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Abstract—Analyzing individual emotions during group conver-
sation is crucial in developing intelligent agents capable of natural
human-machine interaction. While reliable emotion recognition
techniques depend on different modalities (text, audio, video), the
inherent heterogeneity between these modalities and the dynamic
cross-modal interactions influenced by an individual’s unique
behavioral patterns make the task of emotion recognition very
challenging. This difficulty is compounded in group settings,
where the emotion and its temporal evolution are not only
influenced by the individual but also by external contexts like
audience reaction and context of the ongoing conversation. To
meet this challenge, we propose a Multimodal Attention Network
(MAN) that captures cross-modal interactions at various levels
of spatial abstraction by jointly learning its interactive bunch
of mode-specific Peripheral and Central networks. The proposed
MAN “injects” cross-modal attention via its Peripheral key-
value pairs within each layer of a mode-specific Central query
network. The resulting cross-attended mode-specific descriptors
are then combined using an Adaptive Fusion (AF) technique
that enables the model to integrate the discriminative and
complementary mode-specific data patterns within an instance-
specific multimodal descriptor. Given a dialogue represented
by a sequence of utterances, the proposed AMuSE (Adaptive
Multimodal Analysis for Speaker Emotion) model condenses
both spatial (within-mode and within-utterance) and temporal
(across-mode and across-utterances in the sequence) features into
two dense descriptors: speaker-level and utterance-level. This
helps not only in delivering better classification performance
(3−5% improvement in Weighted-F1 and 5−7% improvement in
Accuracy) in large-scale public datasets (MELD and IEMOCAP)
but also helps the users in understanding the reasoning behind
each emotion prediction made by the model via its Multimodal
Explainability Visualization module.

Index Terms—Artificial Intelligence, Supervised Learning,
Emotion Recognition

I. INTRODUCTION

Understanding the emotional nuances within conversations
has become a pivotal task, with applications ranging from
sentiment analysis in social media to affect-aware human-robot
interactions.The complexities inherent in multi-party conver-
sations, involving interactions between multiple speakers via
various modalities like text, video, and audio, pose significant
challenges for accurate emotion recognition. Extracting the
subtle interplay of emotions from these diverse modalities
necessitates a comprehensive approach that can effectively
capture the spatio-temporal evolution of heterogeneous co-
occurring mode-specific patterns and their mutual interactions
across various modes, while also taking into consideration the
unique and dynamic nature of the speaker’s expressions.

It is particularly to note that the affective state of each
individual evolves continuously during conversation. Such
transitions depend on various intra (e.g. personal background,
unique behavioral traits, and habits) and inter (e.g. audience
behavior, their interpreting conducts) personal contexts as well
as other environmental circumstances. While each speaker’s
visual and auditory cues offer valuable insights into their emo-
tional states, the relationships between these modalities can
be subtle and context-dependent. Additionally, the importance
of different modes is not constant but varies in an instance-
specific manner, depending on situations and contexts. For ex-
ample, there may be a scenario in which a speaker’s facial ex-
pression may be less explicitly representative of their emotion
and its temporal evolution compared to their acoustic signal.
In another scenario, a speaker may feel more restrained in
expressing their emotions due to the conventional setting, such
as at public gathering. In such cases, the surrounding contexts
may provide important cues to facilitate accurate inferences
regarding the speaker’s emotion. Thus the challenges related
to the presence of strong heterogeneity among such cross-
modal representations and the influence of an individual’s
intra-personal and other situational contexts toward learning
a variety of the cross-modal interaction patterns are crucial
yet under-studied.

To address these challenges, we propose a two-level infor-
mation integration technique. First, a Multimodal Attention
Network (MAN) is trained to bridge the heterogeneity gaps
among the mode-specific representations by capturing the
cross-modal interactions at various levels of spatial abstrac-
tion. MAN incorporates an interactive bunch of mode-specific
Peripheral and Central networks, where the utterance-level
mode-specific emotion patterns at every layer of a Central
network are attended by injected feedback from a Peripheral
network. This enables each mode-specific Central network to
prioritize the mode-invariant spatial (within utterance) details
of the emotion patterns, while also retaining its mode-exclusive
aspects within the learned model. Intuitively, this is necessary
because while representing a specific emotional state, various
modalities like text, audio, and video exhibit correlations that
may be apparent at different levels of abstraction. While these
correlating patterns are important, certain mode-exclusive cues
(e.g., the non-verbal response of the audience) may also
convey useful insights about the speaker’s evolving emotional
state at the next time-stamp. Second, an Adaptive Fusion (AF)
technique is employed, recognizing that not all modalities
contribute equally to the process of emotion recognition for
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Fig. 1. Proposed AMuSE Architecture that captures cross-modal interactions and their spatio-temporal evolution to predict the speaker’s
emotion in a conversation.

