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Abstract—Graphs are a powerful representation tool in ma-
chine learning applications, with link prediction being a key task
in graph learning. Temporal link prediction in dynamic networks
is of particular interest due to its potential for solving complex
scientific and real-world problems. Traditional approaches to
temporal link prediction have focused on finding the aggregation
of dynamics of the network as a unified output. In this study, we
propose a novel perspective on temporal link prediction by defin-
ing nodes as Newtonian objects and incorporating the concept of
velocity to predict network dynamics. By computing more specific
dynamics of each node, rather than overall dynamics, we improve
both accuracy and explainability in predicting future connections.
We demonstrate the effectiveness of our approach using two
datasets, including 17 years of co-authorship data from PubMed.
Experimental results show that our temporal graph embedding
dynamics approach improves downstream classification models’
ability to predict future collaboration efficacy in co-authorship
networks by 17.34% (AUROC improvement relative to the base-
line model). Furthermore, our approach offers an interpretable
layer over traditional approaches to address the temporal link
prediction problem.

Index Terms—link prediction, temporal graph embedding, sci-
entific collaborations network, co-authorship prediction, network
dynamics

I. INTRODUCTION

Several recent works in machine learning research have
demonstrated the impressive utility of graphs to flexibly
represent complex phenomenon [1]], [2] including biological
networks [3]], brain networks [4], climate networks [5]—[7],
multi-agent systems [8]], computer networks [9]], and social
networks [10]-[12]. One common graph inference problem
is that of link prediction [13] - given a pair of vertices, we
would like to determine the probability of an edge’s existence
now, or at some point in the future. This problem is in
the intersection of graph theory, complex network analysis
[14]], and the network science domain [15[]-[18]]. Traditional
link prediction approaches focus on static link prediction
[19] while the mentioned networks have an evolving nature
and static link prediction techniques cannot be applied to
complex networks with time-varying dynamics [2]. There has
been a significant interest among researchers in addressing
the problem of temporal link prediction [2], [20] in more
recent years. In the following, we address the problem of
link prediction in dynamic networks in more detail and the
proposed techniques for that in the literature.
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In the study of dynamic graphs and temporal link prediction,
the dimension of time is added to the problem of static link
prediction and has changed the nature of this problem. Before
addressing the temporal link prediction techniques, we need
to know how different approaches model network changes
over time. There are two data models to describe time-varying
dynamics: discrete-time models and continuous-time [21]].
Discrete-time models for temporal link prediction consider
time as a series of discrete intervals, such as days or weeks,
and predict the probability of a link forming between two
nodes within each interval. Continuous-time models, on the
other hand, consider time as a continuous variable and predict
the probability of a link forming at any given point in time.
Continuous-time models are often more flexible and accurate
but can be more computationally intensive than discrete-time
models.

There are different techniques in the literature for the
problem of temporal link prediction. One general direction
of techniques for temporal link prediction is temporal graph
embedding techniques [22]], [23]; these techniques aim to
learn low-dimensional representations of nodes in a temporal
graph that capture their temporal dynamics. Temporal graph
embedding techniques include methods such as Temporal
Random Walk [24]], Dynamic Triad Embedding [25]], and
Temporal Graph Convolutional Networks [26]. The next series
of approaches for the problem of temporal link prediction is
Recurrent Neural Networks (RNNs); RNNs are particularly
useful when the temporal dynamics of the graph are sequential
in nature, such as in time-series data [27]. In this approach,
each node is represented as a sequence of vectors over time,
where each vector captures the node’s state at a particular time-
step. The RNN is trained to predict the next state of each node
based on its previous states and the states of its neighboring
nodes. RNN-based approaches for temporal link prediction
include methods such as RNNs for Link Prediction (RNNLP)
[28]] and Temporal Attention-based LSTM (TALSTM) [29].

Matrix Factorization (MF) method [30] is another temporal
link prediction technique. In MF, the adjacency matrix of the
graph is factorized into two low-rank matrices representing
the latent features of the nodes and the latent features of the
time periods. The latent features of the nodes capture their
underlying properties, while the latent features of the time



periods capture the temporal dynamics of the graph. MF can
be used to predict future links by estimating the missing entries
in the adjacency matrix. MF-based approaches for temporal
link prediction include methods such as Temporal Regularized
MF (TRMF) [31] and Dynamic MF (DMF) [30]. We discuss
recently proposed temporal link prediction approaches in the
experiments section in order to compare our approach against
them.

