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Abstract—This paper presents an approach to open-loop 
motor control using Integrate and Fire (IF) neurons. The 
controller aims at mimicking motor control structures found in 
the brain and consists of three neuron populations implemented 
on different VLSI chips. The first population codes the distance 
to the target in a form of a firing rate (similarly to some class of 
cells found in Area 4 in the motor mammalian cortex). The 
second population mimics the behavior of neurons of the basal 
ganglia and control the gating and speed of the movement, by 
means of an NMDA synapse and an excitatory connection. The 
third population codes the supposed position reached by the 
robot. The multi-chip neuromorphic setup is interfaced with a 
Field-Programmable Gate Array (FPGA) board by the Address 
Event Representation (AER) communication protocol. The 
FPGA elongates the spike duration to make them suitable for 
driving the motors with Pulse Frequency Modulation (PFM). 
This approach aims to compete with classic controllers offering 
lower power, simplified control and smoother movements.  
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based, robotics 

I.  INTRODUCTION

We present an algorithm for motor control implemented 
with neuromorphic hardware [1]. The neuromorphic 
engineering field aims to mimic the behavior observed in 
biological nervous systems. The origin of this research field 
dates back to the late  eighties, since then the researchers have 
concentrated efforts in developing sensors, analog chips with a 
large quantity of Integrate and Fire (IF) neurons , synapses and 
learning circuits  as well as a broad number of circuits to 
reproduce some specific functionality observed from in-vivo 
experiments [2]. Although the community major attention has 
been focused on solving specific tasks by creating new analog 
circuits, more recently large-scale architectures have been 
developed [3-5]. The currently available real-time 
neuromorphic systems are well suited for exploring 
biologically inspired motor control algorithms. Recently, a 
classical industrial approach such as Proportional-Integral-
Derivative (PID) control has been proposed to develop a 
neuromorphic motor controller [6, 7]. Nevertheless, this 
approach is developed under industrial constrains that might 
not fit with neuromorphic engineering goals. Recent work 
presented in [8] describes the use of neuromorphic hardware to 
control the robot motor torques. Our research aims at 
developing a full motor controller closely inspired by the 

control mechanisms found in the human nervous system. This 
research has high potential for improving understanding of 
biological motor control, developing novel controller 
techniques and eventually substantially reducing power 
consumption. This is the first attempt to use analog low-power 
subthresold VLSI IF neurons for motor controlling (without 
using a microcontroller) and it is currently limited to open loop 
control. The controller proposed in this work is modeling the 
first layer related to movement planning [9] and it is currently 
being updated to implement a second layer where the loop is 
closed. 

This work is based on the results presented in [10]  for the 
Vector Integration To-End point (VITE) bio-inspired algorithm 
and its translation to the event-based processing paradigm 
using building blocks on a Field Programmable Gate Array 
(FPGA) [11]. The original algorithm was designed for 
calculating a non-planned trajectory. It computes the difference 
between a target and a present position referred to muscles’ 
lengths by iterative calculation of the difference between the 
target and the present position without using any feedback: the 
command signal is used to estimate the current position. The a-
lgorithm includes a so called GO signal which let you control 
the speed. A non-zero value of GO signal will trigger the 
movement and the speed control is encoded in its temporal 
profile. The shape of the signal proposed in [10] was a ramp, 
and its slope was used to set the speed of the movement. The 
main contribution of the original algorithm on its own is, so far, 
the generation of the position and the speed profile trajectory 
that the joint should follow. The goal of this research is to use 
the algorithm described to control a robotic arm platform under 
the constraints of the spiking neural networks based on IF 
neurons. Using a classic robotic arm, the features of the 
algorithm are tuned to adapt the concept of muscles to motors. 
So, a direct translation of the algorithm would lead to loss of 
functionality; we therefore included new features suitable for 
the spiking neurons in use.  In a motor driven robotic arm two 
variables are crucial for the control algorithm: the target 
position and the current position.  In the new version of the 
algorithm, these two variables represent the space position that 
the joint of the limb aim to reach. In a spiking neural network 
these analog variables can be represented by the frequency of 
neurons. We used three populations of IF neurons to encode 
the three variable requested by the motor control algorithm, 
namely the difference between the target and the reached 
position, the effect produced by the GO signal and the 