every query instance. The resulting cross-attended uni-modal
feature descriptors derived from the mode-specific Central
networks are then interpolated via AF in an instance-specific
manner. These interpolated descriptors from the AF are ana-
lyzed on both the conversational level and on a speaker level,
allowing us to track emotional changes for the entire group
and for each individual speaker.Thus, the key contributions of
the proposed model for the Adaptive Multimodal Analysis for
Speaker Emotion (aka AMuSE), are:
1) Cross-Attended Feature Representation via Multimodal
Attention Network that models cross-modal interaction by
“injecting” features from multiple Peripheral networks into
the layers of a Central network. This helps the model to
prioritize the mode-invariant spatial (within utterance) details
of the emotion patterns, while also retaining its mode-
exclusive aspects at various levels of abstraction.

2) Adaptive Fusion (AF) that interpolates the cross-attended
mode-specific descriptors to combine the novel instance-
specific and category-specific utterance-level spatial patterns
within the learned multimodal descriptor.

3) Extensive Evaluations with Explainable Visualization
using publicly available (MELD [29], IEMOCAP [3])
datasets not only demonstrate an impressive classification
performance (3 − 5% improvement in Weighted-F1 and
5 − 7% improvement in Accuracy) of AMuSE, its user-
friendly interface also facilitate the multimodal reasonings
behind a specific prediction made by the model to deliver
improved reliability on its decision.

II. RELATED WORK

Traditionally, works on Emotion Recognition in Conversa-
tions (ERC) have focused heavily on unimodal techniques,

primarily due to the strength of natural language transcriptions
or descriptors as a strong emotional indicator [7], [10], [23].
However, while text serves the purpose in simple scenarios,
it often struggles to evaluate more complex human responses
involving sarcasm or confusion, where more information can
be gleaned about the speaker’s emotional state by studying the
tone, face, posture, and gestures [39]. Recent works [5], [19]
demonstrate the superiority of multimodal techniques. Most
current ERC research has focused on modeling cross-modal
interactions by either concatenating the processed unimodal
feature vectors [13], [23], [28] or by a predefined fixed
combination (e.g., a weighted average of feature vectors) [25],
[34]. While better than unimodal approaches, these techniques
ignore various levels of information that may be critical for the
comprehensive modeling of spatial and temporal multimodal
relationships.

Though promising, many existing methods [16], [31] suffer
from the weakness of an insufficient fusion of cross-modal
interactions, unlike popular beliefs, which may not be uni-
form across instances or categories [8] and vary given an
individual’s unique socio-behavioral responses. Furthermore,
the precision vs. explainability trade-off continues to pose
challenges for the systems. Toward addressing these, we
leverage multimodal information from each sample to track the
evolution of emotion over the conversation both for individual
speakers and the group as a whole, while simultaneously
providing meaningful insights that attempt to explain the
model’s decision.

III. PROPOSED METHOD

Problem Definition: Given a multi-party conversation rep-
resented as a sequence of utterances {uj}j ∈ D, the objective



is to evaluate the dominant emotional state of the speaker for
each utterance uj . For brevity, we will henceforth omit the
suffix j, and an arbitrary utterance uj will be represented as u
unless the suffix is specifically required. Each u ∈ D contains
(T, V,A), where T is the text transcription, V is the video
and A is the audio.

A. Unimodal Self-Attended Feature Representation

To capture the spatial evolution of information within each
utterance, we propose a mode-specific unimodal feature rep-
resentation scheme as described below

1) Text Representation: To derive a compact descriptor for
the text component T represented as a sequence of p words,
i.e. T = {ω1, ω2, ..., ωp}, we employ the pretrained model
[32] to obtain the fixed language embedding fT ∈ Rp×dt

for the text component T . The masked and permuted lan-
guage modeling (MPNet) inherits the advantages of BERT
[6] and XLNet [37] by leveraging the dependency within
the predicted tokens through permuted language modeling
and utilizes the auxiliary position information to mitigate
the position discrepancy. In fact, to explicitly capture the
contextual meaning of each word in an utterance, the initial
MPNet-based word embeddings are used as input to a Bi-
directional-Long Short-Term Memory (Bi-LSTM) followed by
the embedding layer to produce a derived word representation
vector hi for each ωi, which in turn develops a derived
text representation vector w0 = [h1,h2, ...hp] for the text
component T . Toward attaining an attention-aware text de-
scriptor, w0 is further processed through a M-layered attention
FSA
t network computed as wM = FSA

t (w0,M) ∈ Rp×dt .
An intermediate mth layer output in FSA

t is computed as

wm+1 = linear

(
softmax

(wmwT
m√

dt

)
wm

)
and the resulting

attention-enhanced average pooled text descriptor is defined
as fT = wM .