Our particular interest in this work is temporal link pre-
diction in scientific co-authorship networks [32]]. The ability
to predict prospective collaborative structures in scientific
communities may enable the formation of more productive
scientific networks [33[], generating higher quality research
output and publications [34]. Researchers can be productive
as individuals, while the outcome of their teamwork can
exceed the sum of their individual efforts [34], [35]. Our main
contribution in this work is proposing a simple yet efficient
explainable layer over graph embedding techniques to improve
temporal link prediction performance; this work consists of
1- defining each node as an object in Euclidean space, 2-
calculating the temporal velocity sequence of nodes (i.e.,
objects), 3- predicting future velocity of nodes, 4- computing
future location of nodes using location-velocity formula, and
finally, 5- predicting future connections between nodes base on
their predicted placement. The rest of this paper is organized
as follows: the second section elaborates on the proposed
methodology, the third section describes designed experiments,
the fourth section brings the results, the next section is
assigned to the discussion, and the last section is about the
conclusion and future directions of our research.

II. METHOD

Our goal is to predict future scientific collaborations based
on previous years’ co-authorship networks. In this section, we
provide more details on the proposed approach to accomplish
this goal.

A. Illustrative Overview

Fig. 1 (top) illustrates the prediction process of the future
velocity, followed by (middle) the prediction of the authors’
location, and finally (bottom) link prediction, using their
predicted future locations. Fig. 1 (top) shows the velocity and
direction of node movements; the location of embedded nodes
(feature vector) in the latent space, for two consecutive years,
is shown. Each color represents one author (each author’s
color stays the same during all years); circles and squares
represent authors’ locations in the first and second years
respectively. Temporal embedding transfers the graph of each
year to the same latent space; so, after transferring the second
year, the movement direction of each embedded node in the
latent space can be obtained. Fig. 1 (top) also shows the
movement direction of seven authors in the latent space; the
arrow represents the velocity vector of each node moving
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Fig. 1. Velocity prediction, followed by link prediction. (Top) Tracking the
movement of nodes in the embedding space from their location in the first year
moving to the second year. ( Middle) Predicting the future location of nodes in
the embedding space based on their current location (second/last year, shown
by squares) and the movement’s dynamics; i.e., velocity. (Bottom) Predicting
links between the predicted location of nodes in the future based on their
similarity in the embedding space.



from its location in the first year (circles) to its location in
the second year (squares).

Having the current and previous locations of nodes and
knowing the time interval of the movement, we calculate the
velocity of each author’s movement in the latent space. In
Fig. 1 (middle), diamonds represent the predicted location
of authors using their velocity and current location. These
predicted locations are on the curve of the trajectory of node
movement across time (as estimated by LSTM), and relative
to their current and previous locations. Fig. 1 (bottom) shows
predicted links using the predicted location of authors and
the similarity between these predicted locations (similarity and
closeness between their predicted feature vectors).

B. Graph Embedding Approach

To represent the authorship networks as a graph, each author
and each collaboration between author pairs are represented
as nodes and links respectively. More specifically, for each
given year, a given pair of authors have been deemed “col-
laborators” if their names jointly appeared on one or more
papers published during that year. Given our node and link
definitions, we generated one co-authorship network for each
calendar year. Our goal was to develop a model to predict the
collaboration structure (i.e., the links) in a given year, based
on the collaboration structure of multiple years prior.

Following the representation of our data as a set of annual
co-authorship graphs, we performed graph embedding. The
role of the embedding stage was to represent each author,
in each year, as a point in a vector space. Graph embed-
ding was performed using the DynamicGem package [36];
more specifically, the embeddings were generated using the
Dynamic AERNN method [37]. This method is a common
approach for temporal embedding that enables both com-
pressions (via a fully connected encoder) and representation
of the temporal dynamics (via LSTMs) [36]]. Importantly,
the recurrent structure of AERNN allows it to account for
embedding dependencies across years. That is, the network of
the second year is transferred to the latent space with respect
to the nodes’ placement in the previous year. This is important
to trace the networks’ dynamics across time.

