coefficient between encoded video
segments with 144p resolution and the original video seg-
ments with 2160p (or 1744p) resolution for TT and ST is 0.98
and 0.65, respectively, which presents positively strong and
highly correlated relationship. Based on these findings, we
decided to use the TI and SI metric values obtained from
the segments transcoded with a low resolution and bitrate in
our proposed work. After calculating TT and SI for segments,
we defined four types of complexity classes: (i) Low TI -
low SI (LL), (ii) low TI - high SI (LH), (iii) high TI -
high SI (HH), and (iv) high TI - low SI (HL) as shown in
Fig. 4. The dividing lines between these complexity classes
were formed according to the two 50% boundaries indicated

Table IIT
VIDEO COMPLEXITY CLASS TYPES.

TI and SI ranges
TI (7, max], SI (70, max]
TI [min, 7), SI [min, 70)
TI [7, max], SI [min, 70]
TI [min, 7], ST [70, max]

Complexity class
HH (high TI, high SI)
LL (low TI, low SI)
HL (high TI, low SI)
LH (low T, high SI)

Table IV
CHARACTERISTICS OF ANN MODEL.

Characteristic Optimized value
No. of neurons in input layer 6 or 7 (with compl. class)
No. of hidden layers 3

No. of neurons in hidden layers 64/32/64
No. of neurons in output layer 2
Learning rate default value
No. of epochs passed 500
Training data 3009
Testing data 753
Training / testing data 80%/20%
Hidden layer activation function ReLU
Output layer activation function Linear
Optimizer Adadelta
Loss function MAE
Metric MAE, MSE
Batch size 64

truncated normal

Initializing weights

in the Table III. For example, 50% boundary of SI means
that half of the segments have SI values less than 70 and
half segments have values more than or equal to 70. Values
of both 50% boundaries were calculated using the ceiling
function [41]. Thus, for each segment, depending on its SI
and TI values, one complexity class was assigned.

B. Transcoding time prediction

After identifying multiple features from each video seg-
ment, we selected the most significant parameters from
the raw dataset and also derived several new parameters
for the ANN model. First, we used SI and TI of each
video segment to calculate a complexity class. Then we
calculated number_of_pixels parameter by multiplying
width and height. We checked redundant data entries and
pre-processed the data records. For this, we reduced the
number of records by only calculating the maximum and
minimum transcoding time for all possible combinations
of [codec_type, complexity class, encoding_bitrate, encod-
ing_preset, segment_duration, fps]. Finally, we created two
equal data sets for training and testing the ANN with 3762
records for each codec (x264 and x265).

To predict the transcoding time of video segments, we
used the Keras Python library [42] to implement an ANN
model for both codecs independently, which consist of 7
input neurons, 3 hidden layers and 2 output neurons. All
input and output parameters of the ANN are schematically
shown in the Fig. 5. We considered Adadelta, Adagrad,
and RMsprop [43] optimizers for compilation of the ANN



Table V

ANN MODEL INPUT PARAMETERS.

Input parameter

Description

Encoding bitrate

video bitrates (in Kbps) from the Table 11

Encoding preset

ultrafast, superfast, veryfast, faster, fast,
medium, slower, slow, veryslow

Fps of input file

24, 30, 60

Complexity class

HH, LL, HL, LH

Height

T44p, T80p, 216p, 288p, 360p, 432p,
576p, 720p, 1080p, 1440p, 2160p

Number of pixels

video height * video width

Segment duration

2s and 4s

Input

encoding
’ .\\\Ijidden

bitrate
SOSIK

encoding .
preset
fps of > .
\ X549
SRR
S\ XX

Output

._, maximum
transcoding time

input file

complexity .
class

height —» .
number
of pixels .

segment
on —— @
duration

—» minimum
transcoding time

' Q
7 KK
S

i/

ANN model.