2) Video Representation: For the visual component V
of each utterance u ∈ D, FFmpeg is used to identify n
keyframes and MTCNN [41] is applied to extract the aligned
faces from each keyframe. To represent the facial expression
information within the context of the individuals’ environment,
each keyframe is then decomposed into two components:
“face frames”, which is a derived frame containing only the
face regions of the keyframes; ”back frames”, which captures
the background environment by removing all identified faces.
JAA-Net [30], which jointly performs Action Units (AU)
detection and facial landmark detection, is employed to extract
AUs from each of these “face frames”. Thus, the visual
content V of u is represented in terms of two equal-sized
derived frame sequences: vface = {au1,au2, ...,aun} and
vback = {b1,b2, ...,bn}, where each auj and bj represent a
learned descriptor describing the jth element in vface and
vback respectively. Two identical Bi-LSTM-based sequence
representation modules, which take vface or vback as inputs,
are employed to obtain the initial regional descriptors vface ∈
Rn×dhid

v or vback ∈ Rn×dhid
v , where dhidv is the number of the

final embedding layer units in the Bi-LSTM model. Similar

to the approach followed in the text feature representation
process, a stacked self-attention layer network (FSA

v ), which
retrieves the multi-view attention between vface and vback to
derive a self-attended visual descriptor fv ∈ R2n×dv for V .

3) Audio Representation: Patchout fast (2-D) spectrogram
transformer (PASST) [17] model, which is initialized from an
ImageNet vision transformer model, and further pre-trained
on 10s audio from AudioSet [9], is used to represent the
audio component A of the utterance u. Each segment is
then represented in terms of their PASST descriptor, so
A = {a1,a2, ...,ae}, where ai ∈ Rdpasst is the PASST
feature of the ith audio frame. Similar to visual and text
representations discussed above, a Bi-LSTM network followed
by an M-layered self-attention module FSA

a is leveraged to
obtain attention-enhanced descriptor fa ∈ Re×da .

B. Multimodal Attention Network (MAN) for Cross Attended
Feature Representation

While the intra-modal feature discriminability can be ad-
dressed by the proposed technique above, toward integrating
the contents across modalities, heterogeneity of the data pat-
terns across multiple modes is often a bottleneck. For example,
an utterance by a speaker may reflect an impression on the
speaker’s face as well as on that of other participants in the
conversation. Similarly, the transcript of the utterance should
also be relevant to the visual background context or may have
been a response to another utterance by a previous speaker.
With this intuition, we propose a Multimodal cross-attended
feature representation learning using a Multimodal Attention
Network (MAN) that takes fm (m ∈ {v, t, a}) as inputs, and
models cross-modal interactions at various levels of detail.
As observed in Figure 1, each layer of our MAN models
cross-modal interaction by “injecting” features from multiple
Peripheral networks into a Central network.

More specifically, for each mode m in consideration, its
mode-specific Central query network is designed using h
dense layers followed by a Softmax layer [18], which takes
fm as input and its intermediate lth dense layer output
gl
m, is cross-attended by one or more pairs of Peripheral

key (Kl
mi

) and value (Vl
mi

), such that mi ̸= m. Each
key-value pair is generated via linear mappings. Thus, we
have Kl

mi
= (W l,K

mi
)T fmi and Vl

mi
= (W l,V

mi
)T fmi for

Wl,V
mi

,Wl,K
mi
∈ Rdmi

×dl . In a multi-head attention learning
framework, a particular head for the cross-attended Central
network output from its lth layer is computed as:

gl
m = gl−1

m +
1

|M|
∑

mi∈M\{m}

softmax(linear(
gl−1
m (Kl−1

mi
)T√

dmi

))Vl−1
mi

(1)
Where M represents the set of all modes in consideration.

Such responses from multiple heads are average pooled to
derive the final output of the Central network.

