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Abstract—This paper introduces a novel computing architec-
ture devoted to the ultra-low power analysis of multiple bio-
signals. Its structure comprises several processors interfaced with
a shared acceleration resource, implemented as a Coarse Grained
Reconfigurable Array (CGRA). The CGRA supports the efficient
execution of the computationally intensive kernels present in
this application domain, while requiring a low reconfiguration
overhead. The run-time behavior of the resulting heterogeneous
system is orchestrated by a light-weight hardware mechanism,
which concurrently synchronizes processors and regulates ac-
cess to the reconfigurable accelerator. The architecture achieves
speed-ups of up to 11x on different bio-signal processing kernels
and system-level energy savings of up to 18.6%, with respect to a
multi-core platform, which does not feature CGRA acceleration.

I. INTRODUCTION

Chronic cardiac diseases require the long-term monitoring
of affected patients, which impacts the quality of life of
subjects and presents a high financial burden for healthcare
providers [19]. In this context, Wireless Body Sensor Nodes
(WBSNs) are an important technological aid, as they allow
the continuous acquisition of bio-signals with little supervision
from the medical staff, even outside of a hospital environment.

Today’s Wireless Body Sensor Nodes (WBSNs) embed
complex Digital Signal Processing (DSP) routines to extract
high-level features from bio-signal acquisitions [5]. These
“smart” WBSNs transmit only features (as opposed to sam-
ples) through the energy-hungry wireless link, resulting in
large efficiency gains, thus enabling longer, less obtrusive
and more clinically-relevant acquisitions. Nonetheless, these
benefits can only be leveraged by performing the DSP stage
within a tiny energy envelope.

As a consequence, herein we propose a domain-specific
platform that operates at ultra-low power levels, harnessing the
opportunities offered by the application characteristics typical
of biomedical DSP. First, as processing is usually divided
in well-defined phases, the (possibly parallel) workload is
spread over different computing cores, similarly to [7]. Sec-
ond, hardware acceleration is provided to efficiently execute
the computational kernels, i.e.: compact and intensive code
sections, which account for a vast portion of the overall DSP
run-time.
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To maintain a high degree of efficiency without sacrificing
flexibility, the accelerator is programmable at the operation
level, as a Coarse Grained Reconfigurable Array (CGRA)
mesh [13]. In this way, a variety of kernels, possibly unknown
at design time, can be supported, avoiding the high area,
energy and configuration overheads, typical of the fine-grained
reconfigurability provided by FPGAs. The CGRA mesh is
interfaced as a shared resource, time- and space-multiplexed
among the processors.

The run-time management of the different processing re-
sources in such heterogeneous system is not a trivial task,
especially when, as in the proposed platform, it must be
supported with minimal area, energy and timing overheads. To
this end, a dedicated synchronizer is employed to a) manage
the computations on the multiple cores and b) manage the
acceleration requests and their execution on the reconfigurable
architecture.

The energy benefit deriving from our approach is two-fold.
By separating the computation- and control-intensive parts of
applications, each of them is efficiently mapped on dedicated
resources. Moreover, the speed-ups ensuing from hardware
acceleration decreases the ratio between active and idle times,
which can then be leveraged by supporting aggressive deep-
sleep modes.

The contributions of the paper are the following:

1) We introduce and evaluate a heterogeneous system de-
voted to bio-signal processing, which integrates
multiple processors and a shared CGRA accelerator.

2) We propose a unified mechanism to jointly support syn-
chronization among cores, acceleration of kernels, and
power management at the system level with very low
overhead.

3) We showcase the efficiency of the developed system
while executing complex bio-signal DSP on ECG acquisi-
tions, such as applications for filtering, classification and
feature extraction.

II. STATE OF THE ART

To sustain bio-signal processing workloads [14] at ultra-
low power levels, a number of domain-specific processors
have been proposed, usually operating at Near-Threshold



Voltages (NTV) [2], [17]. To cope with the performance
loss deriving from NTV supply levels, the authors of [10]
and [7] adopted multiple processing cores, leveraging the
application-level parallelism which characterizes bio-signal
DSP. An orthogonal strategy focuses instead on dedicated
hardware blocks (custom instructions [9] or accelerators [11])
to support computationally-intensive kernels. While efficient,
this strategy is very inflexible, as each block can perform a
single function.

Reconfigurable solutions are good candidates to couple the
efficiency typical of dedicated hardware with a degree of
flexibility. However, bit-level reconfigurable arrays (such as
FPGAs) present huge overheads in terms of area, reconfig-
uration time, and power consumption. CGRAs dramatically
reduce these overheads by being programmable only at the
operation level, allowing efficient mapping of computational
kernels [13], [4].

