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Abstract—We use a large-scale analog neuromorphic system to
encode the hidden-layer activations of a single-layer feed forward
network with random weights. The random activations of the
network are implemented using the device mismatch inherent
to analog circuits. We show that these activations produced
by analog VLSI implementations of integrate and fire neurons
are suited to solve multi dimensional, non linear regression
tasks. Exploitation of the device mismatch eliminates the storage
requirements for the random network weights.

Index Terms—Neuromorphic, Feed Forward Neural Networks
With Random Weights, Extreme Learning Machine, aVLSI,
device mismatch.

I. INTRODUCTION

The use of randomness in neural networks has been the
subject of considerable work for many decades. The inventors
of radial basis function networks (RBFs) [1] were among
the first to propose random selection of network parameters,
which in their case was the set of RBF centers. This idea
was later applied to multilayer perceptrons (MLPs) [2], [3].
These networks contain a single hidden layer of neurons
whose weights have been randomly initialized, and the output
weights can be computed analytically by solving a set of
linear equations. While random hidden layer (RHL) networks
later gained popularity under the moniker Extreme Learning
Machine (ELM) [4], we will refer to them as RHL-MLPs
for clarity. In contrast to traditional neural networks, which
are trained by gradient descent and require backpropagation
of errors, learning in RHL-MLPs is restricted to a linear
read-out layer and can be accomplished by fast and efficient
linear regression. There are many benefits of using RHL-
MLPs over traditional neural networks [5]: RHL-MLPs learn
very quickly, tend to avoid problems of gradient descent such
as local minima, and can be used to train networks with
non differentiable activation functions. RHL-MLPs have been
successfully used for non linear regression and classification
tasks.

This paper presents results from multidimensional function
approximation when the hidden layer activations of an RHL-
MLP are implemented with neuromorphic hardware. Neuro-
morphic hardware can be broadly defined as any circuit or
system optimized for the simulation or emulation of neurobi-
ology. A subset of neuromorphic hardware focuses on creating

analog circuits which implement spiking neural networks [6],
[7]. Such systems are beneficial because of their low power
consumption and utilization of spikes for computation, which
results in lower-latency processing.

We create the random input weights and resulting hidden
layer activity in one such system using the device mismatch in-
herent to all analog hardware. Rate-coded input spike trains are
applied to differential pair integrator (DPI) synapses [8], which
transmit excitatory postsynaptic currents to leaky integrate-
and-fire neurons [9]. All of the circuits are identically biased,
but since they are different physical devices, their responses
differ due to device-to-device mismatch [10]. This mismatch
causes different responses in the hidden-layer neurons to
the same input spike train. We exploit the device mismatch
to efficiently implement the hidden layer of an RHL-MLP
on neuromorphic hardware. In fact, there is no additional
storage required to represent the random network parameters
on chip. The alternative approach would be to build a dedicated
memory on chip large enough for storing all these random
weights. We record the hidden-layer responses through the
Address-Event Representation (AER) protocol [11], and then
train the weights between the hidden layers and output neuron
offline.

Previous work has shown that this approach yields promis-
ing results. The idea to use silicon spiking neurons for RHL-
MLPs was originally proposed in [12], and architectural details
and simulations were provided in [13]. The architecture of [13]
consisted of current mirrors which feed the RHL-MLP inputs
into spiking neurons. Mismatch of the current mirrors provided
the random weights. Simulations of the architecture were
completed using a single neuron on a Field Programmable
Analog Array, and the randomness was simulated in Matlab.
In contrast, our system realizes the entire hidden layer on chip,
and we exploit the mismatch present in the chip.

Another recent result [14] demonstrated that a combination
of systematic and random offset in an analog neuron’s transfer
function allow for function approximation. As above, the
function approximation was based on readings from a single
test circuit, rather than an array of devices on a fully-realized
platform.

Function approximation has previously been demonstrated
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on an analog neuromorphic platform [15]. In that work, dif-
ferent activation functions were induced by explicitly adding
different biases to the neurons. These biases were Gaussian
spike trains with randomly chosen mean firing rates supplied
as synaptic current. Rather, we demonstrate that sufficiently
mismatched hardware generates activation functions which are
varied enough to support function approximation without the
need for another source of randomness. We also note that [15]
implemented weighted connections from the hidden layer to
the output neurons on-chip, while we do so on a standard
desktop computer.

The paper is structured as follows. Section II discusses
the device mismatch which enables the randomization of
input weights. Section III contains a brief overview of the
architecture of the RHL-MLP on chip. Section IV presents
measured activation functions from the network, as well as
results from offline learning tests for 1- and 2-dimensional
functions. Section V discusses future work which will extend
the capabilities of such hardware.