While MAN architecture is generic and can be extended
for any number of modalities, as described in Section III-A,
in our experiments, we use information from three different



modes (i.e.M⊆ {t, v, a}). As shown in Figure 1, each mode-
specific Central query network for each m ∈ {a, v, t}) of
MANs thus produces an average pooled cross-attended mode-
specific descriptor fmCA ∈ Rd for the uni-mode components T ,
V , and A for u. We will discuss the learning algorithm later
in Section III-E.
C. Adaptive Fusion (AF)

Most of the existing methods [2], [14], [24] leverage a
static approach for multimodal feature fusion. Here we make
an important observation: The relative importance of each
modality is not uniform and varies across samples exhibiting
different emotions. For example, a speaker’s emotion may
reflect an influence of several contexts like audience reaction
or surrounding environment. However, the transition of an
individual’s expression of emotion is continuous. Therefore,
slight changes in the utterance representations should not
have caused drastic changes in the utterance’s emotion labels.
Keeping this in mind, we propose an Adaptive Fusion (AF)
function A that learns a linear combination of the mode-
specific representations (fmCA), to derive a comprehensive spa-
tial multimodal descriptor A(u) for an utterance u as follows:

A(u) =
⊕
m∈M

 1

|M|
∑

mi∈M\m

αm
mi

fmi

CA + (1− αm
mi

)fmi

CA


(2)

where 0 ≤ αm
mi
∀m,mi ∈ M ≤ 1 are learnable parame-

ters and
⊕

represents the concatenation operator. Thus, the
proposed fusion function A provides a flexible multimodal
representation mechanism, by which the resulting multimodal
descriptor A(u) for an utterance u is able to retain category-
specific discriminative data patterns, however not completely
disregarding the unique instance-specific data patterns ob-
served in the utterance.

D. Emotion Classification

Given a conversational dialogue represented using a se-
quence of n utterances {uj}nj ∈ D, our task is to evaluate
the emotion of a user-identified speaker s by utilizing the
spatio-temporal contexts observed in the dialogue. To attain
this objective, we design a speaker-specific representation of
the dialogue by using two parallel utterance sequences: Dia-
logue Context, which describes the entire sequence {A(uj)}j ;
Speaker Context, a derived utterance sub-sequence {A(usj )}j ,
where the sub-sequence {usj}sj∈[1,n] is generated from the
dialogue and includes only those utterances, in which s vocally
contributes to the conversation. Given the voice of a speaker
identified by the user in the first keyframe, we use the Librosa
library function to match it across utterances to identify this
derived subsequence. Two parallel Bi-LSTMs are trained to
capture the spatio-temporal contexts independently from these
contexts’ perspectives. In our experiments, Bi-LSTMs were
found to be more useful than LSTm due to their ability to
capture the bidirectional temporal contexts. For example using
the Speaker Context, the pertinent spatio-temporal represen-
tation sl ∈ Rs of an utterance us

l is reasoned from the

representation s(l−1) of us
(l−1), while also considering the

current state of utterance us
l denoted as zsl (which are initially

null) - as sl =
←−−−→
LSTMs(s(l−1), z

s
l ). Similarly, using the

Dialogue Context, the pertinent spatio-temporal representation
dl ∈ Rs of an utterance ul is reasoned from the representation
d(l−1) of u(l−1), while also considering the current state of
utterance ul denoted as wd

l (which are initially null) - as

dl =
←−−−→
LSTMd(d(l−1),w

s
l ). The final representation of each

utterance in the Speaker Context is then derived as, el =
sl ⊕dl, which is used as an input to a simple neural network
comprising of a linear layer followed a softmax activation to
estimate the occurrence of emotion in the utterance.

E. Learning

The learning algorithm of AMuSE includes two independent
learning objectives. A loss objective (L) for MAN learning and
an AF objective to optimize the values of αm

mi
.

1) MAN Learning: Given an utterance uj ∈ D, the pro-
posed Multimodal Attention Network (MAN) jointly learns
the cross-attended representations f tCA,j , fvCA,j , and faCA,j with
twofold objectives: 1) preserving Instance-level discriminabil-
ity [11], [26] within them. This is equivalent to obtaining
the learned representations such that they must be more
discriminative of u compared to the other samples in D. To
incorporate this intuition, we use Noise Contrastive Estimation
(NCE) [11] loss (LNCE); 2) preserving the ‘category-level’
information within their learned representations, such that the
predictions obtained from each of these learned mode-specific
representations may also align with the ground-truth labels.
We leverage Focal Loss [22] for this purpose.

