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Abstract—Drug repurposing is more relevant than ever due
to drug development’s rising costs and the need to respond to
emerging diseases quickly. Knowledge graph embedding enables
drug repurposing using heterogeneous data sources combined
with state-of-the-art machine learning models to predict new
drug-disease links in the knowledge graph. As in many ma-
chine learning applications, significant work is still required
to understand the predictive models’ behavior. We propose a
structured methodology to understand better machine learning
models’ results for drug repurposing, suggesting key elements
of the knowledge graph to improve predictions while saving
computational resources. We reduce the training set of 11.05%
and the embedding space by 31.87%, with only a 2% accuracy
reduction, and increase accuracy by 60% on the open ogbl-biokg
graph adding only 1.53% new triples.

Index Terms—Drug Repurposing, Biomedical Knowledge
Graph, Knowledge Graph Embedding, Link Prediction, Machine
Learning

I. INTRODUCTION

Discovering new drugs is a tricky, expensive, and slow
mission. It involves different stages that often require clinical
trials to move forward. Drug Repurposing (DR) discovers new
therapeutic uses for existing drugs, reducing time-to-market by
30% to 80% (Figure[I)) and cost (~80%) with a lower failure
risk in the trails compared to a new chemical entity [1]]. In
the last years, the number of available biomedical information
increased to the point that it is arguably impossible to manage
it manually [2]]. Fortunately, automatic procedures significantly
benefit from integrating heterogeneous information from dif-
ferent sources of data. This challenge has spurred significant
research in Biomedical Informatics, intersecting disciplines
such as data integration and representation learning. While
results are promising, formal methodologies taking into ac-
count biomedical knowledge are essential to better understand
these outcomes [3]], [4]]. We applied Machine Learning (ML) to
DR, and, to achieve higher interpretability, we investigated the
meaning behind the prediction scores with different analyses.
We propose a methodology to understand how the network
structure representing a biomedical domain influences the pre-
diction accuracy in graph representation learning applications.
As a result, we can leverage this information to improve
the quality of the network and subsequently improve the
predictions and reduce the computational resources needed to
learn the representation of the biomedical domain.

A Knowledge Graph (KG) is a network of heteroge-
neous entities connected by specific relationships capable
of representing a complex domain semantic [4]]. Encoding
the biomedical domain in a KG translates the task of DR
into finding possible new connections between a drug and a
disease [5]]. Reusing a pre-existent biomedical KG is difficult
because databases often restrict data redistribution without a
commercial license. We represent a biomedical domain that
is beneficial for DR, combining different available sources
of information. We leverage different representation learning
techniques to extract knowledge from structured and unstruc-
tured data from curated databases such as Uniprot [6]], CTD
[7]l, DrugBank [8], and OMIM [9], pursuing the importance
of data sharing in the biomedical field [10].

Knowledge Graph Embeddings (KGEs) are representations
obtained through ML techniques that project the KG to a
lower-dimensional space that preserves the graph structure
[11]. KGEs can predict new relationships between entities in
the graph: in the context of DR, we can leverage embeddings
to discover new links between drugs and diseases.

Transparency, interpretability, and explainability are long-
standing issues in the application of ML to natural sciences
[12]. For this reason, we studied the quality of DR predictions
obtained from KGEs with different types of analysis, combin-
ing domain knowledge with the ML outcomes. Our method-
ology also hints at strategies to reduce the computational cost
of KGEs, with insignificant accuracy detriment.

This work can be valuable to the pharmaceutical industry,
having the potential to speed up the compound identification
stage of the DR approach, which can require up to 2 years
of work (Figure [I). Moreover, our methodology reduces the
KGE representation size on a novel KG by 31.87% (with
a comparable reduction in training time), with only a 2%
accuracy reduction, and increases the accuracy by 60% on the
open ogbl-biokg (BioKG) graph [13]] with the addition of
only 1.53% new triples.

Our main contributions are:

¢ A new biomedical KG built from free databases specifi-

cally to address DR (Section [[I-C).

o A methodology to analyze the efficacy of embedding

models for DR while saving resources (Section [[I-DJ.

o An analysis of the relationship between the prediction

quality and data structure, discovering which links and



Fig. 1: Drug Discovery and Drug Repurposing timeline.
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Fig. 2: The schema of our biomedical KG with four different
types of entities and specific relationships connecting them.

entities are more incisive in DR (Section [III).

II. DATA & METHODS

The literature offers several embedding models for KGs [14]
and describes various biomedical databases used for different
applications, in particular to apply Graph Machine Learning
(GML) techniques to DR [5]], [15].

This section introduces the general idea of the embedding
model used to support DR and presents the used datasets.

A. Knowledge Graph and Knowledge Graph Embedding

A KG is a network that specifies the type of connection
between two entities [16]: Figure [2| represents the schema of
the KG built for this work. KGs are commonly represented
as lists of triples. A triple is composed of three elements: two
entities, called head h and tail ¢, and a relationship r that
connects them. Due to the KG structure, it is easy to integrate
the graph with heterogeneous information sources.

