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Abstract—In this paper, an algorithm for breathing rate
extraction from PPG signal is proposed. Two critical aspects
have been endorsed during the implementation: i) good per-
formances and ii) low computational complexity. The proposed
solution is based on the Empirical Mode Decomposition (EMD)
approach and it proves to be robust and accurate even in
presence of noisy epochs. It has been validated on two distinct
datasets: a)experimental data we have collected using wearables
for physiological monitoring and b) recording sessions from
PhysioBank MIMIC II Waveform Database. The presented re-
sults showed a mean absolute error of 0.0044 Hz, corresponding
to 0.26 breaths per minute.

I. INTRODUCTION

The breathing rate (BR) measurement provides vital
information about the patient’s health [1]; it is crucial in
diagnosing various respiratory diseases and it is potentially
useful in numerous clinical and non-clinical settings [2],
[3]. Currently, there are numerous methods for monitoring
the BR. They are classified as direct method if they are
directly related to the amount of air exchanged during
the respiration act, or as indirect if they are based on
physiological indexes indirectly related to respiration. Even
though some of the available approaches have been proved
to be effective, they still present considerable disadvantages.
For instance, direct methods showed to be uncomfortable
due to the indispensable use of a mouthpiece. The mask
limits the body movements, affecting the normal respiratory
pattern. Among indirect approaches, some devices measure
the chest wall movements in order to estimate lung volume
variations. These systems are minimally invasive and can be
implemented in wearable systems. However, textile substrate
is easily affected by movement artifacts during sleeping or
activities of daily living [4]. These limitations have induced
investigators to estimate BR using optical techniques.

Pulse oximetry is one of the most widely used method for
vital signs monitoring. It is based on the optical technique
known as photoplethysmography. The key principle is
simple: light from a transmitter is scattered and partly
absorbed in the tissue. Part of the scattered light emerges
through the skin and can be detected by a photosensitive
detector; the intensity of detected light is represented
as a plethysmogram. Figure 1 shows an example of the
PPG waveform, composed of the direct current (DC) and
the alternating current (AC) parts. The DC component
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Fig. 1. The direct current (DC) part reflects the optical character
of the underlying tissue and the arterial pulsation. At a level above,
there are small intensity variations, roughly 1% to 5% of the DC
level, corresponding to arterial pulsations. a.u. = aubitrary units..

corresponds to the detected transmitted or reflected optical
signal, and depends on the structure of the tissue as well
as on the average blood volume of both arterial and venous
blood. Instead, the AC component shows blood volume
variations occurring between the systolic and diastolic
phases of the cardiac cycle; the fundamental frequency
of the AC component depends on the heart rate and is
superimposed onto the DC component.

Since the photoplethysmographic (PPG) signal contains a
respiratory component, the BR extraction from PPG signal
is a current topic in the scientific community. The small size
of the probe, the possibility of continuous monitoring, and
few side effects [5] are additional benefits of this method. In
the last decade, several approaches addressing PPG-derived
BR have been proposed. Despite good performances have
been achieved, algorithm complexity and computational
requirements have prevented real-time applications [6], [7].

The novel contribution of this research can be summarized
as follows:

e good accuracy in estimating BR;

o low computational cost of the algorithm;

« real-time signal processing for wearable applications.

A general review of BR estimators from PPG signal
is provided in Section II. Following, the novel approach



is presented and compared to Madhav’s [7], which was
the starting point for the development of our method. The
algorithm is validated on two distinct datasets, one already
proposed in the Literature, and the other we experimentally
collected using wearable devices. Experimental results are
analysed in order to evaluate algorithm performances.

II. RELATED WORKS

Different studies have achieved high levels of accuracy
in extracting BR from PPG signal; nevertheless, their
computational complexity prevent real-time applications. In
contrast, further research projects proposed algorithm for
real-time applications but they reported an average error of
3 breaths per minute.

For instance, Leonard et al. [6] proposed a fully automated
algorithm for BR extraction from PPG signal. The PPG
signal is decomposed three times via Morlet wavelet
transform to produce three different breathings signal. The
’best’ source for each five (5) minute section is chosen as
the one with the lowest absolute error when compared to the
reference. Despite this approach revealed a mean absolute
error of 0.31 breaths per minute, it is not applicable to real
applications when a reference frequency is not available.
Furthermore the algorithm complexity and computational
difficulty constitute remarkable limits.