Figure 5.

model and finally selected Adadelta after evaluating its
performance with other optimizers. Adadelta is an advanced
optimizer of Adagrad which adapts learning rates based on
a moving window of gradient updates, rather than collecting
the information of all past gradients. This special feature of
Adadelta makes it better than other optimizers to learn and
adjust the learning parameters by default even when multiple
updates have been done. Detailed information about all the
characteristics of the ANN is presented in the Table IV. We
performed the ANN training of segmented video files (of
2s and 4s) for both codecs (x264 and x265) on the data
as discussed in the previous section. All input parameters
of the neural network are explained in Table V. Two ANN
outputs are predicted: maximum and minimum transcoding
time. To evaluate the output results of ANN model, we used
MAE and MSE metrics.

V. RESULTS AND ANALYSIS

In this section, we present the results to analyze the
performance and to examine the advantages of using the
proposed ComplexCTTP method for predicting transcoding
times.

Typically, x265 requires more computing resources than
x264, but x265 achieves higher quality than x264 with the
same transcoding parameters [44]. For example, the actual
transcoding time for the same 4s segment of the Jockey
sequence encoded with veryslow preset and bitrate 750 kbps

45 T
wl X264

| |- x265 7

Average actual transcoding time (sec)

Complexity class

Figure 6. Average actual transcoding time for all segments belonging to
a particular complexity class.

(no. 6 in Table II) requires about 12s for transcoding with
x264 and 70s with x265. For higher bitrates and resolutions,
the difference is even greater, e.g., transcoding with 20 Mbps
bitrate (no. 19 in Table II) and veryslow preset for x264 and
x265 takes 450s and 680 s, respectively. Note that segment
transcoding time also depends on the complexity of the con-
tent. For instance, the actual transcoding time of the 11th 4s
segment of the Sintel video sequence encoded with medium
preset and bitrate 17 Mbps (no. 18 in Table II) requires about
35 s for transcoding with x264 codec. While for the next 12th
segment encoded with the same transcoding parameters, the
actual transcoding time is 67s. Here, the transcoding time
difference of two consecutive video segments of same video
sequence is almost doubled. It happened because the content
complexity of the two video segments is very different.
The values of [TI and SI] for the 11th and 12th segment
are [0.6 and 3.6] and [5.1 and 9.1] respectively. The 11th
segment mainly contains black color and a minimum of
moving objects. In order to group segments by complexity,
we used four different types of complexity class as discussed
in the methodology section. The average actual transcoding
time for all segments for both codecs and four complexity
classes, is shown in Fig. 6. There is an evident relationship
between average transcoding time and complexity class. We
can see that the average transcoding time is different for all
complexity classes and it is shorter for the video segments
with low TI and low SI value (LL complexity class in
Table III) and vice a versa. The transcoding time increases
with the complexity class of the content. If we compare
the results for the LH and HL complexity classes, we can
observe that the complexity class with a higher TI metric
takes more transcoding time than the complexity class with
high SI. This can be explained by the fact that the temporal
complexity of a segment, which is based on calculating the
difference in motion between the video frames of a segment,
requires more time to transcode. An important implication
of these findings is that each complexity class significantly



o
=3
=]

o
=3
=]
T
°

IS

o

S
T

w
1=
S
T
¢

%
° ot
o
e

N

=3

=]
T

»d
%
s
oo

-

=)

=]
T

o

Predicted transcoding time (sec)

0 160 260 360 460 560 600
Actual transcoding time (sec)

Table VII
TRANSCODING TIME CHARACTERISTICS OF BOTH DATASETS.

Transcoding time OVCTT dataset | Our dataset
characteristics (all four codecs) | (x264 / x265)
Number of transcodings 68784 41040 / 41400
Standard deviation 16.1 41.2/76.6
Minimum value (in sec) 0.18 0.59 / 0.67
Maximum value (in sec) 224.6 624.2 / 1283.5
Table VIII

TRANSCODING PARAMETERS CHARACTERISTICS OF BOTH DATASETS.

