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Abstract—Compressed sensing has recently been actively in-
vestigated as a mean of lowering the power consumption of
sensing nodes in biomedical signal devices due to its capability
to reduce the amount of data to be transmitted for the correct
reconstruction of the acquired waveforms. Rakeness-based design
of compressed sensing stages exploits the uneven distribution
of energy in the sensed signal and has proved to be extremely
effective in maximizing the energy saving. Yet, many body-area
sensor network architectures include intermediate gateway nodes
that receive and reconstruct signals to provide local services
before relaying data to a remote server. In this case, decoder-side
power consumption is also an issue. In this paper, with particular
reference to electrocardiographic signals, we show that rakeness-
based design is also capable to reduce resources required at
the decoder side for reconstruction. This happens across a
variety of reconstruction algorithms that see their running time
substantially reduced. Actual savings are then experimentally
quantified by measuring the energy requirements of one of the
algorithms on a common mobile computing platform.

I. INTRODUCTION

The availability of personal biometric monitoring systems is
commonly addressed as one of the key enabling technologies
capable of a major breakthrough in improving life quality in
coming years. Even if a typical application is identified in
continuous patient monitoring or elders caring, many other
situations may take advantage from this technology, ranging
from athletes’ training improvement to stress detection during
safety critical tasks. In all cases what is needed is a number
of miniaturized bio-sensing nodes integrated in a so-called
wireless body sensor network (WBSN).

The most useful WBSN architectures entail local gateways
that aggregate data coming from multiple sources and provide
a first level of processing, with a possible immediate feedback
to the user before routing data (either in the original or
a processed form) to a remote server. Note that assuming
this architecture implies that both encoding/transmission and
reception/decoding issues have to be considered in the design
of the system.

This is particularly important when the compressed sensing
(CS) approach is an option for lowering power requirements of
the sensing nodes. CS is a dimensionality reduction technique
[1], [2] that by means of a linear transformation (usually
a random one) maps vectors of Nyquist rate samples into
smaller vectors of so called measurements that are enough to
reconstruct the original signal. The dimensionality reduction
allows a potentially large saving in the resources needed at the
sensing node (mainly power) since i- the amount of additional
processing (a linear transformation) is intrinsically small and
can be effectively reduced; ii- the transmitter (the most power
hungry stage) significantly benefits from a reduced load [3].

x CS
ENC TX RX
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Fig. 1. CS in the link between a sensing node and the local gateway.

At the receiver side, signal reconstruction leverages the
possibility of giving a sparse representation to the target signal
and adopts non-linear, typically iterative, procedures with a
computational complexity much higher than what is sustained
by the encoding. Hence, with reference to Fig. 1 schematising
the link between a sensing node and the local gateway, from
a power-wise point of view CS is an intrinsically asymmetric
method that reduces the resources at the sensing node while
potentially making reception and reconstruction at the local
gateway more expensive.

Recently, a design flow for CS systems has been proposed
exploiting the common property of biomedical signals to be
non-white, i.e., they do not distribute their energy uniformly
in the signal space [4]. CS can be optimized by adapting the
statistics with which the random linear mapping is chosen
to the distribution of such energy. The driving concept here
is rakeness, i.e., the ability of the linear transformation to
capture the energy of the signal to acquire. By adopting
a rakeness-based design flow1 one increases the amount of
information that each measurement carries about the original
signal thus reducing (in some cases drastically) the number of
measurements to be transmitted and so the power required by
the transmitter.

Aim of this contribution is to show that rakeness-based
design is beneficial also for the receiver side. In a well-
defined and reproducible setting, we analyze a number of
different reconstruction algorithms establishing the amount of
computation needed by each of them to reconstruct the signal
with a prescribed quality. For one of these algorithms we will
also be able to translate the needed computational effort into
a power consumption figure of merit, under the assumption
of an almost standard mobile platform implementation. Re-
sults demonstrate that rakeness-based design is useful for a
non-negligibly power consumption reduction not only at the
transmitter node but also at the receiving local gateway.

The paper is organized as follows. Section II quickly recaps
the CS mathematical background including details on the rake-
ness approach, while Section III illustrates the rakeness impact
in the decoding of synthetic ECGs, when different approaches
are employed. Results in decoding ECGs on a mobile platform
in Section IV. Finally, we draw the conclusion.