II. NETWORK ARCHITECTURE

The proposed system implements the following portion of
an RHL-MLP on chip:

hi = g
(
wT

i x+ bT
i b
)
, i = 1, . . . ,H (1)

where hi is the activity of the ith hidden-layer neuron, g(a) is
the neuron’s activation function, wi and bi are the randomized
weights and bias from the input neurons to the ith hidden-
layer neuron, x is the activity of the input neurons, and b
is the bias activity. In traditional RHL-MLPs, g(a) = 1/(1 +
exp(−a)), but we will replace this function with the measured
activation functions of leaky integrate-and-fire neurons. The
basic architecture of this implementation is shown in Fig. 1.

All of these terms are implemented on an aVLSI platform
with 128 leaky integrate-and-fire neurons [16]. Each neuron
is connected to 2 excitatory and 2 inhibitory DPI synapses, as
well as 28 excitatory plastic synapses, which are not used in
this work. Excitatory synapses source current onto the neuron’s
membrane capacitance, and inhibitory synapses sink current
from this capacitance. The number of inhibitory synapses per
neuron sets the limitation on the dimensionality of the input
for the 1-chip setup.

In order to attain the widest possible range of wi values, half
of the synapses are inhibitory, and half are excitatory, assuming
that we focus on an even distribution of weights. For a two-
dimensional input, this yields four possible combinations of
synapse types and synapse sources. We have therefore divided
our hidden neurons into four groups, each group getting a
different combination of inhibitory/excitatory synapses from
input x1 or x2.

The biases for each group are set by a combination of two
neurons firing at a constant rate. Neuron b1 is connected to
the hidden neurons via an excitatory synapse. Neuron b2 is
connected to the hidden neurons via an inhibitory synapse.
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Fig. 1. (a) Architecture of an RHL-MLP/ELM with 1-dimensional input.
The input x1 is transmitted to all H = 100 neurons in the hidden layer,
either through an excitatory (neuron 1 to 50) or inhibitory (neuron 51 to
100) synapse. Each neuron uses its own physical synapse with individual
mismatch. To retain a certain bias activity a constant excitatory frequency
is applied to the last 50 neurons, and a constant inhibitory frequency is
applied to the first 50 neurons. The mean frequency is then computed from
the AER output events of every neuron and stored for offline computation. (b)
Architecture of an ELM with 2-dimensional input. The input x is broadcast
to H = 100 neurons. Each neuron receives an input from x1 and x2 through
either an inhibitory or excitatory synapse. Each neuron is also connected to
a bias that is a combination of a constant excitatory input b1 and a constant
inhibitory input b2. The neuron activations are recorded through an Address
Event Representation (AER) Interface and transmitted to a computer, where
offline processing is performed.

III. DEVICE MISMATCH ENABLES
RANDOM HIDDEN-LAYER WEIGHTS

Variation in the fabrication of CMOS devices yields in-
evitable mismatch between the characteristics of identically-
drawn transistors. In above-threshold operation, this mismatch
is typically attributed to variations in the threshold voltage VT
and the current scaling factor β, which are usually modelled
as varying independently [17]. The mapping of subthreshold
current mismatch directly to VT and β mismatch has been
debated within the literature, but it is generally considered to
be affected similarly [17].

The fixed-weight synapses on this chip which implement
the weight and bias terms are restricted such that all synaptic
weights of a given type (excitatory or inhibitory) have the same
nominal value. However, each synapse has some random offset
ε which is a function of the mismatch. Thus, each wi and bi
in Eq. 1 can be written as

wi, bi =

{
wexc + εi : excitatory
−(winh + εi) : inhibitory

, (2)

where wexc and winh are constants across the chip and εi is
unique to each synapse.

Additionally, the leaky integrate-and-fire neurons are subject
to mismatch. We can model them very simply as linear
activation functions over a certain frequency range. If we do
so, both the slope and frequency range are subject to mismatch,
as shown below:

g(f) =

 0 : f < f1 + εf1,i
(m+ εm,i)f : f1 + εf1,i < f < f2 + εf2,i
gmax + εgm,i : f > f2 + εf2,i

.

(3)
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Fig. 2. Hidden layer activities as a function of input activity. (a) All 100 activities in the 1-dimensional case. Data taken for Vw = 650mV [16],
Vref = 200mV (b) The 2D measured activities for neurons 1, 26, 51, 76 representative for each sub population. Data is taken for Vw = 650mV [16],
Vref = 200mV [16] for all 100 neurons. (c) One representative cut though measurements in the 2-dimensional case. The yellow plane in 2b indicates the
position of 2c. It shows x1 swept and x2 fixed at 505Hz.

Our system exploits this mismatch to automatically gen-
erate the randomized activations required for RHL-MLPs.
The mismatch occurs at both the neuron and synapse level.
To quantify the relative contributions of each circuit to the
overall mismatch, we ran a series of experiments in which
we measured neural activity with different circuits connected
to the neuron. In each experiment, we computed the mean
firing rate of each of the 100 neurons over one second of
stimulation, normalized the results, and then computed the
standard deviation of the resulting data distribution.