Transcoding parameter OVCTT Our
. . . . . . characteristic dataset dataset
Figure 7. Predicted transcoding time vs actual transcoding time for x264 -
. . . No. of presets for (x264/x265) 0/- 979
codec for testing data with complexity class. .
No. of resolutions 6 11
Table VI No. of bitrates 7 19
ANN MODEL RESULT METRICS FOR X264 AND X265 CODEC. No. of fps values 5 3
Resolution (min/max in pixels) | 144p / 1080p | 144p / 2160p
MAE / MSE (in sec) x264 X265 Bitrate (min/max in Kbps) 56 / 5000 100 / 20000
(1) With complexity classes 1.37/10.96 | 2.67 / 45.30 Fps value (min/max) 12 7 29.97 24/ 60
(2) Without TI, SI and complexity classes 27717498 | 7.58 / 663.95
(3) With TI and SI values of 144p segments 1.48 /13.46 | 3.94/ 168.36
(4) With TI and SI values of the original segments | 1.32/10.90 | 2.39 / 56.01 Dataset (OVCTT dataset) [45] created and used by the

describes the complexity of the segments in terms of the time
required for transcoding. Therefore, we used the complexity
class as one of the input parameters for transcoding time
prediction using ANN model.

The results of MAE and MSE metric of our ANN model
with complexity class input parameter compared to other de-
veloped ANN models for testing, are presented in Table VI.
Based on these results, the ANN with complexity class (1)
input parameter on the testing data predicts transcoding time
better compared to the ANN model without any complexity
class, TI and SI, (2) input parameters or ANN model with
TI and SI, (3) input parameters of segments transcoded with
a low resolution and bitrate. The ANN model with TT and SI
input parameters of original video segments (4) has slightly
better MAE for both x264 and x265 codec compared to our
ANN model with complexity class (1). In turn, we can not
use this ANN model (4) successfully because the calculation
of TI and SI metric for the original video segments with
high bitrate and resolution takes more time as mentioned in
Section IV.

Prediction results using ANN produces a lower error if we
use the complexity class as an (additional) input parameter.
For x264, MAE and MSE values are less than for x265. We
attribute this to the fact that the average transcoding time of
x264 is about half of the average transcoding time of x265
(as shown in Fig. 6), and this is also reflected in the MAE
metric. The predicted values of transcoding time for x264 in
comparison to the actual transcoding times for testing data
are shown in Fig. 7.

We compared and analysed the performance of the pro-
posed ComplexCTTP method with results presented by
Tewodros et al. [14]. For this, we investigated and compared
the Online Video Characteristics and Transcoding Time

Tewodros et al. with our dataset. The OVCTT dataset
contains characteristics of the input and output videos and
their requirements for transcoding time when transcoding
video into different formats. The dataset was created based
on experiments on Intel i7-3720QM CPU using FFmpeg
software. The total number of transcodings for all four video
codecs (x264, MPEG-4 Part 2, VP8, H.263) presented in
this dataset is 68784 (or about 17196 per codec). While
the number of transcodings for each video codec (x264 or
x265) in our dataset is 41 000, which is more than double per
codec compared to OVCTT dataset. A detailed comparison
of both datasets in terms of transcoding time is shown in the
Table. VII. The maximum values and standard deviations of
transcoding times are much higher in our dataset. We did
not conducted transcodings for MPEG-4 Part 2, VP8 and
H.263 codec, as these are not popularly used nowadays for
HAS [12]. We also compared all the transcoding parameter
characteristics used in both datasets and presented them in a
Table VIIL. It is clearly seen that our dataset outperforms
OVCTT dataset for almost all characteristics except the
number of fps values. However, our dataset contains one
additional value of 60 fps, which is becoming increasingly
popular, especially for high resolutions and bitrates. The
Tewodros et al. utilised only the bitrates and resolutions
up to 5 Mbps and 1080p respectively as compared to our
dataset where these values are up to 20 Mbps and 2160p,
respectively.