1see, for example, that described at http://cs.signalprocessing.it.
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II. BASICS OF COMPRESSED SENSING

In this paper we adopt the discrete-time formulation of CS,
where the waveform to be acquired in a given time window is
represented by a set of n Nyquist-rate samples collected in a
signal x = (x0, . . . , xn−1)> ∈ Rn. The key assumption of CS
is sparsity, that is the existence of a n-dimensional sparsity
basis or dictionary, Ψ ∈ Rn×N , N ≥ n (where n = N holds
only for the basis case) in which any instance of the signal
x = Ψα is represented by α ∈ RN . For the sparsity prior to
hold, the coefficient vector α must be κ-sparse, i.e., have at
most κ� n non-zero components in its support.

In this signal model the actual number of degrees of
freedom in x is considerably smaller than n. Leveraging this
property, fundamental results [1] have shown that its salient
information content can be captured in a set of m < n linear
measurements. These measurements are gathered in the m-
dimensional vector y = (y0, . . . , ym−1)> ∈ Rm, as obtained
by applying a projection matrix A ∈ Rm×n to x, i.e.,

y = Ax+ ν = AΨα+ ν (1)

where ν takes into account all possible nonidealities.
Formal results [1], [2] guarantee that α (and thus x) can be

recovered from y despite the fact that A (and thus AΨ) is a
dimensionality reduction, provided that m = O(κ log n) and
A obeys some requirements that are most likely satisfied when
it is drawn at random. Interestingly, these requirements can be
satisfied by considering A made only of antipodal symbols,
i.e., A ∈ {−1,+1}m×n. This constraint is of paramount
importance as it allows hardware-friendly architectures, where
expensive and cumbersum full multipliers are not required
anymore, and represents a key point in the design of effective
and parsimoniuos CS stages for biomedical sensing nodes
[5]. In the following, we always implicitly assume that A is
antipodal.

Roughly speaking, the rationale behind all these guarantees
is that generic, κ-sparse vectors are mapped almost isometri-
cally [6] into the measurements; if this is true, the recovery
of the original signal x from y is possible by enforcing the a
priori knowledge that its representation is sparse.

From a mathematical point of view [1], [7], signal recon-
struction happens by solving dedicated optimization problems
looking for the sparsest coefficient vector consistent with
measurement. In detail, input signal x is reconstructed as
x̂ = Ψα̂, where α̂ is the sparsest α subject to constraints
forcing the corresponding measurements to be as close as
possible to the observed y. Sparsity is generally promoted by
the `1 norm instead of the computationally intractable count
of non-zero components given by `0 norm. Along this path at
least three methods are commonly employed.

The first method is called basis pursuit (BP) and simply
computes α̂ by neglecting disturbances to solve

min
α
‖α‖1 s.t. AΨα = y

where ‖ · ‖p indicates the usual `p norm. The main appeal
of BP is that it can be recast into a fully linear optimization
problem for which standard methods exists though, ad hoc
techniques have been developed. The second method is called
basis pursuit with denoising (BPDn) and takes into account
disturbances solving

min
α
‖α‖1 s.t. ‖AΨα− y‖22 ≤ ε2

where ε2 is tuned on the characteristics of the disturbance term
ν. A last method keeps the denoising formulation of BPDn but
focuses on directly on the target vector x instead of α. This
can yield definite advantages in the quality of reconstruction
when Ψ is a dictionary, i.e., N > n. In that case one solves

min
x
‖Ψ∗x‖1 s.t. ‖Ax− y‖22 ≤ ε2

where Ψ∗ is a analysis transform operator [8] that for every
x chooses one of the possible representations with respect to
Ψ. This problem is called analysis BPDn (ABPDn) and is of
interest here since the change of point of view from α to x
may imply a different computational burden even if Ψ is a
basis and thus Ψ∗ = Ψ−1.

Further to these methods relying on sparsity promotion by
means of the `1 norm, other greedy approaches exists that
iteratively promote sparsity by observing intermediate and
approximate solutions. Implementations of CS decoding on
embedded, low-resources platforms usually look into this set
of methods rather than feed a solver with a suitably defined
optimization problem.

In all cases, quality of reconstruction depends on m, i.e.,
on the amount of information that is passed from the encoder
to the decoder. Since the same m is also related to the
compression ratio n/m and thus to the saving that one may
experience at the transmitter when using CS, its minimization
is of paramount importance.