estimated position. The resulting neural network is designed to 
control one motor of the robot and it could be replicated to 
control n degrees of freedom. Given the open loop nature of the 
current algorithm, the descending control signal is used to 
estimate the present position. We plan to further extend the 
algorithm by using motors with encoders. The signals provided 
by usual encoders include the position and the velocity, so they 
can be used to implement a second stage where the loop is 
closed. This second stage will interface the first planning stage 
to adjust its behavior.  

In this paper we describe the biological motivation and the 
methodology followed (Sec. II), the network model proposed 
(Sec. III), the results for the software (Sec. IV) and hardware 
implementation of the control model (Sec. V), and finally 
discuss current achievement and possible outlook (Sec. VI).  

II. BIOLOGICAL MOTIVATION AND METHODOLOGY

In the late eighties Bullock and Grossberg proposed a 
biologically realistic model of planned arm movements [10] 
broadly used at the robotics field [12-14]. The model follows 
the principles of how intended movements are carried out by 
humans. This section aims to update the relation between the 
model proposed and the biological properties that nowadays 
are known. Finally, we describe the methodology to check the 
behavior of the new model.  

Neurophysiological data supports the choice of the main 
computational blocks of the algorithm: in [10], some 
similarities with the population which codify the difference 
between the target position and the present position are shown. 
This population is called Difference Vector (DV) population 
and is matched with cells found in the precentral motor cortex 
(Area 4). In [10], also the gating mechanism involving a trigger 
signal is shown. This so called GO signal can be assimilated 
with one function of the basal ganglia (BG) in motor control 
[10]. The BG is the largest subcortical structure placed at the 
base of the forebrain. The main components are: the globus 
pallidus (GP), the striatum, the nucleus accumbens, the 
substantia nigra and subthalamic nucleus. The matched 
behavior is, specifically, with the activity found on the globus 
pallidus.  

We studied the model proposed in [10] in light of more 
recent biological findings. Furthermore, the mapping of the 
original model to analog spiking neural networks forced us to 
include more detailed neural dynamics (e.g. NMDA) to achieve 
similar performances. The model can be enhanced by including 
further details related to the basal ganglia behavior [15-19].The 
experimental results presented in [15] strongly support the 
existence of movement gating. Nevertheless, the work 
presented in [16] lead to the hypothesis that the basal ganglia 
alone cannot account for full movement control and cortical 
structures must also be involved. According to [17], the 
initiation of muscular movements is preceded by activity in the 
cerebral followed by activation of the GP. This observation 
also supports the VITE model by thinking of a pre-computation 
of the difference between the target position and the present 
position meanwhile GO signal has a zero value. In [18], the 
basal ganglia role in movement generation is explained as 
follows: once the cortex has come to a decision of making a 
specific movement (stimulus is delivered), the striatum (region 
of the basal ganglia target of cortical input) is activated. Then, 

internal complex activity of the BG releases the pathways to 
allow the movement. In particular, direct projections from the 
cortex to the striatum and subthalamic nucleus are believed to 
activate the basal ganglia [19]. The input to the striatum is 
mediated by the N-methyl-D-aspartate (NMDA) receptors 
while the input to the subthalamic nucleus targets the non-
NMDA channels. Furthermore, in [19], the authors support the 
idea that cortical activity is necessary to activate the BG.       

The model we propose takes inspiration from these 
observations and incorporates the basal ganglia function and 
the NMDA channels role in a simplified neural network 
suitable for controlling a robotic platform. We simulated our 
model on a standard desktop using the Brian Simulator [20] to 
characterize the network dynamics. The simulation results 
guided the subsequent neuromorphic implementation using a 
multi-chip setup [1]. 

III. NETWORK MODEL

A schematic drawing of the proposed neural network is 
shown in Fig. 1. The network comprises three different 
populations: the Difference Vector (DV) population encodes 
the difference between the target and the estimated current 
position; the GO population implements movement gating and 
speed control; the Present Position Commands (PPC) 
population encodes the estimated current of the robotic arm. 