Next we developed and deployed the Python scripts on a
Linux machine to calculate the input parameters for ANN
models for both methods, i.e., Tewodros et al. [14] method
and our ComplexCTTP method. The Tewodros et al. used
bitrate, framerate, resolution, codec, number and size of I,
P, B frames as input parameters for their ANN model. The
most time consuming operation in Tewodros et al. method



Table IX
THE AVERAGE TIME (IN SEC) REQUIRED TO CALCULATE ANN INPUT
PARAMETERS FOR ONE BEAUTY VIDEO 2S SEGMENT USING BOTH THE

METHODS.
Computing operations Tewodros et al. | ComplexCTTP
and parameters method method
1, P, B frame size and number 4.69 n/a
Transcoding to low bitrate n/a 1.13
SI and TI metric n/a 0.21
Total required time 4.69 1.34
Table X

COEFFICIENT OF DETERMINATION FOR BOTH THE METHODS.

Machine learning | Tewodros ef al. | ComplexCTTP
technique method, R> method, R?

ANN 0.958 0.994

SVR 0.942 n/a

LR 0.411 n/a

is to calculate the number and size of I, P, B frames using
FFprobe [46] program, since this requires checking all the
video frames of the original video file. In our ComplexCTTP
method, the time-taking operation is complexity class cal-
culation which requires to transcode original video segment
using a ultrafast encoding preset to a low bitrate (100Kbps)
and a low resolution (144p), and then calculating SI and TI
complexity metrics. An example of comparison for the both
methods for the Beauty video sequence 2s segments of an
average time required to calculate ANN input parameters
is given in the Table. IX. With our ComplexCTTP method,
the percentage decrease of time (PDT) for 2s segments of
Beauty video sequence is about 70%. The PDT values for all
video sequences with 4s segments are presented in Fig. 8.
As we can see that for nine out of ten video sequences, the
PDT values range from 53% to 80%. Only for the BBB
video sequence, the PDT value is 36% (slightly lower than
other video sequences). The video sequences have different
PDT values because the speed of calculating the number and
size of I, P, B frames by the FFprobe program in Tewodros et
al. method directly depends on a size of segment file and
a fps value. The segments of the BBB video sequence have
smaller file sizes and can be processed faster. Therefore, the
PDT value of the BBB video sequence is lesser.

Finally, we compared the results of predicted transcoding
time of two methods. The Tewodros et al. applied ANN,
linear regression (LR), and support vector regression (SVR)
to predict the transcoding time. During training and testing
of data, they achieved MAE as 1.7574+2.834, 1.484 +3.594
and 7.233 £ 9.997 for ANN, SVR, and LR respectively.
With our ComplexCTTP method, we were able to minimize
MAE to 1.37 for AVC/x264 which is an improvement of
approximately 22% as compared to the Tewodros et al
method. Table X shows the coefficient of determination
(predicted vs. actual) for both methods. The result shows
that ComplexCTTP performs better in terms of prediction
accuracy (i.e., 0.958 for the Tewodros et al. method vs.

A BBB (1) > ReadySetGo (6)
@ Beauty (2) V Sintel (7)
M DrivingPOV (3) © TOS (8)
* HoneyBee (4) @ WindAndNature (9)
« Jockey (5) ¢ YachtRide (10)
90
80+ o
| |
70} : : : e é
<
o 60} s
v o
50+
40}
A
30 L L L L L L L L L L

1 2 3 4 5 6 7 8 9 10
Video sequence no.

Figure 8. PDT for all ten video sequences with 4s segments.

0.994 for our ComplexCTTP method). A comparison of our
result for x265 with related work was not possible due to
lack of existing methods for this codec (implementation).
In turn, our ComplexCTTP method allows a much faster
and more accurate prediction of the transcoding time for the
x264 codec compared to the Tewodros et al. method.