This is what rakeness-based design [4] does: it improves
sensing performance by generating each row of A inde-
pendently of the others, but with entries whose correlation
is adapted to the second-order statistic of x. Interestingly,
rakeness-based design is compatible [9], [10], [11] with the
hardware-friendly constraint of having A made only of an-
tipodal symbols.

What we do here is to change the point of view and consider
the effect of rakeness-based design at the decoder: measure-
ments have been computed, sent and received and the local
gateway must reconstruct the original signals complying with a
power budget that is larger than that of sensing nodes, but still
limited. To see that rakeness-based design positively affects
also this component of the overall system consumption, we
consider implementations of BP, BPDn, ABPDn and greedy
algorithms, experimentally verifying that the reduction in m,
and thus in the number of rows of A is always beneficial.

III. EXPERIMENTAL SETTING AND RESULTS

In this paper we focus on reconstruction algorithms that do
not rely on large-scale, general-purpose solvers but that are
all specialized to the task. More in detail, for BP and BPDn
families we consider the dedicated functions in the SPGL1
package [14] spgl_bp and spgl_bpdn. For the ABPDn
we consider NESTA [15]. Despite theoretically possible, we do
not apply NESTA also to BP and BPDn since in these cases the
algorithm requires A to have orthogonal rows, and this goes
against the hardware-friendly philosophy of antipodal entries.
Within the family of greedy methods, we consider FOCUSS
[16], OMP [17], and CoSaMP [7].

In order to compare the performance of the reconstruction
algorithms of the standard CS approach with that of the
rakeness-based one, some MATLAB Montecarlo simulations
have been performed. For all the aforementioned decoding al-
gorithms, and for both CS approaches (standard and rakeness-
based) a set of 100 synthetic ECG instances generated as in
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(a) decoding by FOCUSS
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(b) decoding by OMP
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(c) decoding by COSAMP
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(d) decoding by SPGL1 (BP)
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(e) decoding by SPGL1 (BPDn)
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Fig. 2. Comparisons between standard and rakeness-based for different decoding implementations where each plot reports the ANRT as a function of the
quality of service (counted by the ARSNR) for ECGs reconstruction

[4] with a sampling rate equal to 360 Hz has been considered.
Each instance is composed by n = 512 consecutive samples
and it has been encoded and decoded with a different A. For all
the considered reconstruction algorithms Ψ has been assumed
equal to the orthonormal Symlet-6 wavelet basis [12] including
the ABPDn implementation in NESTA, for which it follows
that Ψ∗ = Ψ−1. Finally, to emulate possible nonidealities of
the sampling stage, we inject an additive white Gaussian noise
corresponding to a 40 dB signal to noise ratio2.

Since our interest is focused on the difference between
using the standard CS approach and rakeness-based one and
not on the different reconstruction algorithms performance,
we propose as figure of merit the average normalized recon-
struction time (ANRT) defined as follows. For each decoding
approach, we compute the average CPU time required for
signal reconstruction when using a given m and a given
CS approach (i.e., either standard or rakeness-based). This
time is normalized with respect to the slower one observed,
that is generally the one associated to the higher m. This
normalization allows us to assume that this figure of merit
is almost independent of the used hardware.

Furthermore, ANRT is not considered as a function of m,
but as a function of the quality of service, i.e., of the quality of
the reconstructed signal x̂ at the given m. More formally, the
quality indicator we use is the average reconstruction signal
to noise ratio (ARSNR), defined as

ARSNR = EA,x

[( ‖x‖2
‖x− x̂‖2

)

dB

]

where EA,x stands for averaging over all considered A and all
considered instances of the input signal x in the Montecarlo.

The configuration setting adopted for each algorithm is
discussed in the following. FOCUSS runs has been made
with a setting optimized for ECG and described in [13].

2the level of injected noise has been estimated by averaging quantization
noise measured in many databases available online.

OMP worked with a stop criteria based on the residual error
associated to each iteration and counted by r = ‖y−AΨα̂‖22,
with r < 10−4. The greedy approach CoSaMP takes as input
an estimation of the sparsity level κ which was fixed to
min{bm/3c, 50}3. BP does not posses any parameter to be
tuned on noise level perturbing the measurement vector, while
for both BPDn and ABPDn we set ε2 = 10−4.

