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Abstract—This paper presents a deep learning system applied
for detecting anomalies from respiratory sound recordings. Our
system initially performs audio feature extraction using Con-
tinuous Wavelet transformation. This transformation converts
the respiratory sound input into a two-dimensional spectro-
gram where both spectral and temporal features are presented.
Then, our proposed deep learning architecture inspired by the
Inception-residual-based backbone performs the spatio-temporal-
focusing and multi-head attention mechanism to classify respira-
tory anomalies. In this work, we evaluate our proposed models on
the benchmark SPRSound (The Open-Source SJTU Paediatric
Respiratory Sound) database proposed by the IEEE BioCAS 2023
challenge. As regards the Score computed by an average between
the average score and harmonic score, our robust system has
achieved Top-1 performance with Scores of 0.810, 0.667, 0.744,
and 0.608 in Tasks 1-1, 1-2, 2-1, and 2-2, respectively.

Index Terms—lung auscultation, respiratory disease, inception-
residual-based model, wavelet.

I. INTRODUCTION

Many respiratory diseases such as tuberculosis, asthma,
chronic obstructive pulmonary disease (COPD), and lower
respiratory tract infection (LRTI), have resulted in a significant
and concerning mortality rate of 6.2 million individuals world-
wide [1]. In the UK, chronic respiratory illnesses cause the
hospitalization of over 700,000 people annually [2]. During the
initial phase, respiratory diseases cause damage or obstruction
to the airways in the lungs, resulting in a restricted flow of air
during both the inhalation and exhalation processes. Therefore,
machine learning systems (i.e. including conventional machine
learning models and deep learning architectures) are proposed
for analyzing anomalies in respiratory sounds caused by
damage or obstruction in the lung’s airways. These systems
can facilitate clinicians to diagnose these diseases at an ear-
lier stage in the most scalable, noninvasive, and time-saving
workflow. In general, there are two main groups of machine
learning systems used for classifying respiratory anomalies.
As the first group makes use of handcrafted features, a variety

(*) The work was done when Huy Phan was at the School of Electronic
Engineering and Computer Science, Queen Mary University of London, UK,
and prior to joining Amazon Alexa.

of techniques such as statistical features [3], entropy-based
features [4], Mel Frequency Cepstral Coefficients (MFCCs) [5]
are exploited to transform lung sounds into feature vectors.
Next, conventional machine learning models explore these vec-
tors to detect anomalies in lung sounds. Otherwise, the second
group transforms the audio recordings into two-dimensional
spectrograms. These spectrograms such as S-transform [6],
MFCC spectrogram [7], and log-mel spectrogram [8], [9]
are generated to capture spectral and temporal information of
respiratory sounds. Next, these spectrograms are inputted into
network architectures such as convolutional neural network
(CNN) based architectures [10], [11] or recurrent neural net-
work (RNN) based architectures [12], [13] for classification.
While MFCC and log-mel spectrograms were found as a
popular representation, the fixed window size is still hindering
a proper resolution for feature extraction. To overcome this,
an alternative way of using Wavelet-based spectrogram [14],
[15] with a better multi-resolution analysis is proposed thanks
to its suitability in adjusting both temporal window length and
the wide frequency range across the length.

In this paper, we leverage our previous work of Inception-
residual-based architecture [16] to classify anomalies from
respiratory sounds. However, we propose spatio-temporal-
focusing and multi-head attention mechanisms to explore the
effect of spatio-temporal information across different temporal
lengths of spectrograms. To demonstrate our robust perfor-
mance in detecting respiratory anomalies, we evaluate our
proposed systems on the IEEE BioCAS 2023 challenge. Our
contributions are as follows: (1) We investigated multiple
spectrograms extracted from Continuous Wavelet transform
with three different mother waves of Amor, Morse, and Bump
at different temporal dimensions. (2) We successfully applied
Inception-residual-based architecture combined with spatio-
temporal-focusing and multi-head attention mechanisms to
explore various spectrograms at different temporal lengths
and pinpoint that the more features explored on temporal
information, the more efficiency in detecting anomalies from
respiratory sounds.

ar
X

iv
:2

30
6.

