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Abstract—Varying contraction levels of muscles is a big chal-
lenge in electromyography-based gesture recognition. Some use
cases require the classifier to be robust against varying force
changes, while others demand to distinguish between different
effort levels of performing the same gesture. We use brain-
inspired hyperdimensional computing paradigm to build clas-
sification models that are both robust to these variations and
able to recognize multiple contraction levels. Experimental results
on 5 subjects performing 9 gestures with 3 effort levels show
up to 39.17% accuracy drop when training and testing across
different effort levels, with up to 30.35% recovery after applying
our algorithm.

I. INTRODUCTION

Hand gestures are an integral part of human communication
as well as object manipulation and dexterity. Electromyogra-
phy (EMG)-based pattern recognition has shown great poten-
tial in classifying hand gestures, where EMG features gathered
from the sensors on the skin serve as inputs to machine
learning algorithms. Although being non-invasive makes it
an attractive method, it is highly prone to signal variations
caused by factors such as changing limb position [1], electrode
shift [2], and force change [3]. While the first two are
undesired phenomena that the classifier has to ideally be robust
against, the last could occasionally be desired in applications
such as proportional control of prosthetic hands.

A subject can exert different levels of effort while perform-
ing a gesture, resulting in different EMG signal properties.
Scheme and Englehart [4] have shown up to 50% error rate
when the classifier was trained and tested at different force lev-
els from 20% to 80% maximal voluntary contraction (MVC),
compared to moderate 7% to 19% error rate when trained and
tested at the same level. Previous works have suggested to pick
specific force levels that yield minimum accuracy degradation
across all force levels as training dataset and to extract features
that are more invariant against contraction levels as the input
to the classifier [5], [6].

In this paper, we propose building a general classification
model based on hyperdimensional (HD) computing [7] to deal
with varying muscle contraction effort levels. HD computing
has shown promising results in classification tasks using
biosignals such as EMG in recognizing hand gestures [8] and
electrocorticography (ECoG) for seizure detection with one-
shot learning [9]. With slight modifications to our previously
introduced encoding scheme [8], we analyze the muscle con-
traction level variations in two different ways, depending on

Fig. 1. Hand gesture classes used in the study. The single degree-of-freedom
(DOF) gesture subset includes individual finger flexions and extensions. The
multi-DOF gesture subset includes isometric hand postures involving multiple
fingers.

the application: If discrimination between different gestures is
the only goal, the classifier should output the same gesture
class regardless of the subject’s effort level. If, on the other
hand, different effort levels are relevant to the application
(e.g. controlling different levels of force for gripping using
a prosthetic hand), different effort levels for the same gesture
must be treated as separate output classes. A classifier based on
HD computing can be naturally used in both of these scenarios.
In the former case, it can include minimum amount of training
data from multiple effort levels for training each gesture to
build an inclusive model that ignores effort level variations.
In the latter, distinguishing between different effort levels of
the same gesture translates to simply defining a separate class
for each level of contraction. A dataset of 5 human subjects
performing 9 hand gestures (Fig. 1) with low, medium, and
high contraction effort levels was recorded using a wireless,
high-channel count EMG recording system [8] which provided
visual feedback of effort level. Classification accuracy results
for both gesture-only and gesture+effort cases are presented.

II. EXPERIMENT SETUP

We used a custom, wireless 64-channel EMG signal acqui-
sition device [8] to record a dataset of EMG signals from
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Fig. 2. Visual feedback of real-time contraction effort level to the user. The
bar represents the mean signal energy across all channels as a measure of
contraction effort. The users are asked to reach 25%, 50%, and 75% of their
maximum voluntary contraction (MVC). During calibration, a multiplier and
an offset are determined such that the rest state and the MVC map to 0 and
100, respectively.

five able-bodied, adult male subjects1. A flexible 16x4 array
of electrodes was wrapped completely around the subject’s
upper forearm, capturing activity of the extrinsic flexor and
extensor muscles involved in finger movements with 1 kS/s
sampling rate. A single Ag/AgCl electrode is attached to the
elbow to provide a reference voltage for all channels. The raw
recorded signals were wirelessly transmitted to a base station
for offline processing. Additionally, we calculated the mean
signal energy across all channels as a measure of contraction
effort level, and illustrated the value as a bar graph (Fig. 2)
in the graphical user interface (GUI). This served as a visual
feedback to the subject in real-time.