C. Essential Notation

Before elaborating on the proposed approach, we define
notation: given graph G(V, E), where V is the set of nodes and
FE is the set of links between nodes, and having states of the
graph in 0 — ¢ consecutive time-steps, our goal is to predict
the state of the graph at time-step t+1. Set S = {sq, S1, ..., 5t}
represents the set of ¢ + 1 consecutive states of the graph,
where each state s; represents the graph at time-step 4. Using
AERNN we represent each node p € V, at s; € S, in a latent
space as a vector 7’; at each time-step ¢, by learning a function
f :+p* — 7, which maps each node from graph-structured data
to a vector in Euclidean space, R? where d is the dimension
of latent (i.e., embedding) space.

D. Proposed Innovation

The novelty of our work is an extension of Temporal
Embedding Approaches that considers the embedded nodes
as Newtonian Objects characterized by their position, as well
as their Velocity in the embedding space. That is, we use
the difference in embedding position over multiple years to
infer the dynamics of the network, and use these dynamics to
predict the future location (and hence, the connectivity) of the
nodes. The velocity formula of node p, moving from time-step
1 — 1 to 4 is represented in (1).

Vp|p €V and V(Si_l, Si)‘si_l,sqj € S :

Vel 7' 7 =r) — 7! (1)

One can predict a node’s velocity moving toward the next
state by feeding a sequence of consecutive velocities of the
node, in time-series form, to a time-series prediction model;
in our case, the velocity prediction model used an LSTM. Our
velocity predictor model is a 3-layer recurrent network with
512,256 LSTM units in the first and second layers, respec-
tively; the number of LSTM units in the third layer changes
according to embedding size. After embedding all nodes across
all years, we have Vp € V : r, = {r),rj,r2, ...}
By passing this sequence to (1) for each node, the velocity
sequence for each node is generated as Vp € V : Velzl)"t =
{Vel),Vel2, ..., Vell}. Note that the length of Vel is ¢
which is 1 unit shorter than r,. Here, we have the velocity of
node p when it arrives at s as Velzl7 (moving from sg to s1).
Velfa is velocity of p at s; and goal is predicting p’s velocity
moving towards s;4; in the future.

After predicting the dynamics of each node (i.e., velocity)
we did a 2-dimensional aggregation for each node: first,
aggregation over time-steps (vertical) and second, neighbor
aggregation in the last time-step (horizontal). Vertical aggre-
gation captures historical-temporal information of the node’s
dynamics using a weighted aggregation function over the past
h velocities of the node, including the predicted velocity;
this aggregated velocity represents the temporal information
of the dynamics. The aggregation formula is shown in (2);
the equation performs a weighted sum of the past A node
velocities, biased to favor more recent velocities.

The goal of velocity aggregation is to find the direction
of node movements; we compute a weighted resultant of the
node’s last i velocities to keep the final velocity on the curve
of node movements. Equation (2) captures the temporal order
of velocities by weighting them. This way, recent dynamics,
which are more deterministic, get higher weights.

Velfooi = ﬁzgjﬁ:ﬁ;n x Vel (2)
Using the aggregated velocity, we initialize the location of
nodes at time-step £+ 1 as we can see in (3). In this equation,
Init indicates the initialization value.

Loclmiteer = Veldooee 4ol 3)



The location of each node is 1- dependent on its history
which we addressed by vertical aggregation, and 2- dependent
on interactions between nodes with the rest of the network; a
given node should be closer to its neighbors and far from nodes
that are not in its one-hop neighbor Horizontal aggregation
captures interactions between each node and the rest of the
network. Zhang et al. [38] proved that the local network of
a node provides enough information on node dynamics in
order to predict its behavior. According to Zhang et al. [38], a
second aggregation over Loc!™" of one-hop neighbors of the
node, can be used to capture the interaction of the node’s local
network. In our case, the aggregation function is the average
over Loc!™ of the node’s one-hop neighbors and the node
itself as shown in (4).

1
IN|+1

where [V is the set of one-hop neighbors of node p.