VI. CONCLUSIONS AND FUTURE WORK

In this research, we propose the ComplexCTTP method, a
novel method for fast and more accurate prediction of video
transcoding time with ANN model. We developed an ANN
model based on a dataset produced with x264 and x265.
The ComplexCTTP method also supports an approach for
assigning a video complexity class to segments. Our results
show that using the video complexity class as an ANN input
parameter yields a better prediction of the transcoding time.
In particular, the results show that our created ANN model
with video complexity class as input parameter for x264 and
x265 is able to predict transcoding time by minimizing MAE
up to 1.37 and 2.67 for x264 and x265, respectively.

Future work includes experiments on new emerging
codecs and adding more sophisticated approaches for fast
transcoding time prediction, such as intelligently selecting
and analyzing the content complexity of a few segments of
a video to make prediction about the transcoding time of
the entire video. Additionally, we will investigate using the
predicted transcoding time for the actual scheduling of video
transcoding tasks with multiple codecs in a heterogeneous
cloud infrastructure.

ACKNOWLEDGMENTS

This work has been supported in part by the Austrian
Research Promotion Agency (FFG) under the APOLLO
project and by the European Union Horizon 2020 Research
and Innovation Programme under the ARTICONF Project
with grant agreement number 644179.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

(12]

(13]

(14]

[15]

REFERENCES

“Cisco annual internet report (2018-2023),” Cisco,
170 West Tasman Dr. San Jose, CA 95134 USA,
Tech. Rep., 2020. [Online]. Available: https://www.
cisco.com/c/en/us/solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html

A. Javadtalab, M. Semsarzadeh, A. Khanchi, S. Shirmoham-
madi, and A. Yassine, “Continuous one-way detection of
available bandwidth changes for video streaming over best-
effort networks,” IEEE Transactions on Instrumentation and
Measurement, vol. 64, no. 1, pp. 190-203, 2015.

I. Sodagar, “The MPEG-DASH Standard for Multimedia
Streaming Over the Internet,” IEEE MultiMedia, vol. 18,
no. 4, pp. 62-67, Oct. 2011. [Online]. Available: http:
/ldx.doi.org/10.1109/MMUL.2011.71

A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and
R. Zimmermann, “A Survey on Bitrate Adaptation Schemes
for Streaming Media Over HTTP,” IEEE Communications
Surveys Tutorials, vol. 21, no. 1, pp. 562-585, Firstquarter
2019.

T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC Video Coding Standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 560-576, July 2003.

G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of
the High Efficiency Video Coding (HEVC) Standard,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

D. Mukherjee, J. Han, J. Bankoski, R. Bultje, A. Grange,
J. Koleszar, P. Wilkins, and Y. Xu, “A Technical Overview
of VP9: The Latest Open-Source Video Codec,” in SMPTE
2013 Annual Technical Conference Exhibition, Oct 2013, pp.
1-17.

Y. Chen et al., “An Overview of Core Coding Tools in
the AV1 Video Codec,” in 2018 Picture Coding Symposium
(PCS), June 2018, pp. 41-45.

B. Bross, J. Chen, and S. Liu, “Versatile Video Coding (Draft
7),” JVET-P2001, Geneva, CH, Document, Oct. 2019.

M. G. Koziri, P. K. Papadopoulos, N. Tziritas, T. Loukopou-
los, S. U. Khan, and A. Y. ZoJulya, “Efficient Cloud Pro-
visioning for Video Transcoding: Review, Open Challenges
and Future Opportunities,” IEEE Internet Computing, vol. 22,
no. 5, pp. 46-55, Sep. 2018.

D. Vatolin, D. Kulikov, E. Sklyarov, S. Zvezdakov, and
A. Aantsiferova, “Video Transcoding Clouds Comparison
2019,” Moscow State University, Tech. Rep., 11 2019.

A. Zabrovskiy, C. Feldmann, and C. Timmerer, “Multi-Codec
DASH Dataset,” in Proceedings of the 9th ACM Multimedia
Systems Conference, ser. MMSys "18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 438—443.
[Online]. Available: https://doi.org/10.1145/3204949.3208140

X. Li, M. A. Salehi, Y. Joshi, M. K. Darwich, B. Landreneau,
and M. Bayoumi, “Performance Analysis and Modeling of
Video Transcoding Using Heterogeneous Cloud Services,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 4, pp. 910-922, April 2019.