 Four excitatory connections are part of the network: a 
couple of them are inputs and the other two are used to connect 
populations. The target stimulus (constant rate spike stream) 
excites all the neurons of the DV population and it is tuned to 
produce a one to one relation between presynaptic and 
postsynaptic action potentials. The GO signal stimulus excites 
the GO population and it is a spike stream in which the rate 
increases over time. Short-time depression in the synaptic 
connection prevents the production of post-synaptic spikes in 
absence of a target stimulus. Finally, we have two excitatory 
recurrent synapses: one to connect the DV population with the 
GO population (as described in the next paragraph) and the 
other one to connect the GO population and the PPC 
population to update the position by integrating the incoming 
spikes.  

Fig. 1. Spiking neural network diagram. 

The GO population has a special synapse that connects it to 
the DV population. This synapse plays the role of the NMDA 
channels described in Section II. With this synapse, the desired 
behavior is achieved: neither the target nor the go stimulus 
presynaptic spikes in an isolated way will produce any 
postsynaptic action potential, which results in the desired 
gating movement function. The NMDA synaptic circuit 
produces an output current only if the membrane potential of 
the post-synpatic neuron is above a fixed threshold, referred as 
NMDA threshold and set by an input bias voltage. The 
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excitatory synapse of the GO signal will keep the membrane 
potential higher than the NMDA threshold but without firing. 
Then, when a presynaptic spike occurs in the connection with 
the DV population, the membrane potential is higher than the 
NMDA threshold thus allowing the NMDA synapse to produce 
an output current and trigger a spike in the postsynaptic neuron. 
The last connection is the inhibition between PPC and DV 
population. This synapse is tuned to inhibit the output firing 
rate of the DV population when the PPC has reached the firing 
rate set by the stimulus (robot has reached the target location) 

IV. SIMULATION RESULTS

 This section presents the results obtained using the Brian 
simulator to verify the performance of the network described in 
the previous section. The simulations are done with one neuron 
per each population (one-to-one fashion connected). Fig. 2 
shows the firing rate of each population including both stimuli: 
the target which excites the NMDA and the GO signal which 
excites the non-NMDA receptors. Figs. 2 and 3 show how an 
initial non-zero GO signal in coincidence with a delayed target 
stimulus does not trigger any response, which is only present 
when both signals are active. When the GO stimulus set the 
membrane potential of the GO population higher than the 
NMDA threshold, the arrival of a presynaptic spike from the 
target will provoke a post-synaptic spike. To get this behavior 
related to non-NMDA channels and prevent the firing, the 
excitation connection of the GO stimulus is the one which 
includes a short time depression mechanism; otherwise, the 
time increasing firing rate of the GO stimulus will make the 
neuron fire. Fig. 3 shows how increasing the slope of the GO 
stimulus the target is reached faster, as original algorithm. 

V. HARDWARE RESULTS

This section shows the results obtained with the hardware 
setup. The hardware setup consists of three VLSI chips a 
dedicate hardware infrastructure to operate them [21-22]. The 
chips comprise a total of 4224 leaky IF neurons and 16384 
analog AER synapses. Both the neural and synaptic circuits 
exhibit biologically plausible adaptation mechanisms (e.g. 
short-term depression, spike frequency adaptation, etc.). Please 
refer to [1] for detailed descriptions of the circuits 
implementing the neuron and synaptic models. Finally, the 
neurosetup is connected to the AER Node board [23] using 
AER. At the end of the architecture, the robotic platform is 
located. It is a small robotic arm with cheap DC motors (OWI 
brand and model 535) and five degrees of freedom. One chip is 
used for each population: DV, GO and PPC. This division has 
been done on behalf of a better parameter tuning; otherwise, it 
will be not possible to achieve an accurate performance due to 
shared parameter among different populations. The number of 
neurons will depend on the robotic platform to control: when 
Pulse Frequency Modulation (PFM) is used, the firing rates to 
drive the motors will be fixed by the motor model. Thus, the 
number of neurons is fixed by the required firing rate. With this 
technique, the spikes can be supplied to the motors by 
spreading them the appropriate time length to avoid them to be 
filter by the motor and also a jerk movement (a jerk movement 
is a non-smooth one as the ancient ‘robot’ motion). For 
instance, if the rate is very small and the motor has a slow 
response, the spikes will be filtered and if we spread them too 

much, a jerk movement will be produced. So, a trade-off 
should be reached. 