KGE models represent the KG in a lower-dimensional space
that condenses and preserves the original information but also
allows extracting hidden information. A KGE differs from
another by the representation space, the scoring function, and
the encoding models’ additional features [[14f]. The embed-
ding model uses a representation space with a mathematical
structure to encode peculiar relation properties of the KG
into a low-dimension representation vector. The model score
function measures the embedded triple’s plausibility together
with additional information from the graph.

Link Prediction (LP) is the task of predicting facts in a KG
to forecast the existence of a missing triple, leveraging the
learned embedded representation [[14]. As such, DR can be
seen as LP between a drug and a disease.

B. Selecting an Embedding Model

Multiple state-of-the-art KGE techniques exist, without a
single one outperforming the others in similar conditions [|14]],
[17]. For our application, we found that TransE is the best
compromise between computational complexity and prediction
accuracy. TransE requires fewer data and parameters than
competing embedding models to provide excellent accuracy
[14]]; moreover, it can also scale to more extensive databases,
making it suitable for easy prototyping. TransE models rela-
tionships by interpreting them as translations operating on the
entities’ low-dimensional embeddings [[18]]. Given a training
set S of triples {(h,r,t) € S}, TransE learns for each entity
h and t, and for each relation r, a vector representation of
chosen size K. The primary idea behind TransE is that the
functional relation induced by the r-labeled edges corresponds
to a translation of the embeddings. The vector sum of h+r =t
when (h,r,t) is a true triple (¢ should be the nearest neighbor
of h +r), while h + r should be far away from ¢ if the triple
is false, i.e. a negative triple, denoted as (h/,r,t') € S’, with
S'NS = (). TransE, to learn such embedding, minimizes a loss
function £ (Eq.[I), computed as sum of dissimilarity measure
d (L1 or L2 norm) over the training set [[18].

L= > S ldhrt) —dW + )] (D)

(h,r,t)€S (h/,r,t')eS’

To predict a new link in the graph, the model replaces a
triple’s element with a specific subset of entities, and it ranks
each new triple using the cost function against the learned
embedding. The top-ranking triples are plausible triples, and
for this reason, possible new connections in the KG [18§]].

C. Integrating Heterogeneous Sources of Data

To represent the heterogeneous information of a biomedical
domain as a KG, it is necessary to start from curated databases
[15]. To address DR, we propose a KG which is the result
of the combination of heterogeneous sources of information.
We combine free biomedical curated databases composed of
unstructured information as in DrugBank [8|] and UniProt [6],



and structured information as in CTD [7|], and OMIM [9].
In the case of unstructured information fields, we use the
biomedical en_ner_ bc5cdr_md Named Entity Recognition
(NER) system [[19]] to extract meaningful connections between
entities from the textual content. Although the KG is easily
extensible, the integration process is not immediate due to
the naming complexity of the different entities. The same
entity can have more commercial names, or a database can
use a different naming system that made it necessary to
use dictionary databases, like OMIM, to homogenize diverse
names. The result is a compact, effective KG built to address
the problem of DR. We use a second biomedical KG, BioKG
[13]. This graph contains more entities and relations than ours,
but it is not built to specifically target DR. In Table [l there
are the characteristics of the two biomedical KG. In particular,
we observe that our KG has fewer triples overall, but it has
more drug-disease relationships that are useful for DR. This
consideration holds true even if BioKG has other drugs-related
information such as side effect entities.

D. Proposed analysis methodology

We propose the following procedure to analyze the embed-
ding applied on KG as a result of the experimental results
in Section (D Set the embedding model with Hyper
Parameters (HPs) coming from a KG with similar size and
domain. This step helps to reduce the HPs research space. (2)
Optimization of HPs, in such a way that the fine-tuning of the
embedding model produces the best prediction performances.
(3) Carry out feature ablation or extension analyses that
determine if the model is learning and not memorizing. This
analysis aims to highlight the KG semantic and structural
strengths and criticalities. Leveraging this information, we can
understand if there are not such helpful parts of the KG but
that have a non-negligible impact on the resources used for
the training procedure.

III. EXPERIMENTAL EVALUATION

This section presents the study results on the model hy-
perparameters, then shows the prediction accuracy for DR
for both datasets, and finally investigates these results with
feature ablation and graph extension techniques. We randomly
split drug-disease triples into training, validation, and test set
with a probability of 60%, 20%, 20%, respectively. Non-drug-
disease triples are also added to the training set. Focusing on
the DR task, we measure the embedding model’s prediction
accuracy using Hits@N (H@N) only against the drug-disease
triples present in the validation set. H@N is the proportion
of the original correct triples to the top N predictions of the
model (Eq. [2). Other public results instead provide general
results on all possible link predictions [[13[]. To compute this
metric, we follow the procedure described in [13]], [18]]. The
process consists of corrupting the validation set’s triples (), by
replacing one entity of the triple with another entity from a
random subset of the same type. The embedding model ranks
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Fig. 3: Importance of the embedding dimension and negative
sampling for prediction score and computational resources.

all the corrupted triples and the valid triples against each other
with H@N.
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We average H@N scores over 10 independent train-
ing/validation cycles, with negligible variance.