The last update to the nodes is done by horizontal aggre-
gation and provides us with final locations; link prediction is
done based on these locations. It is done by measuring the
level of similarity of each pair of nodes.

After predicting the location of nodes, Euclidean Similarity
is applied to each pair of (location of) nodes in order to
determine the level of similarity between them; this similarity
level will be proportional to the probability that the nodes
will contain a link in the future and can be used for edge
classification || In this research, we have used the Area Under
the Receiver Operator Curve (AUROC) and the Area Under
the Precision-Recall Curve (AUPRC) as performance metrics.

A _ Init
LOCp 9gt+1 — ZueN(p)UpLOCu t+1 (4)

III. EXPERIMENTS

Experiments were designed with three goals; the primary
goal of the first series of experiments was to compare the
performance of the proposed approach against AERNN as
the baseline. The second series of experiments investigated
the effect of model hyper-parameters on the performance of
both approaches. The last series of experiments examines the
performance of the proposed approach on a common dataset
in the field of temporal link prediction against the recently
proposed approaches for this problem.

A. Dataset

Data for the first and second series of experiments was
sourced from BRAINWORKS, a curated subset of 40 Million
publicly available scientific papers, and their accompanying
meta-data (authors, citations, funding sources, etc.) [39]. We
extracted all publications available in BRAINWORKS from
2005-2021; this provided a total of 1,733,813 papers. From
each paper, we extracted the set of all authors; in total, there
were 6,305,889 authors over the 17-year period, an average
of 370,934 per year. For related experiments, we focused our
analysis on a subset of authors that had published at least
one paper per year (random 3,000 out of 13,655 authors),

'One-hop neighbors of each node are its directly connected neighbors.
2Following re-scaling between 0 and 1

over the 17-year period spanned by our data; we emphasize
here that this inclusion criterion is based on the common idea
of considering known nodes when studying link prediction
problem [40], [41].

B. Performance Metrics

We have used Area Under the Receiver Operator Curve
(AUROC) and Area Under the Precision-Recall Curve
(AUPRC) as performance metrics. AUROC and AUPRC were
evaluated on multiple random samples (n=3,000 nodes) drawn
from the 13,655 authors in our data. More specifically, we
report the results of experiments over 10 randomly selected
samples of 3,000 authors; all authors published at least one
paper in the 17-year time-frame. We evaluated the ability of the
normalized ([0, 1]) Euclidean similarity measures generated by
our model to predict co-authorship structure in 2021, given
data from 2005-2020.

C. Model Training and Validation Approach

Train and test sets were generated as follows: from each
random sample of authors, the induced subgraph was obtained
(across all time) and embedded using the AERNN encoder
with lookback = 1 (lookback is set to 1 to generate embeddings
for our approach across all experiments, any other referral
to lookback is about its setting for AERNN in the experi-
ments); since social networks are large-scale sparse graphs,
the number of connected pairs of nodes (positive samples)
is notably smaller than the number of unconnected nodes
(negative samples). Hence, we included all positive samples
and randomly selected the same number of negative samples,
per year. Positive and negative samples were labeled +1 and
-1, respectively. Data from the years 2005-2020 were used as
training data, while data from 2021 was used for testing.

D. Comparison of Proposed Approach Against the Baseline

To compare the proposed approach against the baseline,
we fed graphs from the years 2015-2020 as training data
to both methods. So, the length of the series was set to
6. We set the number of previous graphs for learning to
3 for the baseline (lookback = 3). The history length for
velocity aggregation for the proposed approach was set to
3. The size of the embedding dimension was set to 128 for
both methods. In order to investigate whether the proposed
approach improves the quality of the embeddings generated by
the baseline, we generated the final embedding of the baseline
(appeared in figures as Raw Embedding which is the output
of the encoder of AERNN and the input to our framework)
and our approach. Euclidean Similarity function was applied to
the Raw Embedding and locations (i.e., embeddings) predicted
by our proposed method to generate connection probabilities.
We compared these probabilities against predicted links by
AERNN.