We leverage an aggregated noise contrastive estimation
(LACE) and an averaged focal loss (Lfl), as defined below:

LACE =
1

|D|
∑
uj∈D

1

|M|
∑

m ̸=mi
m,mi∈M

LNCE(f
m
CA,j , f

mi

CA,j) (3)

with

LNCE(f
m
CA,j , f

mi

CA,j) =[
− log

(
P (fmi

CA,j |f
mi

CA,j)

P (fmi

CA,j |f
mi

CA,j) +
|Nj |
|N |

)
+

∑
k∈Nj

log

(
P (fmi

CA,k|f
mi

CA,j)

P (fmi

CA,k|f
mi

CA,j) +
|Nj |
|N |

)
− 1

]
(4)

that computes the probability of both features fmCA,j and
fmi

CA,j representing the same instance uj compared to other
elements in a uniformly sampled negative set Nj .

The averaged Focal Loss [22], specifically effective for an
imbalanced dataset like ours, is defined below:

Lfl =
1

|M|
1

|D|
∑

m∈M

∑
uj∈D

(1− pmc (uj))
γpmc (uj) (5)

where pmc (uj) is the predicted class-membership probability
score for the sample uj by the mth mode-specific Central



TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS USING THE WEIGHTED AVERAGE F1 MEASURE (W-AVG F1) ON THE MELD

DATASET WITH UNI (T:=TEXT, A:=AUDIO, AND V:= VIDEO) AND MULTI-MODAL DATA REPRESENTATIONS. DUE TO THE IMBALANCED
CLASS DISTRIBUTION OF THE DATASET, THE ‘FEAR’ AND ‘DISGUST’ CLASSES ARE REPRESENTED AS THE MINORITY CLASSES, THE

PROPOSED METHOD WAS ALSO COMPARED AGAINST OTHER 5 MAJORITY CLASSES (‘NEUTRAL’, ‘SURPRISE’, ‘SADNESS’, ‘JOY’, AND
‘ANGER’ ) IN THE DATASET AND THE RESULTS ARE REPORTED IN COLUMN ‘W-AVG F1 5 CLS’. ‘FEATURE CONCAT’ IN ROW-12 AND

ROW-13 DESCRIBES THE CONCATENATION OF MULTIPLE UNI-MODE DESCRIPTORS TO DEFINE A MULTIMODAL DESCRIPTOR.

Method Mode Neutral Surprise Fear Sadness Joy Disgust Anger w-Avg F1 w-avg F1
5-CLS

MFN [38] T + A 0.762 0.407 0.0 0.137 0.467 0.0 0.408 0.547 0.5732

ICON [12]
T 0.762 0.462 0.0 0.189 0.485 0.0 0.301 0.546 0.5718
A 0.669 0.0 0.0 0.0 0.086 0.0 0.315 0.377 0.3947

T + A 0.736 0.500 0.0 0.232 0.502 0.0 0.448 0.563 0.5897

DialogueRNN [24]
T 0.737 0.449 0.054 0.234 0.476 0.0 0.415 0.551 0.5759
A 0.53 0.156 0.0 0.083 0.112 0.051 0.321 0.34 0.3542

T + A 0.732 0.519 0.0 0.248 0.532 0.0 0.456 0.57 0.5971

ConGCN [40]
T 0.749 0.498 0.065 0.226 0.524 0.088 0.432 0.574 0.5969
A 0.641 0.254 0.047 0.193 0.155 0.030 0.341 0.422 0.44

T + A 0.767 0.503 0.087 0.285 0.531 0.106 0.468 0.594 0.6175
DialogueCRN [14] T + A - - - - - - - 0.6073 -

EmoCaps [20] T + A + V 0.7712 0.6319 0.0303 0.4254 0.5750 0.0769 0.5754 0.6400 -
M2FNet [5] T + A + V - - - - - - - 0.6785 -

Cross-Modal Distribution Matching [21] T + A - - - - - - - 0.571 -
Transformer Based Cross-modality Fusion [35] T + A +V - - - - - - - 0.64 -

Hierarchical Uncertainty
for Multimodal Emotion Recognition [4] T + A +V - - - - - - - 0.59 -

Shape of Emotion [1] T + A +V - - - - - - - 0.63 -
UniMSE [15] T + A +V - - - - - - - 0.66 -

Proposed Uni-mode
Feature Rep. (Section III-A)
+Classifier (Section III-D)

T 0.7439 0.6191 0.0209 0.3914 0.5178 0.0613 0.5036 0.6041 0.6306
A 0.3838 0.3581 0.0209 0.3286 0.3617 0.0613 0.3529 0.3537 0.3684
V 0.5562 0.4905 0.0209 0.3374 0.4098 0.0613 0.3713 0.4615 0.4813

Proposed Uni-mode
Feature Rep.(Section III-A) + Feature Concat.