In 2013, Karlen at al. [8] suggested a method, known as
Smart Fusion, for estimating BR in real-time from the PPG
signal. Three respiratory-induced variations (frequency,
intensity, and amplitude) are extracted from PPG signal and
the frequency content of each parameter is analysed in the
frequency domain. Hence, the BR is estimated using an
algebraic mean calculation. Despite the light computational
cost of the algorithm, the Smart Fusion method revealed
an average error of 3 breaths per minute. This error is
remarkably high, and it is not considered admissible both
for clinical and non-clinical settings.

Within this context, the algorithm presented below
was designed as a trade-off between performances and
computational cost.

III. PROPOSED APPROACH

In 2011, Madhav et al. [7] proposed a method based on the
Empirical Mode Decomposition (EMD) for estimating BR
from PPG signal. EDM is an adaptive time-frequency data
analysis; it has proven to be quite versatile in a broad range
of applications for extracting signals from data generated
in noisy non-linear and non—stationary processes. The key
point is to identify the oscillatory modes at different time
scales; thus, the signal is decomposed accordingly into a set
of frequency-and-amplitude modulated components, called
Intrinsic Mode Functions (IMF). The EMD algorithm can
be summarized in the following steps:

1) Find the local maxima, M;,+ = 1,2..., and the local
minima, m, k = 1,2, ..., in the signal z(t).

2) Compute the corresponding interpolated signals
M(t) := fa(M;,t),, and m(t) := fp(mg,t). These
signals are the upper and lower envelopes of the signal.

3) Let e(t) := (M(t) + m(t))/2.

4) Subtract e(t) from the signal: z(t) := z(t) — e(¢).

5) Return to step 1. — stop when z(t) remains nearly
unchanged.

6) An IMF, ¢(t), corresponds to the remaining signal
z(t);

7) ¢(t) is removed from the signal of the first step:
z(t) = z(t) — ¢(t). If x(t) has more than one
extremum (neither a constant nor a trend), the iterative
procedure is repeated.

The stopping criterion (Step 5) is merely empirical and
it could affect the performance of the method. For instance,
criteria based on number of iterations do not guarantee a
scale independent stop.

In the preliminary phase of our study, a smoothing filter is
applied in order to remove unwanted components from the
PPG signal facilitating the application of the EMD method.
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Fig. 2. The PSD of filtered PPG signal obtained via Fourier
transform.
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When decomposing the PPG signal via EMD, we observed
that two principal components can fully describe the PPG
signal dynamic (see Figure 2): the component corresponding
to the highest frequency is an estimate of the Heart Rate
(HR), while the component corresponding to the lowest
frequency is an estimate of the BR. Thus, in our approach
the EMD is stopped at the first loop, in correspondence
to the mean envelope calculation (Figure 3). The novel
formulation certainly reduces the algorithm complexity and
the computational difficulty. Lastly, the mean envelope is
used to estimate BR using frequency analysis. The power
spectral density (PSD) of the respiratory component is used
to evaluate the dominant frequency peak.

In order to assess the accuracy of the proposed approach
and to investigate the feasibility of extracting BR using
wearable devices, two distinct datasets have been evaluated:
data we have experimentally collected and recording sessions
from PhysioBank MIMIC II Waveform Database [9]. All
sessions of both datasets include PPG and simultaneously
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Fig. 3. The mean envelope extraction from PPG signal.

recorded respiration signal. The latter is used as “ground
truth” in the validation of the algorithm. Sixty (60) one-
minute epochs, not affected by missing data nor signal
saturation artifacts, were selected from different sessions of
each dataset.

Concerning the database we collected experimentally
using wearable devices, physiological signals are acquired
continuously from adult subjects without known respiratory
diseases. In order to minimize movement artifact noise,
sleeping sessions are analysed. PPG signal is obtained
through a commercial smartwatch for physiological
monitoring [10]. Whereas, the respirogram is recorded by
means of a wearable chest band. The band detects chest
expansion and contraction, showing relative thoracic wall
movements.

As regards the public database, the MIMIC II
(Multiparameter Intelligent Monitoring in Intensive Care)
database is part of the PhysioNet archive of biomedical
signal databases. The archive contains physiologic signals
captured from patient monitors, and comprehensive clinical
data obtained from hospital medical information systems,
for over ten thousands Intensive Care Unit (ICU) patients.