E. Hyper-Parameters Analysis

In this research, we had three main hyper-parameters. The
embedding size (dim), which is the primary parameter of



approaches that have an embedding step as part of their
framework, time-series length (1), the parameter determining
the length of needed previous states of the network in order to
learn long-term dependencies, and history (h), the parameter
controlling the length of recent history directly involved in
updating dynamics (dominant history of dynamics).

The first evaluated parameter is the size of the embedding
space. The goal is to find out how changing the dimension
of the embedding space affects the performance and whether
the approach is robust to changes in dimension; also, we
evaluated whether we needed a higher dimension size to
reach higher performance. As the primary setting stands
for I = 6, lookback = h = 3, we did experiments for
dim = {32,64,128,256}.

The next evaluated parameter is [, the length of time-series.
Analyzing [ leads to finding the optimum length for learning
long-term dynamics. Shorter series results in time efficiency as
well as eliminating data redundancy, in case the performance
of shorter series is still high; if a smaller number of time-
steps is enough for learning, we do not need extra data and
could do experiments more efficiently, in terms of both time
and computation. Also, data shortage is a common issue in
machine learning problems; so, if a shorter sequence could
result in sufficient performance, we can solve a greater range
of problems having smaller data. We did experiments by
setting lookback = h = 3 and dim = 128. We tested 6,9, 12,
and 15 for [.

The last evaluated parameter is h; history length. The set
of studied values for h is {2,3,4,5,6,7,8,9}; the goal of
this experiment is to study the length of recent temporal de-
pendencies, that are directly affecting future behavior. Finding
the point where dynamic dependencies vanish is another goal.
l is set to 12 and dim to 128. With this range, we can compare
small history lengths against higher ones.

FE. Comparison of the Proposed Approach with State-of-the-art
Methods

In this section, we expanded our experiments to evaluate
the performance of our approach against a wider range of
techniques. We used Hyper dataset [42], [43] for this section.
Hyper (Hypertext2009) is a network of face-to-face contact
of the participants of the ACM Hypertext Conference 2009.
Link prediction techniques that were used for comparison
include GraphSAGE [44]], CTDNE [45], SGNN [46], TREND
[47], and DMAB [48]. GraphSAGE is a graph representation
learning algorithm that learns node embeddings by aggregating
information from its neighboring nodes in a graph. The
GraphSAGE algorithm consists of two main components: 1.
Aggregation function: This function aggregates the feature
vectors of the neighboring nodes of a given node to generate a
summary vector that represents the local neighborhood of the
node. 2. Update function: This function takes the summary
vector generated by the aggregation function and updates the
embedding of the node.

CTDNE (Continuous-Time Dynamic Network Embedding)
is a graph representation learning algorithm that learns node

embeddings in dynamic graphs, where the graph structure
changes over time. CTDNE models the evolution of the
graph using continuous-time Markov processes and learns
embeddings that capture both the static and temporal aspects
of the graph. The CTDNE algorithm consists of three main
components: 1. Transition probability function: This function
models the probability of a node transitioning to a new state at
any given time. 2. Objective function: This function measures
the quality of the learned embeddings by comparing them
to the observed transitions in the graph. 3. Optimization
algorithm: This algorithm updates the embeddings to minimize
the objective function.

SGNN (i.e., Streaming Graph Neural Networks) regards
temporal networks as streaming data and uses a message-
passing mechanism for representation learning, which updates
node information by capturing the sequential information of
edges (interactions), time intervals between edges, and infor-
mation propagation. TREND (i.e., Temporal event and node
dynamics for graph representation learning) is a GCN-based
method inspired by the self-exciting effect of the Hawkes pro-
cess that captures the individual and collective characteristics
of events by integrating event and node popularity, driving
more precise modeling of the dynamic process.

DMAB: In this approach, to explain network evolution more
interpretably, two dynamic properties of nodes are extracted
and quantified: activity and loyalty. Activity is the basic
ability of a node to obtain links, and loyalty is its ability to
maintain its current link state. Based on the activity and loyalty
properties of nodes, the Develop-Maintain Activity Backbone
(DMAB) model performs link prediction. The DMAB model
integrates these two modules for link prediction. The Activity
Backbone describes the inclination of nodes to create links
based on their activity level. The Maintain-Develop Module
(DMM) describes whether a node tends to develop new friends
or maintain old relations based on their loyalty level.