A. Hyper Parameters

The embedding model requires HPs tuning to be trained
effectively on a specific dataset. The two most important HPs
in a KGE, according to [14], are the embedding dimension and
the optimizer (with its learning rate). Other parameters, like
the negative sampling, can affect the time to train a model, but
they are less significant for the final accuracy. In particular, in
Figure [3b] negative sampling is difficult to manage since it is
hard to have a negative set (a set of false triples) available.
Perturbing the triples randomly is challenging as there is no
certainty that this is not a possible repurposed drug, and
inserting it in the negative set would indicate to the model to
penalize an actually correct representation of the triple. For this
reason, we choose a low value for the negative sampling that
reduces the probability of this event and saves computational
resources. The result shows that a low embedding dimension
yields the worst accuracy. Instead, an exaggerated embedding



TABLE I: Number of entities/relations (and percentage of total) in each KGs in our evaluation. Highest values in bold.

. . Side . Total Drug-Disease Drug-Drug Disease-Disease Total
Diseases Drugs Genes Proteins Effects Functions Entities Triples Triples Triples Triples
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prediction score and computational resources.

dimension does not bring benefits but only faster overfitting
and a higher computational cost. For the KG proposed in this
work, the best embedding size is 128 (Figure Ba) since it is
the best compromise between accuracy and model complexity.
The best optimizer proved to be ADAM with learning rate
A = 1074, coherently to [17]] (Figures and .

B. Drug Repurposing Prediction Score

TransE applied to our biomedical KG achieves a H@N
score slightly above 52%. In other words, the model proposes
a correct repurposing in the first ten predictions 52% of the
times. This result shows that our model has significant learning
capabilities: a random baseline (10 random drugs chosen as
repurposing candidates) always has H@N close to 0% due to
the enormous number of possible combinations.

The same embedding algorithm applied to BioKG gives
H@N accuracy below 30%, when predicting the same drug-

Fig. 6: Comparing features ablation for H@ 10 accuracy.

disease relations. BioKG contains more triples than our KG but
less useful information for DR. From these promising results
(Figure [3), we investigate how the KGE structure relates to
such different accuracies, in the next section.

C. Feature Ablation

To understand which parts of the input data are more critical
in the training procedure, we systematically apply feature
ablation to our KG, reducing its size and entity types. This
methodology highlights which part of the KG is critical to
the DR task and sheds a light on how the KGE model relates
to the graph structure, the model outcomes, and the domain
knowledge. A summary of the results is in Figure [f]

1) Only Drug-Disease: If the dataset contains only drug-
disease relationships, the accuracy score drops below 16%.



This striking accuracy loss shows that the other removed
triples are essential for good predictions.

2) No gene: Removing gene entities from the KG results
in a ~ 2% H@N loss. Although gene entities represent more
than 30% of the entities in the KG, they do not appear to be es-
sential for DR. This result suggests an important consequence:
bigger KG, with a higher computational cost for training and
inferences, do not provide a significant improvement of DR
accuracy if they do not contain meaningful triples for the
problem at hand.

3) No Parents: Another test is to remove from the dataset
the relation that connects a disease to another one. This kind of
relation expresses a hierarchy between diseases: a disease can
be classified based on its specification, but it belongs to a more
generic family group. This information can be helpful because
it is very likely that a drug that treats a disease could benefit
a similar drug that belongs to the same family. This idea is
confirmed by the results of the H@ 10 score on the validation
set. If the disease-disease relations, representing 10% of the
dataset, are removed from the training set, accuracy decreases
by 5-10%.

4) 50% Triples Removal: Randomly removing 50% of the
triples has a clear impact on the accuracy result. The results
show that increasing the number of information in the KG
improves the model’s accuracy significantly even if the score
is not proportional to the graph’s dimension.

D. Extension of ogbl-biokg (BioKG)

Extending BioKG with other drug-disease relations used
in our KG, with the support of dictionary databases used
to translate the entity references, improves the accuracy of
~ 60% as shown in Figure |5} This result indicates that the
more useful data is available for a specific task, the more
accurate the model will be in the prediction.

IV. CONCLUSIONS

The results presented in this work allow us to conclude that,
in the case of KGEs, what most influences a prediction task
is the graph’s structure. Our methodology also significantly
reduces the computational resources necessary to train the
model and produce excellent results in the specific DR task.
The embedding model helps to understand which parts of the
graph are essential for a specific task and suggests which parts
improve. Possible future works concern the extension of the
KG with other types of entities and the complete automation
of the analysis procedure.
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