For this study, we chose a set of gestures consisting of
movements of the thumb, index, and middle fingers to model
simple grasping actions (Fig. 1): index finger flexion and
extension, middle finger flexion and extension, and thumb
flexion and extension as single degree-of-freedom (DOF)
gesture subset, and one, two, and fist as multi-DOF subset.
For each gesture, we started with a calibration phase during
which the subject was asked to perform the gesture with
the maximum contraction effort, also known as maximum
voluntary contraction (MVC). This value was normalized to
map to 100% in the GUI feedback bar graph (Fig. 2). The
subject was asked to target three different effort levels (low
effort at 25%, medium effort at 50%, and high effort at 75%)
for each gesture, repeating each 5 times.

Each trial lasted 8 seconds (Fig. 3), with 3 seconds of
rest before the next trial. The subject was told to begin the
gesture within a 2-second transition window which would
contain the transient, non-stationary part of the EMG signal for
that gesture. After the 2-second transition window, the subject
was asked to hold the gesture for 4 seconds, constituting the
steady-state part of the EMG signal. Finally, the subject was
directed to return to the rest position within another 2-second
transition window. These directions ensured that the steady-
state portion of the gesture could easily be labeled as part of
the middle 4 second segment. Data were automatically labeled
with the gesture class and saved as .mat files for processing
in MATLAB (MathWorks, Inc.).

1Dataset and scripts available at https://github.com/flexemg/flexemg v2

Fig. 3. Representative EMG signals from one electrode channel recorded
during a low, medium, and high effort level trial of the same gesture. The
vertical dotted lines divide a single 8 s gesture trial into 2 s transition periods
and a 4 s hold period based on the instructions given to the subject. The color
of the waveform indicates the effort level, as measured by windowed signal
power (RMS calculated over 200ms windows with 150ms overlap).

All experiments were performed in strict compliance with
the guidelines of IRB and were approved by the Committee
for Protection of Human Subjects at University of California,
Berkeley (Protocol title: Flex EMG Study. Protocol number:
2017-10-10425).

III. CLASSIFICATION ALGORITHM

A. HD Computing Background

HD computing employs hypervectors with very high dimen-
sionality (e.g. 10,000) to represent information, analogous to
the way the human brain utilizes vast circuits of billions of
neurons and synapses [7]. In general, a fixed symbol table, or
item memory (IM), is built from an initial set of HD hyper-
vectors taken randomly from a high-dimensional (e.g. 10,000-
dimensional) space. Each hypervector consists of an equal
number of randomly placed +1’s and −1’s. A fundamental
property is that, with a very high probability, hypervectors
within a randomly generated IM will all be orthogonal to each
other, i.e. any pair of hypervectors will differ by approximately
5,000 bits. These hypervectors can be combined to form new
composite HD hypervectors using well-defined vector space
operations, including point-wise multiplication (∗), point-wise
addition (+), scalar multiplication (×), and permutation (ρ).
Because of the high dimensionality and randomness, HD
hypervectors can be combined while preserving the original
information.

Fig. 4 summarizes the process of encoding raw EMG data
into HD hypervectors for training and inference. Data is first
preprocessed to extract the features to be used as inputs to the
HD algorithm. We used mean absolute value (MAV) with non-
overlapping windows of 50 samples as input features. Features
are then encoded spatially (across 64 channels) and temporally
(250ms windows) into HD hypervectors exactly as described
in [8]. Spatiotemporal hypervectors calculated using data from
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Fig. 4. High-level flow diagram for encoding 64 electrode channels of
EMG data into hypervectors and outputting the classified gesture label using
hyperdimensional (HD) computing algorithm.

each gesture class are bundled together (i.e., summed) and
bipolarized (i.e. positive elements replaced by +1 and negative
elements replaced by −1) to form a binary prototype hyper-
vector representing that class. During training phase, these
prototype hypervectors are stored in the associative memory
(AM) with their corresponding labels. During inference, the
test hypervector is compared to each entry of the AM using
cosine similarity as the distance metric. The inferred gesture
is selected by finding the closest prototype hypervector in the
AM.