When the only source of input to the neuron was a DC
current (Iin) [16] provided by a pFET biased with a gate
voltage of 2.78V, the standard deviation of the distribution
of normalized rates was 0.0716. When a regular spike train of
200 Hz was applied to excitatory synapses onto the neurons,
the standard deviation was 0.1289. When a constant current
(Iin) [16] was again injected by a pFET with a gate voltage
of 2.78V and a regular inhibitory spike train was applied at
700Hz, the standard deviation was 0.1667. Finally, when the
inhibitory (700Hz) and excitatory (260Hz) synapses were both
active, the standard deviation is 0.2505. All data is normalised
by the mean firing rate of the population for each measurement
(which was approximately 340Hz in all cases). Thus all three
circuits have a significant impact on the total mismatch.

For every excitatory input connection we provided a con-
stant inhibitory bias b1 (1D: 100Hz; 2D: 250Hz) and for every
inhibitory input synapse an excitatory bias b2 (1D: 700Hz;
2D: 600Hz) on a second physical synapse, as illustrated in
Fig. 1. These two biases are constant regular spike trains and
equal for all neurons. These biases are then mismatched by
the synapses and behave like additional random offsets to the
neuron. Unlike [15], we completely depend on the internal
variability of the physical system, adding neither temporal nor
quantile variability in the input or in the biases.

The mismatch in our system can most easily be seen by
plotting the firing rate of our hidden layer neurons as a function
of the input firing rates. Fig. 2a shows the variability in the
1-dimensional activities, and Fig. 2c shows the variability in

the 2-dimensional activities.
The input to the network is a regular spike train for

each input dimension in addition to the two constant bias
frequencies. In the 1D case the input is mapped to a frequency
between 200Hz and 1400Hz. In the 2D case it is mapped to an
input frequency between 0Hz and 1000Hz. We stimulate the
network for 5s for each input but only use 3s of data for our
calculations starting from t = 1s. The time can be increased
to gain robustness against environmental noise. For the 1D
case we took 50 measurements in linear steps from 0 Hz to
1400 Hz, and for the 2D case 25 linear steps from 0Hz to
1000 Hz for each dimension, resulting in 625 measurements.

IV. OFFLINE LEARNING FOR NONLINEAR REGRESSION

Once the activations of H hidden layer neurons have been
recorded for a set of N example inputs, we can derive the
output weights required to approximate the function y = f(x).
This is accomplished with a regularized least-squares solution:

y = f(x) = WTh(x) (4)

W =
(
HTH+ λ1

)−1
HTY, (5)

where H is the N×H matrix of hidden-layer activations, λ
is a regularization parameter, and Y is the N×1 vector of
desired outputs. When the W have been calculated, we test
the network’s capability by applying new inputs to the system.

The results of learning the 1-dimensional function y =
sin(2πx) are shown in Fig. 3a. The learning was evaluated
over 10 trials, in which the data was randomly split into
38 training samples and 12 test samples. The average mean-
squared training error over the 10 trials was 2.13E-5, while
the average mean-squared test error was 0.017.

The results of learning the 2-dimensional function y =
sin(2πx1) ∗ cos(2πx2) are shown in Fig. 3b and 3c. The data
was split randomly into 469 training samples and into 156
test samples. The average mean-squared error for training was
0.051, and the average error for testing was 0.0642.
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Fig. 3. (a) Regression results from a single trail for the 1-dimensional function y = sin(2πx). The regression used activations measured when the excitatory
weight was set to Vw = 650mV [16] and the neuron’s refractory period was set to Vref = 200mV [16]. We used a regularization parameter λ = 1. (b)
Regression results from a single trail for the 2-dimensional function y = sin(2πx1) ∗ cos(2πx2). Activations were measured for a weight of Vw = 650mV
[16] and refractory period of Vref = 200mV [16]. The regularization parameter was λ = 1 (c) is a 1D visualization of the target and estimates (training
and test) for the 2D function from Fig. 3b.

V. CONCLUSION

We have presented the implementation of the random
weights and hidden layer neurons of random hidden layer net-
works (RHL) or an Extreme Learning Machine (ELM) using a
neuromorphic platform. Offline learning based on the hidden
layer activations allowed us to train the system to compute
functions with 1- and 2-dimensional inputs. Extending to more
input dimensions is possible if we use a multi-chip setup. The
limitation of 2 dimensions on this chip only exists because
the chip was not designed for this application, which can be
easily solved by building a chip with the appropriate number
of inhibitory synapses, or by using multiple existing chips.

Implementing the weights between the hidden layer and the
output layer is the logical next step of this work. Given that the
synapses are binary, this would require using multiple synapses
to represent a single weighted connection, with each synapse
encoding an incremental weight change. On-chip learning is
another goal. The possibility to use learning synapses which
follow a spike- and activity-based Hebbian learning rule is a
promising avenue of inquiry.
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