We exploit the parallel nature of coarse-grained recon-
figuration by interconnecting a CGRA instance as a shared
accelerator in a multi-core system. Our approach has some
similarities with the one adopted in [8]. Nonetheless, the
authors of this work adopt the limiting assumption that the
reconfigurable fabric can be accessed only by one core at
a time. Conversely, our platform concurrently supports the
execution of multiple kernels, arbitrating acceleration requests
at run-time.

III. SHARED CGRA ACCELERATOR

CGRA architectures are structured as two-dimensional
meshes of tightly interconnected Reconfigurable Cells (RCs).
RCs embed a dedicated ALU coupled with a small local regis-
ter file. This arrangement allows CGRAs to efficiently execute
intensive innermost loops. By modulo-scheduling loops on the
mesh, their execution can be effectively parallelized across
subsequent iterations [3].

The configuration overhead of CGRAs, as well as the area
devoted to the configuration logic, is orders-of-magnitude
smaller than that of fine-grained FPGAs, as only the desired
ALU operations and the routing of operands must be specified
for each cell. Multiple operations can be cyclically performed
providing a set configuration words for each RC, and activating
the proper one during execution [1].

Figure 1 provides a high-level view of the envisaged CGRA
mesh. Each of its cells features a datapath (DP), which is
composed of an ALU, a 4-word register file, and multiplexers
able to select the input operands (either from the register file,
from the ALU output or from the outputs of neighboring
cells). The ALU can execute arithmetic and bit-wise operations
(AND, OR, XOR, etc.). The CGRA is interfaced to the system
data memory by means of a multi-channel DMA block. This
unit uses the memory ports of the processors that requested a
given acceleration, and therefore do not require dedicated read
and write ports toward the memory subsystem.

At run-time, each kernel being mapped in the CGRA
undergoes a configuration and an execution phase. During
configuration, the parameters of the kernel invocation (such
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Fig. 1: Block scheme of the shared coarse-grained reconfig-
urable accelerator.

as the addresses of inputs and outputs in data memory and the
number of iterations) are retrieved from the issuing processors
and used to configure the program counters of the employed
columns and the required DMA channels. While a single ker-
nel can be configured at a time, execution of different kernels
can instead proceed concurrently on separate CGRA columns,
effectively employing the available computing resources.

During execution, the functionality of RCs is dictated by
their active configuration word, selected on a cycle-by-cycle
basis by column-wise Program Counters (PCs). After the RCs
have finished the computations, the desired outputs are stored
by the DMA engine in the system data memory.

IV. RECONFIGURABLE MULTI-CORE SYSTEM

Similarly to [7], our target platform (Figure 2) embeds 8
RISC processors interconnected to multi-banked instruction (8
banks) and data (16 banks) memories through combinational
crossbars. Each processor adopts a Harvard architecture, fea-
turing a three-stage pipeline. Processors can be individually
clock-gated by a light-weight synchronizer unit while waiting
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Fig. 2: High-level view of the heterogeneous platform.



for another core to finish its task or when a kernel acceleration
is performed on the CGRA.

The CGRA Controller arbitrates acceleration requests
through a request queue, mapping kernels (whose configu-
ration words are stored in a dedicated Configuration RAM)
when enough resources are available.

At the software (instruction set) level, the architecture
features the synchronization instructions introduced in [7],
which support SIMD execution modes and the management
of producer-consumer relationships between threads. A further
instruction set extension allows processors to request the
execution of a kernel on the CGRA mesh. It is defined as
ACCEL #literal, where the literal specifies the kernel ID. The
following kernel parameters are communicated to the CGRA
controller by setting memory mapped registers:

- The address and the length of the input data to be

processed by the kernel running on the CGRA.

- The address and length of the destination buffer where to

store the values computed by the kernel.

- The number of required loop iterations.

A processor issuing an ACCEL instruction is clock-gated
by the synchronizer. CGRA execution is then initiated by the
controller: as soon as resources (i.e.. RCs) are available on
the mesh, an acceleration request signal is sent to the CGRA
unit, along with the acceleration ID and other configuration
parameters. Afterwards, the CGRA itself fetches the remaining
configuration words from the Configuration RAM and pro-
grams the RCs of the assigned columns. When the kernel
is mapped, the execution starts. Upon its completion, the
requesting processor exits the clock-gated state and software
execution can proceed.