The obtained results for all aforementioned decoding ap-
proaches are shown in plots composing Fig. 2 and clearly
indicate that the rakeness-based CS outperforms the standard
approach for every tested algorithm and for all ARSNR values.
The CPU time measured when using a rakeness approach is
always lower (sometimes up to 90%) than the time required
by the standard approach.

IV. ENERGY EFFICIENT RECONSTRUCTION

In the general case, the computational time may be consid-
ered as a first order estimation of the energetic requirements.
Despite that, with the aim of proving the advantages of
the rakeness approach in a real system, we propose in this
section a detailed evaluation of the power consumption of
one of the reconstruction algorithms presented above on a
representative embedded platform. Specifically, we profiled the
FOCUSS algorithm on the Hardkernel Odroid-XU3 board4, an
evaluation board based on Samsung Exynos 5422, a represen-
tative multi-core CPU found in recent high-end smartphones.
The Exynos 5422 implements ARM’s big.LITTLE heteroge-
neous multiprocessing solution with a cluster of four Cortex-
A15, out-of-order ”big” processors, and a cluster of four,
in-order ”LITTLE” Cortex-A7 processors. Since both CPUs
are architecturally compatible, the reconstruction tasks can be
allocated on demand to each CPU, to suit performance needs.
Nonetheless, the two clusters have very different floating point
performance.

3the CoSaMP implementation proposed in [7] impose k > m/3.
4[ONLINE] http://www.hardkernel.com.
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Fig. 3. Energy vs. ARSNR of the FOCUSS algorithm running on ODROID
Cortex-A15. Comparison between rakeness-based and standard CS.

The FOCUSS algorithm, previously introduced in Sec-
tion III, was implemented in C++ to run on the ARM cores. On
top of the Odroid-XU3 runs Ubuntu 14.04.1 LTS (GNU/Linux
3.10.51+ armv7l) with gcc version 4.8.2 and, to achieve an
efficient algorithm implementation, the Armadillo [18] library
(v. 4.2) was used for linear algebra. To measure the energy
consumption we deploy the on-board voltage/current sensors
and split power rails, which allow to measure separately the
power consumption of Cortex-A15 cores, Cortex-A7 cores,
GPU and DRAM. The readout of the sensors was implemented
in a low-priority thread, with a sampling interval of 25ms and
an average CPU consumption below 3%.

Fig. 3 shows the results of our evaluation, comparing the
energy required by FOCUSS to reconstruct a window of
ECG samples considering both standard and rakeness-based
CS. The energy measurements, obtained by considering the
most performing operating point5 (Cortex-A15 at 1.9GHz)
are coupled to the respective ARSNR. Clearly, the rakeness-
based CS outperforms the standard CS in terms of energy
efficiency. For instance, when designing the system for a target
ARSNR=22 dB there is a factor of ≈ 3.7X in terms of energy
consumed (as highlighted in Fig. 3). On a battery-powered
device, such as a typical WBSN gateway, this translates in a
consistent battery life extension.

Finally, for a visual check of the correctness of the devel-
oped approach, a short chunk of ECG signal reconstructed
at the target ARSNR and compared with the input signal
is depicted in Fig. 4. To achieve a 22 dB ARSNR, it is
necessary to set m = 256 in the standard CS approach, with a
compression ratio equal to 2, while m = 78 is enough for the
rakeness-based case, introducing a compression ratio equal to
6.56. Note that the gain in terms of compression ratio achieved
by the rakeness approach is ≈ 3.2X, that is actually similar to
the gain in terms of saved energy.

V. CONCLUSION

Benefits introduced by rakeness-based CS at the decoder
side was discussed with simulation on ECGs decoding show-
ing a reduction in the ANRT across different reconstruction
algorithm. By implementing one of them on a real mobile
platform, we also have shown a non negligible reduction in
terms of energy for the reconstruction of each time window.

5such operating point leads to the best performance (i.e., real-time recon-
struction guaranteed) but also to highest power consumption[13]. There is a
clear room for improvements with respect to energy consumption, by tuning
the algorithmic implementation as well as by using less precision.
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Fig. 4. Chunks of the considered ECG signal with the corresponding
reconstructed ones for standard CS (m = 256 with compression ratio equal
to 2) and for rakeness-based CS (m = 78 with comp. ratio equal to 6.56).

These results propose the rakeness approach as a good can-
didate for power saving in all scenarios presenting a battery
powered device running a proper decoding algorithm.
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