Fig. 2. Firing rates of one neuron of each population. The target stimulus is 
25 spikes /s. Rates of the stimuli, DV population, GO population and PPC 
population are shown according to the legend. The PPC population reaches 
the target stimulus set in 0.45 seconds since its activation as is shown by the 
vertical dotted lines. Once the target is reached, the DV population is fully 
inhibited and if the stimulus is not supplied, the network activity does not 
produce any spiking activity.   

Fig. 3. Firing rates of one neuron of each population. The target stimulus is 
the same at the previous plot, 25 spikes / s but the slope profile is higher than 
the previous one and now, the target is reached in 0.3 seconds since its 
activation. Once the target is reached, the DV population is fully inhibited and 
if the stimulus is not supplied, the network activity does not produce any 
spiking activity.   

Specifically, for this robotic model, the number of neurons 
per population needed to achieve a smooth control of the 
robotic arm was 60 IF neurons. The fashion connection is one-
to-one. It results in a 60 replicated layers of the network 
showed in Fig.1 without any connection between them (that is 
the reason why only one neuron per population was used for 
the simulations). Fig. 4 shows the response of the hardware 
neural network which exhibits the same behavior observed in 
Fig. 2 (simulated network). Also, in this case, no spike is fired 
before the input stimulus is present. The implementation of the 
co-activation NMDA and non-NMDA is done using an 
excitatory connection with short time depression and the 
synapse implemented on the chip which includes the NMDA 
behavior. If the slope profile of the go stimulus is changed, 
Fig. 5 shows how the target is reached faster than the previous 
one keeping the input target with the same value and the same 
configuration for the population. The output activity of the 
PPC population is delivered to the FPGA to spread the spikes 
and eventually, drive the motor.  

VI. DISCUSSION

We proposed a novel model for motor control based on the 
work presented in [10]. The main difference with the previous 
model is that the response at the output of the GO 



multiplication is not a bell-shaped speed profile as it was stated 
in [10]. However, the functionality of the GO signal was not 
changed: the higher its slope, the faster the reaching movement. 
If we would try to recover the bell-shape profile for the output 
rate of GO population the dynamic response of the network 
will be driven by the GO stimulus and also the co-activation of 
the movement within the NMDA channels will be lost.  

Fig. 4. Firing rates of each population implemented on the chips. The PPC 
population reaches the target stimulus set within 2 seconds. The input rate is 
25 spikes / s. The plot shows the average firing rate of the whole population.  

Fig. 5. Firing rates of each population. The slope profile is higher than the 
previous one and the target is reached in 1.8 seconds. 

The approach presented has some important features: using 
PFM allows tuning of the duration of the spikes. This supports 
minimization of the effect of noisy spikes: a few randomly 
produced spikes cannot produce movements and are filtered by 
the motor. Furthermore, using VLSI IF chips give the 
possibility of tune many parameters; so, in principle, this model 
can be used for any robotic platform just changing the biases to 
adapt to the new desired features. However, if we aim to 
reduce the number of neurons of each population to be able to 
replicate the controller, a fast response DC motor should be 
driven to reduce the number of spikes needed.  

The strongest link with biology is bound to the co-
activation of the NMDA and non-NMDA channels (it was not 
present in the approach presented in [11]). The main con of this 
model is the open loop controller. This issue is now being 
solved by using DC motors that include sensory information as 
encoders. However, the open loop controller using the output 
rate of the PPC population within this configuration is quite 
interesting as far as the population has a temporal rate. This 
approach aims to set the basis for a full trajectory and stiffness 
neuro-inspired controller.   
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