V. EXPERIMENTAL SETUP AND SIMULATION RESULTS

In order to evaluate the energy and performance benefits of
the heterogeneous multi-core system, we developed a hybrid
framework, comprising an HDL implementation of the CGRA
mesh, which is used to accurately characterize its architecture
from a timing and energy perspective. Retrieved data, in con-
junction with the post-synthesis evaluation of the processing
and memory elements described in [7], was then employed
in a cycle accurate SystemC simulator of the whole platform,
which allowed evaluation of the system across the execution of
entire applications. We considered an implementation on a 65
nm UMC low-leakage cell library and an operating frequency
of 1 MHz.

We assessed the system performance employing three elec-
trocardiogram processing benchmarks, which present different
workloads and computational characteristics. The applications
perform multi-lead morphological ECG filtering (3L-MF [18]),
multi-lead ECG delineation (3L-MMD [16]) and selective
processing based on heartbeat classification (RP-CLASS [6]).
The employed ECG records, consisting of excerpts of 5000
samples acquired at 500Hz, are extracted from the MIT-BIH
Arrhythmia database [15].

In order to identify the application kernels and to inspect
their structures in terms of control and data flow, we used
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Fig. 3: Speed-ups of kernels running on the CGRA mesh with
respect to their software execution.

a profiling pass built on top of the LLVM toolchain [12].
While automated strategies for mapping kernels on CGRAs
have been proposed [3], this step was manually performed for
this work. Seven different computationally intensive kernels
where considered, as reported in Figure 3. Several kernels
are common for the three benchmarks, while others are only
present in a subset of the target applications.

To investigate the benefits deriving from our approach, we
compared the proposed architecture with an equivalent multi-
core platform that does not feature the CGRA accelerator. We
first analyzed the resulting performance at the kernel level,
evaluating savings from both run-time and energy perspectives.

As shown in Figure 3, execution on the CGRA mesh
achieves speed-ups ranging from 1.6x to 11.0x while executing
the selected kernels, compared to a software-only alternative.
The reported results account for resource conflicts, which arise
when several concurrent requests cannot be allocated at the
same time on the limited CGRA resources.

The considerable time reductions achieved are coupled with
a superior energy efficiency of the CGRA unit, which is
represented in Figure 4. This figure compares the energy
consumed by executing the selected kernels on the multi-core
system and on the CGRA. It shows that by accelerating the
kernels on the CGRA it is possible to achieve energy savings
of up to 94.9% when compared to a software-only execution,
with an average reduction of 73.3%.

At the system level, the CGRA acceleration of just few
kernels per application results in a sizeable reduction of the
active times of processors (as highlighted in Figure 5), leading
to an increase in overall energy efficiency of the platform. In
fact, by kernels on the CGRA, not only the dynamic energy
of the cores is decreased, but also fewer accesses to the
instruction and data memories are required. In the case of
the 3L-MF benchmark, this effect is particularly noticeable,
as the active time of cores is reduced from 50.4% to 31.3%.

The resulting energy savings are detailed in Figure 6,
which provides the consumption breakdown of the multi-core
system with and without the CGRA accelerator for the three
investigated benchmarks. The comparison showcases that the
energy consumed by the cores and the instruction memory is
reduced by a large margin when the CGRA is employed, as a
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Fig. 4: Energy consumed by the different kernels employed in
the considered benchmarks, when executed on the accelerator
(CGRA) and on the processing cores (SW).
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considerable part of the applications workloads are outsourced
to the CGRA and a much smaller amount of instructions are
fetched at runtime. For all applications, these reductions in
energy consumption more than compensate the overhead as-
sociated with the inclusion of the CGRA accelerator, resulting
in a decrease of the overall system energy budget, including
both dynamic and static consumption, of up to 18.6% (for the
3L-MF case).

VI. CONCLUSIONS

In this paper we have introduced a heterogeneous and
ultra-low power architecture devoted to bio-signal processing
applications. In the medical domain, the workload of appli-
cations is often divided between control-dominated phases
and computationally-intensive phases within compact loops
(kernels). The illustrated platform can efficiently support both:
the former on multiple ultra-low power processing cores, the
latter by employing a coarse-grained reconfigurable array,
interfaced to the cores as a shared acceleration resource.
The above-mentioned features allow the developed system
to achieve tangible overall energy savings of up to 18.6%,
when executing complex bio-signal processing applications,
in comparison to an equivalent multi-core solution without
CGRA acceleration of kernels.
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Fig. 6: System energy consumption for the different applica-
tions, while executing on the multi-core platform with and
without CGRA acceleration.
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