1) Experimental Setting: For all the approaches, we divided
links based on the time they appeared in ascending order with
the ratio 3:1 to train and test sets. The maximum number of 1,
2, 3, 4, 5-hop neighbor nodes for GraphSAGE is 25, 10, 10,
10, 10. For CTDNE, temporal neighbor selection has been set
to unbiased distribution [45]]. For SGNN, the maximum propa-
gation size is set to 50. For all the baseline methods, their best
performance across Average, Cosine, Hadamard, Weighted-
L1, and Weighted-L2 similarity functions is reported. For our
approach, we set history = 3 and divided the training set into
7 overlapping timesteps based on validation on set {6, 7, 8,
9}. The embedding size is 128 for all methods.

IV. RESULTS

In this section, we will first bring the result of the com-
parison of the proposed approach against the baseline, i.e.,
AERNN. Then, the result of changing dim, [, and h over
experiments will be shown. Table 1 represents the result of link
prediction experiments on Raw Embeddings, AERNN, and the
proposed approach. Based on table 1, our proposed approach
has outperformed the baseline in terms of both AUROC
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and AUPRC scores. Also, based on experimental results, our
approach highly improved the baseline’s Raw Embedding
quality. Table 1 indicates that the proposed approach has
improved the AUROC score of the baseline by 17.34% (0.119
absolute increase).

Figs. 2 and 3 show how changing the embedding dimension
affects the performance of the two approaches, as well as the
performance of Raw Embedding, in terms of AUROC and
AUPRC scores, respectively. For this section, we fix the setting
for h and [ to 3 and 6 respectively, and repeated the experiment
with setting dim to 32, 64, 128, and 256. Fig. 2 represents
that the best results for Raw Embedding, AERNN, and the
proposed approach have been achieved by setting dim = 32,
dim = 256, and 128, respectively. These results are true for
both AUROC and AUPRC scores. Figs. 4 and 5 demonstrate
the experimental results of the effect of changing the length
of time-series on link prediction performance. Setting is as
follows: dim = 128, h = 3, and | € {6,9,12,15}.

We did experiments on h € {2,3,4,5,6,7,8,9} to evaluate
the effect of changing history length on the performance. To
have the same condition for all experiments we set dim = 128
and [ = 12. The result is shown in terms of the AUROC score
in Fig. 6.
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The last series of experiments evaluated the proposed ap-
proach against recently proposed approaches for the problem
of temporal link prediction in the literature. Table 2 demon-
strates the results of applying multiple approaches to the Hyper
dataset.

V. DISCUSSION

The first series of experiments have been designed in order
to assess the performance of our proposed approach; these
experiments confirm that our approach improves the standard
temporal embedding model for co-authorship prediction by
17.34% in terms of AUROC score. Also, results from Figs. 2

TABLE I
COMPARISON OF PROPOSED APPROACH WITH
STATE-OF-THE-ART (AUROC)

GraphSAGE CTDNE SGNN TREND DMAB Proposed  Ap-
proach
0.5964 0.5742  0.5788 0.5948  0.6682 0.6843




and 3 demonstrated how capturing velocity as an independent
dynamic of nodes, rather than capturing dynamics altogether,
has highly improved Raw Embedding quality. Figs. 2 and 3,
represent for all dim € {32,64, 128,256}, our approach has
higher performance compared to the baseline. Also, we can
see a gradual growth in the AUROC score of our approach
by increasing the embedding size up to 128, and for the
baseline, there is a sharp slope moving from 64 to 256. Fig.
2 shows that increasing the embedding size improves the
performance of the baseline while it doesn’t make a notable
change in the proposed approach’s performance; while we get
the best result for the baseline by setting the embedding size
to 256, our approach has the best performance by setting the
embedding size to 128; achieving higher performance with a
smaller embedding size is more efficient in terms of time and
computation. Fig. 3 represents the results of link prediction for
different embedding sizes in terms of AUPRC score for both
approaches. We see that our approach has a better performance
for all dimensions during all experiments on different samples.
These series of experiments also reveal that our approach is
highly robust to changes in embedding dimension as there is
no more than 1% change in performance.