IV. EXPERIMENTAL RESULTS AND
DISCUSSIONS

The experimental validation of the approach here
presented is illustrated in the following section. Standard
statistical tests are applied in order to compare the
effectiveness of the novel method. The procedure is
repeated for both the datasets.

A. Results on Experimental Dataset

With regard to our dataset, the EMD-based method
reveals good performances in estimating BR from PPG
signal. The Mean Absolute Error (MAE) is 0.0027 Hz,
corresponding to 0.19 breaths per minute; the Spearman’s
correlation coefficient (ps) is 0.962.

Figure 4 shows the Bland-Altman plot of the difference
between the ground truth and the EMD-based BR estimates;
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Fig. 4. Bland-Altman plot showing the distribution of the differ-
ence between the BR estimated with the EMD-based method on
experimental data and the ground truth.

despite the errors in the estimation are relatively small, the
presence of outliers affects the results. This situation is
reflected in the correlation between the ground truth values
and our algorithm estimates.

B. Results on Physiobank Archive
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Fig. 5. Bland-Altman plot showing the distribution of the differ-
ence between the BR estimated with the EMD-based method on
Physiobank data and the ground truth.

With regard to the PhysioBank archive, the here presented
approach shows high performances in estimating BR from
the PPG signal. The Mean Absolute Error (MAE) is
0.0044 Hz, corresponding to 0.26 breaths per minute; the
Spearman’s correlation coefficient (ps) is 0.991.

Figure 5 shows the Bland-Altman plot of the difference
between the ground truth and the EMD-based BR estimates;
it can be noted that the errors in the estimation are relatively



small. The effectiveness of the algorithm is also confirmed
by the strong correlation between the ground truth values
and our algorithm estimates. Hence, it can be concluded
that no bias nor offset is caused by the algorithm.

Although Madhav et al. method seems to outperform
our results on the same database, they analysed only five
(5) one-minute neat epochs. Moreover, the complex and
computationally heavy iterative procedure employed would
prevent real-time applications. By contrast, our simplified
approach proves to be robust and accurate on a more
extended dataset even when processing noisy epochs or
analysing recordings with abnormal BR (i.e. 0.7 Hz).

C. Discussions
TABLE I
MEAN ABSOLUTE ERRORS (MAES) AND SPEARMAN’S CORRELATION
COEFFICIENT (ps) FOR EACH DATASETS.

Method MAE (Hz) Ps
Experimental Data 0.0027 0.962
MIMIC II Data 0.0040 0.991

The EMD-based approach shows good performances in
estimating BR from PPG signal. Comparing the results on
the two distinct datasets (Table I) it is noticeable how the
correlation coefficient resulting from the experimental dataset
is slightly inferior to that resulting from PhysioBank data.
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Fig. 6. The graph compares the PPG signal processed with the
envelope approach with the refererence noisy respirogram.

After having analysed the recordings, we noticed that
outliers originate mainly in movement artifacts. The
adherence of the chest band is not assured: during sleeping
sessions, the body movements could alter the results and
thus the respiratory signal used as “ground truth”. Even
though the BR estimated from PPG signal seems reasonable,
the reference signal is corrupted (Figure 6); as a result, the
correlation coefficient is appreciably reduced (0.962 versus
0.991).

The results confirmed that reliability of methods currently
used for respiratory monitoring is not guaranteed. Despite
the chest band constitutes one of the most widely used

techniques for respiratory monitoring, it proved to be
unreliable in ordinary daily life. Since the key principle is
based on chest expansion, the measured respiratory signal
is extremely affected by movements artifacts. Furthermore,
the chest band is generally judged uncomfortable.

On the contrary, the wristband has revealed to be a more
accurate measurement device: it is feasible for daily
activities and it is easier to use than the chest band.

V. CONCLUSIONS

In this contribution, we showed that it is possible to
track BR from PPG signal with high accuracy at a low
computational cost. Despite the relatively simple structure
of the algorithm, the results indicate a strong correlation
with the ground truth. Analysis of the PPG signal offers an
alternative way of monitoring BR; this indirect estimation
can be extremely useful in situations when a continuous
monitoring is required. Non-invasiveness, the possibility
of mobile monitoring and a few negative side effects are
attractive attributes of photoplethysmography.

In particular, in the area of wearable devices, fast and
robust algorithms are crucial requirements for real-time
applications.
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