+ Classifier (Section III-D)

T + A 0.7627 0.6318 0.0241 0.4214 0.5316 0.0613 0.5597 0.6265 0.6540
T + V 0.7427 0.6218 0.0241 0.4214 0.5316 0.0613 0.5597 0.6158 0.6428
A + V 0.5562 0.5796 0.0209 0.3610 0.4098 0.0613 0.4318 0.4810 0.5017

T + A + V 0.7671 0.6518 0.0319 0.4629 0.5291 0.0691 0.5713 0.6356 0.6632
Proposed MAN-based

Feature Rep.(Section III-B) + Feature Concat
+Classifier (Section III-D)

T + A + V 0.8359 0.7094 0.0674 0.4468 0.6297 0.0891 0.6389 0.6992 0.7286

AMuSE T + A + V 0.8469 0.7283 0.0674 0.4632 0.6481 0.0891 0.6574 0.7132 0.7431

query network and γ is a tunable parameter. We use a
combined loss function L = LACE + Lfl to jointly learn
its mode-specific Central query networks.

2) AF Learning: As observed in Eqn. 2, the multimodal
descriptor A(u) interpolates all cross-attended mode-specific
descriptors (Fmi

CA) to reveal all the discriminative feature
information by leveraging the changes in the model behavior in
response to varying inputs. As such, it is intuitive to note that
a slight change in the feature representation should not cause
any observable change in the model’s decision. Nevertheless,
manual selection for any of the interpolation coefficients
(however small it is) αu

mi
may not be equally effective across

all samples. Thus, the threefold approximation task specific to
our scenario is solved in a pairwise manner. In other words, we
perform the learning of these interpolation parameters by first
approximating α

′

1 for u
′

1 = α
′

1f
m1

CA + (1 − α
′

1)f
m2

CA followed
by approximating α

′

2 for u
′

2 = α
′

2u
′

1+(1−α
′

2)f
m3

CA. Then by
setting FAMuS(u) = 1

3 (u
′

1+u
′

2) and equating the coefficients
of like terms, we obtain αu

m1
= α

′

1 ·α
′

2, αu
m2

= α
′

2 ·(1−α
′

1),
and αu

m3
= 1−α′

2. For optimizing the interpolation parameter
α

′

1 (and similarly α
′

2), we adopt the optimization approach of
[27], which is as follows:

α
′

1 ≈ ϵ
∥(fm1

CA − fm2

CA)∥2∇f
m2
CA
L(Qm2

(fm2), y∗)

∥∇fm2

CAL(Qm2
(fm2), y∗)∥2

⊘(fm1

CA−f
m2

CA)

(6)
where y∗ is the ground truth label for the sample u, ⊘
is the element-wise division, ϵ is the hyper-parameter that

controls the amount of interpolation in the result, and Qmi

represents the ith mode-specific Central query network. To
facilitate the learning process, we randomly identify a set
of informative samples from the validation pool for which
the loss due to a small interpolation is indeed affected (i.e.
system prediction indeed changes by a slight change in the
interpolation parameters) to use in the following training
epochs.

IV. EXPERIMENTS

A. Datasets

Derived from the TV series F.R.I.E.N.D.S, MELD [29] is
a multi-party multimodal conversation dataset comprising 7
emotions - ‘Anger’, ‘Disgust’, ‘Sadness’, ‘Joy’, ‘Surprise’,
‘Fear’, and ‘Neutral’. IEMOCAP [3] is a dyadic conversational
dataset, with recordings of professional actors performing
scripted and improvised scenarios comprising 6 emotions -
’Happy’, ’Sad’, ’Neutral’, ’Angry’, ’Excited’, ’Frustrated’.

B. Results & Comparative Study

Figure 2 provides some qualitative results. Table I and
Table II present the results on MELD and IEMOCAP test
sets, respectively by using F1-score [24] as the evaluation
metric. The results are compared against several state-of-
the-art algorithms [2], [5], [12], [14], [20], [21], [24], [36],
[38], [40], [42]. For each emotion category, we also evaluate
the classification performance using their weighted averages



TABLE II
PERFORMANCE COMPARISON OF DIFFERENCE METHODS USING THE WEIGHTED AVERAGE F1 MEASURE (W-AVG F1) ON THE IEMOCAP DATASET WITH

WITH UNI (T:=TEXT, A:=AUDIO, AND V:= VIDEO) AND MULTI-MODAL DATA REPRESENTATIONS. ‘FEATURE CONCAT’ IN ROW 13 AND ROW 14
DESCRIBE THE CONCATENATION OF MULTIPLE UNI-MODE DESCRIPTORS TO DEFINE A MULTIMODAL DESCRIPTOR.