The next experiment was done to evaluate the effect of time-
series length on learning improvement. We did experiments by
setting dim = 128, and h = 3, and | € {6,9,12,15}. We can
see in Fig.s 4 and 5 that including long-term dependencies
in the learning phase has improved the prediction ability of
AERNN as well as the Raw Embedding. This improvement
is sharp for AERNN, moving from [ = 6 to [ = 12, while
for our approach shorter time-series perform more efficiently.
The improvement moving from the shortest series towards the
longest one for AERNN is 6.66% while this value for our
approach is a negative value. This reveals that our approach
captures enough predictive dependencies from shorter series
by predicting velocity; so there is no need for having older
histories of nodes in comparison to the baseline; learning from
shorter series increases the efficiency of our approach and
makes it a more general-purpose approach as in many datasets
we do not have access to a long history of the network.

The next experiment evaluated the effect of the recent
history of node dynamics on its future behavior. As shown in
Fig. 6, each method behaves in a different way in response to
changing history length. The range of performance scores for
different history values for our approach is [77.6, 79.5] while
this range is [70.7, 77.1] for the baseline; these performance
ranges demonstrate that our approach is mostly robust to the
changes in history length and the difference between highest
and lowest performance is 1.8 (this value for baseline is 6.3).
Relying on longer history for better performance leads to a loss
of generality and less efficient computations and in this case,
the baseline is superior (although the proposed approach has
better performance for all history lengths). The last experiment
verified the efficiency of our approach against state-of-the-art
for the task of temporal link prediction on a common temporal
dataset.

Capturing high-order complex dependencies between nodes

leads to high-performance link prediction. Appropriate struc-
ture, designed using neural networks, can capture these depen-
dencies; in the meantime, there are some dependencies that we
can capture more precisely and velocity is one of them. Based
on experimental results, besides capturing the dynamics of the
network generally, focusing on dynamics separately leads to
capturing more predictive information; this way we improved
embedding quality and got higher prediction performance. The
other dynamic that we tried to directly take into account was
local interaction of nodes with rest of the network. We used the
theory mentioned by Zhang et al. [38] to capture the hidden
information in node interactions with the rest of the network.
According to Zhang et al. [38]], we aggregated the location
of the local neighborhood of each node to estimate its final
location.

A. Application

Our proposed approach is not limited to co-authorship
networks as we did not use co-authorship-specific features in
the learning algorithm. The proposed method does not require
special conditions, making it a general approach for time-
series prediction problems. This approach provides enriched
embedding and can outperform or improve other techniques
in its class since it needs a short history length and a short
series length. It can also be applied to current approaches as a
final step in order to enrich currently generated embeddings.
These upgraded embeddings can improve link prediction per-
formance and be useful for other graph-based tasks; e.g., node
classification. This method predicts a velocity curve, so more
than 1 step in the future may be predictable with high accuracy,
making it superior to approaches in its class.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a novel method for the tem-
poral link prediction problem with a special emphasis on
co-authorship networks. Our approach leverages a sequence
of author node embeddings and embedding dynamics to
improve the prediction of prospective similarities between
authors compared to the baseline: 0.1191 absolute and 17.34%
relative improvement in the AUROC score. The novelty of our
approach is in our formal accounting for embedding wvelocity
when making predictions; the velocity of author embeddings
improves our ability to model prospective collaborations (i.e.,
links) as a function of the historical trajectory of author
collaboration similarities. This method can, with minor mod-
ifications, be applied to other edge prediction tasks beyond
co-authorship networks; also, it can be directly applied to
embedding generated by various methods, as an improvement
step.

Future directions for this work include the development of
richer representations of authors including authors’ research
interests, similarities between scientific indexes, and institu-
tions. Another direction of future research is trying to predict
two or more steps in the future; as we predict the pattern of
the velocity curve of the node’s movement, we may be able
to predict the state of the network for longer unseen steps



in the future. To capture the dynamics of the movements of
nodes in the embedding space more precisely, we want to take
acceleration into account besides the velocity.

VII. CODE AVAILABILITY

The source code of the proposed method required to repro-
duce the results is available at the public GitHub repository
https://github.com/Sanaz11-3/Temporal-Link-Prediction.
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