B. HD Model for Contraction Effort Levels

In contrast to many state-of-the-art classification algorithms
that often require a big training dataset, HD computing
achieves high classification accuracies with small amounts of
training data, i.e. only 1 out of 5 trials of each gesture in our
case. Therefore, building inclusive prototype hypervectors that
contain data from multiple effort levels is fast. If, on the other
hand, data from individual effort levels is used to form the
prototype hypervectors, HD model will distinguish the effort
level in addition to the gesture itself.

1) Gesture-Only Classification: If the only goal is to dis-
criminate between different gestures regardless of the subject’s
effort level, a single gesture prototype hypervector can be
formed to include information from those different effort
contexts. This can be done by accumulating spatiotemporal
hypervectors from multiple effort levels, and saving its bipo-
larized hypervector in the AM. If the prototype hypervectors
of the two effort levels are already calculated and bipolarized,
however, another approach is to merge them into a single
prototype hypervector by randomly taking 5000 elements (half
of the elements) from each prototype hypervector.

2) Gesture+Effort Classification: If discriminating be-
tween different effort levels of gestures is desired, each
{gesture,effort} pair must be treated as a separate output class.
In this case, prototype hypervectors for each effort level can
be added to the model as new entries in AM.

Note that a potential third case could involve adding new
prototype hypervectors for each effort level to the AM while
preserving the number of gesture classes, allowing multiple
prototype entries to represent the same class. While this will
improve the classification accuracy comparing to the case

where prototype hypervectors were merged, it costs more
memory and computation resources as three prototype hyper-
vectors have to be generated and stored for each gesture class.

IV. RESULTS

We first treated different effort levels as different contexts
of the same gesture class. An initial model was trained with
gestures from one effort level context. It was then cross
validated (training with one trial, inference with remaining
four trials) within the same effort level and also used to
classify gestures from the other level within the pair, without
merging the models (Fig. 5(a-c), first and second pairs). When
training and testing within the same effort level context,
classification accuracy remained better than 93.11%. However,
across different effort levels, classification accuracy dropped
by between 16.57% and 39.17%, with the worst performance
when the difference between effort levels was highest, i.e. low
and high effort. After merging the prototype hypervectors to
include both effort contexts, the classification accuracy was re-
covered to above 78.21% (Fig. 5(a-c), third pairs). The poorest
recovered accuracies resulted from training an initial model
on medium or high effort level gestures, and then merging
with low effort gestures. While prototype hypervectors for
medium and high effort level gestures were more similar to
each other, prototype hypervectors for low effort level gestures
were more distant due to a smaller variance in the calculated
feature values.

For a model trained with all three contexts by accumulat-
ing their spatiotemporal hypervectors before bipolarization,
accuracy was at least 88.19% for all three effort contexts
(Fig. 5(d)). In this case, the all-inclusive final hypervector is
weighted to be more similar to medium and high effort level
prototype hypervectors enabling higher accuracies in those
contexts.

When treating different effort levels of a single gesture as
different classes, we trained a new AM entry for each gesture
and effort level, increasing the total number of classes. We
calculated classification accuracy in two different ways: For
the first method (Fig. 6, red bars), an accurate classification
required matching both the gesture type and its effort level
to the label. For the second (Fig. 6, purple bars), an accurate
classification required only matching the gesture type. Notably,
if we disregard the effort level classification output from this
model, we achieve a better gesture-only classification accuracy
than in the case where we treated different effort levels as
different contexts.

V. CONCLUSION

We have presented methods based on HD computing
paradigm that address some of the challenges caused by vari-
ous muscle contraction levels in EMG-based gesture recogni-
tion. Our experimental data showed significant classification
accuracy degradation when training and testing across different
effort levels. We demonstrated that high accuracy can be
simply recovered using a minimum amount of data (only a
single trial) from each effort level. Moreover, we verified



Fig. 5. Classification accuracy measured before and after merging the models when treating effort levels as different contexts of the same gesture class.
Accuracies across effort contexts before and after merging were calculated for each pair of effort levels: low (L) and medium (M) in (a), low and high (H)
in (b), and medium and high in (c). Accuracy for each effort level was also calculated using a model trained with all three effort level contexts (d).

Fig. 6. Classification accuracy measured when treating different effort levels
of the same gesture as different classes. Accuracy was calculated as the
success rate of matching both gesture type and effort level (red) as well as
gesture type only (purple).

that the HD model is capable of including new classes to
distinguish among multiple effort levels of gestures without
the need to change the existing model.
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