D. Tewodros, “Proactive Management of Video Transcoding
Services,” PhD dissertation, Abo Akademi University, 2017.

S. Sameti, M. Wang, and D. Krishnamurthy, “Stride: Dis-
tributed Video Transcoding in Spark,” in 2018 IEEE 37th

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

[29]

(30]

International Performance Computing and Communications
Conference (IPCCC), 2018, pp. 1-8.

“Apache Spark,” https://spark.apache.org, 2020, [Online; ac-
cessed 25-July-2020].

O. Barais, J. Bourcier, Y. Bromberg, and C. Dion, “Towards
microservices architecture to transcode videos in the large at
low costs,” in 2016 International Conference on Telecommu-
nications and Multimedia (TEMU), July 2016, pp. 1-6.

J. K. Konjaang, J. Y. Maipan-uku, and K. K. Kubuga,
“An Efficient Max-Min Resource Allocator and Task
Scheduling Algorithm in Cloud Computing Environment,”
CoRR, vol. abs/1611.08864, 2016. [Online]. Available:
http://arxiv.org/abs/1611.08864

Y. Mao, X. C. Chen, and X. Li, “Max—Min Task Scheduling
Algorithm for Load Balance in Cloud Computing,” in Inter-
national Conference on Computer Science and Information
Technology, 2014, pp. 457-465.

ITU-T, “Subjective video quality assessment methods for
multimedia applications,” International Telecommunication
Union, Geneva, Recommendation ITU-T P.910, Apr. 2008.

P. Lebreton, W. Robitza, and S. Goring, “Command-line tool
for calculating SI and TI according to ITU-T P.910,” https://
github.com/Telecommunication-Telemedia- Assessment/SITI,
2019, [Online; accessed 25-July-2020].

T. Deneke, S. Lafond, and J. Lilius, “Analysis and transcoding
time prediction of online videos,” in 2015 IEEE International
Symposium on Multimedia, Dec 2015, pp. 319-322.

M. R. Zakerinasab and M. Wang, “Does chunk size matter in
distributed video transcoding?” in 2015 IEEE 23rd Interna-
tional Symposium on Quality of Service (IWQoS), June 2015,
pp. 69-70.

X. Li, M. A. Salehi, and M. Bayoumi, “VLSC: Video Live
Streaming Using Cloud Services,” in 2016 IEEE International
Conferences on Big Data and Cloud Computing, Oct 2016,
pp. 595-600.

Jiani Guo and L. N. Bhuyan, “Load balancing in a cluster-
based web server for multimedia applications,” I[EEE Trans-
actions on Parallel and Distributed Systems, vol. 17, no. 11,
pp. 1321-1334, 2006.

F. Jokhio, A. Ashraf, S. Lafond, I. Porres, and J. Lil-
ius, “Prediction-based dynamic resource allocation for video
transcoding in cloud computing,” in 2013 21st Euromicro In-
ternational Conference on Parallel, Distributed, and Network-
Based Processing, 2013, pp. 254-261.

H. Ma, B. Seo, and R. Zimmermann, “Dynamic Scheduling
on Video Transcoding for MPEG DASH in the Cloud
Environment,” in Proceedings of the 5th ACM Multimedia
Systems Conference, ser. MMSys "14. New York, NY, USA:
Association for Computing Machinery, 2014, p. 283-294.
[Online]. Available: https://doi.org/10.1145/2557642.2557656

P. Pddkkonen, H. Antti, and A. Tommi, “Online architecture
for predicting live video transcoding resources,” J. Cloud
Comput., vol. 8, no. 1, pp. 132:1-132:24, Dec. 2019. [Online].
Available: https://doi.org/10.1186/s13677-019-0132-0

H. Zhao, Q. Zheng, W. Zhang, and J. Wang, “Prediction-based
and locality-aware task scheduling for parallelizing video
transcoding over heterogeneous mapreduce cluster,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 28, no. 4, pp. 1009-1020, April 2018.

1. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Per-



(31]

(32]

(33]

[34]

[35]

(36]

(37]

formance benchmark of transcoding as a virtual network
function in CDN as a service slicing,” in 2018 IEEE Wireless
Communications and Networking Conference (WCNC), 2018,
pp. 1-6.

D. K. Krishnappa, M. Zink, and R. K. Sitaraman, “Optimizing
the video transcoding workflow in content delivery networks,”
in Proceedings of the 6th ACM Multimedia Systems
Conference, ser. MMSys °’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 37-48.
[Online]. Available: https://doi.org/10.1145/2713168.2713175

N. Bouzakaria, C. Concolato, and J. Le Feuvre, “Overhead
and performance of low latency live streaming using MPEG-
DASH,” in IISA 2014, The 5th International Conference
on Information, Intelligence, Systems and Applications, July
2014, pp. 92-97.

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V.
Dada, N. A. Mohamed, and H. Arshad”, “State-of-the-
art in artificial neural network applications: A survey,’
Heliyon, vol. 4, no. 11, Nov 2018. [Online]. Available:
https://doi.org/10.1016/j.heliyon.2018.e00938

C. Nwankpa, W. [jomah, and A. G. S. Marshall, “Activation
functions: Comparison of trends in practice and research for
deep learning,” ArXiv, vol. abs/1811.03378, 2018.

“FFprobe Documentation,” https://ffmpeg.org/ffprobe.html,
2020, [Online; accessed 25-July-2020].

S. Lederer, C. Miiller, and C. Timmerer, “Dynamic Adaptive
Streaming over HTTP Dataset,” in Proceedings of the 3rd
Multimedia Systems Conference, ser. MMSys °12. New
York, NY, USA: ACM, 2012, pp. 89-94. [Online]. Available:
http://doi.acm.org/10.1145/2155555.2155570

“H.264 Video Encoding Guide,” https://trac.ffmpeg.org/wiki/

(38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

Encode/H.264, 2020, [Online; accessed 10-September-2020].

J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Datasets for
AVC (H.264) and HEVC (H.265) Evaluation of Dynamic
Adaptive Streaming over HTTP (DASH),” in Proceedings
of the 7th International Conference on Multimedia Systems,
ser. MMSys ’16. New York, NY, USA: ACM, 2016, pp.
51:1-51:6. [Online]. Available: http://doi.acm.org/10.1145/
2910017.2910625

Twitch, “Broadcasting Guidelines,” https://stream.twitch.tv/
encoding/, 2019, [Online; accessed 25-July-2020].

YouTube, “Live encoder settings, bitrates, and resolu-
tions,”  https://support.google.com/youtube/answer/2853702,
2019, [Online; accessed 25-July-2020].

“Python mathematical functions,” https://docs.python.org/2/
library/math.html, 2019, [Online; accessed 25-July-2020].

“Keras: The Python Deep Learning library,” https://keras.io/,
2019, [Online; accessed 25-July-2020].

M. D. Zeiler, “Adadelta: An adaptive learningrate method,”
2012, computing Research Repository (CoRR).

Q. Huangyuan, L. Song, Z. Luo, X. Wang, and Y. Zhao,
“Performance evaluation of H.265/MPEG-HEVC encoders
for 4K video sequences,” in Signal and Information Process-
ing Association Annual Summit and Conference (APSIPA),
2014 Asia-Pacific, 2014, pp. 1-8.

T. Deneke, “Online Video Characteristics and Transcoding
Time Dataset,” https://archive.ics.uci.edu/ml/datasets/Online+
Video+Characteristics+and+Transcoding+Time+Dataset,
2015, [Online; accessed 25-July-2020].

“FFmpeg,” https://www.ffmpeg.org/, 2020, [Online; accessed
25-July-2020].