Method Mode Happy Sad Neutral Angry Excited Frustrated w-Avg F1
MFN [38] T + A - - - - - - 0.3490
ICON [12] T + A + V 0.3280 0.7440 0.6060 0.6820 0.6840 0.6620 0.6350

DialogueRNN [24] T + A + V 0.3318 0.7880 0.5921 0.5128 0.7186 0.5891 0.6275
MMGCN [33] T + A + V 0.4235 0.7867 0.6173 0.6900 0.7433 0.6232 0.6622

DialogueCRN [14] T + A 0.6261 0.8186 0.6005 0.5849 0.7517 0.6008 0.6620
ERLDK [42] T + A 0.4730 0.7919 0.5642 0.6054 0.7444 0.6385 0.6390

Hierarchical Uncertainty
for Multimodal Emotion Recognition [4] T + A + V - - - - - - 0.6598

DAG-ERC+HCL [36] T - - - - - - 0.6803
M2FNet [5] T + A + V - - - - - - 0.6986

Multimodal Attentive Learning [2] T + A + V - - - - - - 0.6540
Proposed Uni-mode

Feature Rep.
(Section III-A)

T 0.2991 0.6141 0.5251 0.5728 0.5918 0.5969 0.5526
A 0.2991 0.3894 0.3951 0.2749 0.326 0.3316 0.3417
V 0.3038 0.5329 0.5619 0.2749 0.326 0.431 0.4260

Proposed Uni-mode
Feature Rep.

(Section III-A)
+ Feature Concat.

T + A 0.3038 0.6368 0.5619 0.598 0.6027 0.6069 0.5727
T + V 0.3359 0.6368 0.5885 0.598 0.6027 0.6069 0.5815
A + V 0.3038 0.5592 0.6328 0.321 0.326 0.5293 0.4782

T + A + V 0.3917 0.6368 0.6354 0.6374 0.6027 0.6399 0.6117
Proposed MAN-based

Feature Rep.(Section III-B)+ Feature Concat T + A + V 0.6591 0.8106 0.7248 0.6599 0.7769 0.6734 0.7147

AMuSE T + A + V 0.7025 0.8418 0.7548 0.6748 0.7935 0.6923 0.7391

across all emotion classes. As observed in Table I, while
‘Text’ appears to be the most reliable uni-modal feature,
combining information from multiple modes is always helpful.
To this end, as we compare the last sub-row of row-12
and row-13, the proposed MAN based cross-attention appears
to be extremely beneficial in improving the weighted F1-
score (w-avg F1) by around 6%. Finally, using a flexible
and efficient fusion approach, the proposed AMuSE facilitates
further improvement in the performance by reporting ∼ 74%
w-avg F1- yet another ∼ 2% improvement compared to
the results reported in the baseline row-13 scenario. Row-13
reports the experiment results, wherein cross-attended mode-
specific feature descriptors (Section III-A) are simply fused
using equal values of the interpolation parameters in Eqn 2
(i.e. αs1

mi
= αs2

mj
∀mi,mj ∈ M,∀us1 , us1 ∈ D). As we

compare this performance (in row-14) with row-8 and row-9
of Table ??, we observe that AMuSE reports around 4−7%
improved performance compared to the best performing
existing methods [5], [20]. A similar performance pattern is
also observed in Table II, wherein AMuSE is compared against
several baseline methods using the IEMOCAP dataset. By
comparing the last sub-row of row-13 and row-14, we find
that the proposed MAN-based cross-attention enables the
mode to attain an impressive 10% improvement over its
baseline test scenario, in which only the mode-specific feature
descriptors (Section III-A) are simply concatenated to define
a multimodal descriptor. Finally, by employing AF for feature
fusion, the model attains ∼ 74% w-avg F1, which overshoots
some of the best-performing baselines [5], [20] by around
2 − 4%. While most of the works use F1-score as the eval-
uation metric, compared to a handful few recent works [14],
[42], which have also reported classification accuracy of their
method, proposed AMuSE reports an impressive performance.
Compared to one of the best-performing baselines M2FNet [5]

that reports 66.71 accuracy in the MELD dataset and 69.69%
accuracy in the IEMOCAP dataset, AMuSE reports around 7%
(i.e. 73.28% accuracy score in MELD dataset) and 5% (i.e.
74.49% accuracy score in IEMOCAP dataset) improvement
respectively.

C. Ablation Study

As observed in Table III, compared to the other testing
scenarios (where either the {αu

mi
∀mi ∈ M,∀u ∈ D}

parameters were chosen at random or were fixed to the same
value for all samples in D and modes M) the proposed
AMuSE shows an improved performance in Test-3 experiment
setting, wherein it leverages the learning algorithm for the AF
interpolation parameters, introduced in Section ??, to optimize
the choices of these parameters in mode-specific and input-
specific manner. This makes the model more adaptable to the
newer data patterns, observed in analyzing speakers’ emotions
from diverse socio-racial backgrounds, compared to those
available in the training collection. In the other set of ablation
study experiments, we choose different values for the tunable
parameter γ in the focal loss function defined in Eqn. 3. Again
as observed in Table IV, in both datasets, the chosen value of
γ = 1 produces a slightly better W-Avg F1 score, compared
to the other values of γ. In fact, the performance of AMuSE
remains mostly stable over a range of values in [0.75, 1.25],
which highlights the system stability in the performance over
the choice of γ values. Finally, in Table V we also report
ablation study results for the number of MAN layers in the
model. The performance remains fairly consistent when using
3, 4, or 5 layers and peaks at 4, which is the number of layers
we have chosen in the model.



Fig. 2. Some example results with 3 mode-specific explainability analysis, wherein explanation columns regions/texts contributing to the
model decision are highlighted in Green. The detracting regions are highlighted in Red

TABLE III
ABLATION STUDY ON THE AF FUNCTION PARAMETERS (αu

mi
FOR

mi ∈ M) WAS PERFORMED IN SEVERAL TESTING SCENARIOS:Test-1 IN
WHICH WE CHOOSE THESE PARAMETERS AT RANDOM SUCH THAT

αu
mi

̸= αu
mj

∀mi,mj ∈ M AND αus1
mi

= αus2
mi

∀us1 , us2 ∈ D; Test-2 IN
WHICH WE CHOOSE THESE PARAMETERS SUCH THAT

αs1
mi

= αs2
mj

∀mi,mj ∈ M,∀us1 , us1 ∈ D; Test-3 IN WHICH WE LEARN
THE PARAMETERS FOLLOWING THE APPROACH (AF Learning) DISCUSSED

IN SECTION III-E2. THE TABLE REPORTS THE WEIGHTED AVERAGE F1
MEASURE (W-AVG F1) OVER ALL CLASSES IN THE DATASETS.

Dataset Test-1 Test-2 Test-3
MELD [29] 70.86 71.10 71.32

IEMOCAP [3] 72.07 72.89 73.91

TABLE IV
ABLATION STUDY ON THE TUNABLE PARAMETER γ IN THE FOCAL LOSS

FUNCTION DEFINED IN EQN. 3.THE TABLE REPORTS THE WEIGHTED
AVERAGE F1 MEASURE (W-AVG F1) OVER ALL CLASSES IN THE

DATASETS.

Dataset γ = 0.5 γ = 0.75 γ = 1.0 γ = 1.25
MELD [29] 70.71 71.08 71.32 70.97

IEMOCAP [3] 71.46 73.47 73.91 73.12

D. Explainability

The proposed explainability analysis approach uses Local
Interpretable Model-Agnostic Explanations (LIME)1 to ex-
plain system decisions. LIME provides Interpretable, Model-
Agnostic Visual explanations for any classifier by treating the
classification model as a black box. LIME approximates the
classifier model locally in the neighborhood of the prediction.
In Figure 2, we present the explainability analysis in various
modes: Textual explanation with the words that contribute the
most (or against) the prediction; face landmarks and Action
Unit (AU) based explanation that illustrates the regions in the
speaker’s face that contribute (using Green) and distract (using
Red) to the prediction. Finally, we present visual regions of
interest in the image responsible for the model’s decision.

1https://github.com/marcotcr/lime

TABLE V
THE ABLATION STUDY SHOWING THE EFFECT OF CHANGING THE NUMBER

OF MAN LAYERS

Model MELD IEMOCAP
1-layer 65.37 68.14
3-layer 69.26 70.98
5-layer 71.03 72.57

AMUSE (4 layers) 71.32 73.91

V. CONCLUSION

We present AMuSE with a Multimodal Attention Network,
which enables effective knowledge sharing from multiple
interactive mode-specific branches to facilitate robust decision-
making. Following a multi-loss learning framework, the pro-
posed Adaptive Fusion allows AMuSE model to learn the
relative contributions of each mode in an effort to learn both
category-specific discriminative details and instance-specific
contrast-enhanced discriminative cross-modal correspondence
within the learned multimodal descriptor. As evident from the
experiments, AMuSE delivers a significantly improved perfor-
mance compared to the baselines. Furthermore, the Interactive
Explainaibility Visualization also guides the user and produces
appropriate mode-wise reasoning for its classification.
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