14
92

9v
1 

 [
cs

.S
D

] 
 2

5 
Ju

n 
20

23



II. SPRSOUND DATABASE AND TASKS DEFINITION

A. SPRSound database

In this work, we utilize the 2022 SPRSound: Open-Source
SJTU Paediatric Respiratory Sound database, which was col-
lected in the Shanghai Children’s Medical Center (SCMC),
China [17]. The database comprises 2,683 audio recordings
obtained from 292 patients aged between 1 month and 18 years
old. These audio recordings were recorded by Yunting model
II Stethoscope at 8 KHz sampling rate with 16-bit precision.
Each recording underwent a careful examination by experts,
who labeled each recording as Poor Quality (PQ), Normal
(N), Continuous Adventitious Sound (CAS), Discontinuous
Adventitious Sound (DAS), or CAS and DAS (CD). In ad-
dition, respiratory experts also annotated the onset (starting
time) and offset (ending time) of every audio event within
the recordings. As a result, this database consists of audio
events classified as Normal (N), Rhonchi (Rho), Wheeze (W),
Stridor (Str), Wheeze and Crackle (B), Coarse Crackle (CC),
and Fine Crackle (FC). Furthermore, these audio recordings
and events show various duration ranging from 0.304 s-15.36 s
and 0.126 s to 7.152 s, respectively. The imbalance in the
distribution among classes in both recording and event levels
also makes the classification more challenging.

B. Tasks Definition and Evaluating Setup

There are two levels (i.e. event and recording) of classifi-
cation tasks in SPRSound database, referred to as Task 1 and
Task 2. Task 1 comprises two sub-tasks of Task 1-1 and Task
1-2. While Task 1-1 is to classify the respiratory sound events
as Normal and Adventitious, Task 1-2 involves classifying
these events into N, Rho, W, Str, CC, FC, or B. Task 2
focuses on the entire recording, which is also separated into
Task 2-1 and Task 2-2. In particular, Task 2-1 aims to classify
the respiratory recordings as Normal, Adventitious, and Poor
Quality. Meanwhile, Task 2-2 is a multi-class classification,
where the respiratory recordings are classified into N, CAS,
DAS, CD, or PQ. We adhere to the evaluation metrics as
mentioned in [17], every task and its sub-tasks in this paper are
evaluated by sensitivity (SE), specificity (SP), average score
(AS), harmonic score (HS), and the average of AS and HS
(Score). As the SPRSound database is proposed in the IEEE
BioCAS 2023 challenge, we follow the challenge to separate
the database into Training and Validation sets. After evaluating
our proposed models on the Validation set, we submit the
models to the challenge for evaluation on a blind Test set.

III. THE PROPOSED SYSTEM

Overall, our proposed system for detecting anomalies in res-
piratory sounds as shown in Fig. 1 consists of three main steps:
low-level spectrogram feature extraction, data augmentation,
and back-end classification.

A. The low-level spectrogram feature extraction

The respiratory events/recordings are resampled to 4 kHz
as abnormal respiratory sounds typically have frequency
bands within the range of 60-2000 Hz [17]. Next, while
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Fig. 1. The high-level architecture of our proposed system for detecting
anomalies in respiratory audio inputs.

the resampled respiratory events with different lengths are
duplicated to ensure they have a consistent length of 10
seconds, audio recordings are also duplicated to make sure
that all audio recordings have a consistent duration of 30
seconds. A band-pass filter of 60-2000 Hz is then applied to
suppress background noise in each respiratory event/recording.
Finally, these respiratory events/recordings undergo a trans-
formation process to generate two-dimensional spectrograms.
This transformation applies Continuous Wavelet transforma-
tion, which employs Amor, Bump, and Morse as the Wavelet
mother functions. As a result of these transformations, three
types of spectrograms are obtained from each respiratory
event/recording. Finally, while all spectrograms of the event
level are scaled to different sizes of 128×128, 128×256, and
128×512, each type of spectrogram of the recording level is
scaled to the different sizes of 140×256, 140×512, 140×1024
(i.e. frequency bands×the number of time frames).

B. Data Augmentation

To address the issue of imbalanced data discussed in Sec-
tion II, we propose three data augmentation techniques on both
the event and entire recording levels after spectrograms are
generated from the feature extraction step. First, we randomly
oversample the spectrograms to ensure an equal number of
spectrograms per class in each batch size. This helps to balance
the representation of different classes in the training data.
Second, spectrograms within each batch are then randomly
cropped with a reduction of 10 bins in both the time and
frequency dimensions. This encourages the learning process to
focus on the partial loss of information at each dimension [18].
Third, we apply the mixup data augmentation technique [19]
to increase the variation in the training data. This technique
combines pairs of spectrograms from different classes, creating
new synthetic samples. The goal is to enhance the diversity of
the training data and enlarge Fisher’s criterion (i.e. the ratio of
between-class distance to within-class variance in the feature
space). Eventually, the augmented spectrograms are fed into a
back-end classifier, reporting the classification results.

C. The back-end classification

The proposed architecture for the back-end classification
is illustrated in Fig. 2, which is based on Inception-residual-
based network architecture inspired by our prior work in [16].
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Fig. 2. The proposed architecture for the Back-end classification

In detail, our proposed network architecture comprises one
Doub-Inc Block, two Inc-Res Blocks, one Pooling Block, one
Multi-head Attention Block, and two fully-connected layers.
The Doub-Inc Block includes two Inc01 blocks followed by
Batch Normalization (BN), Rectified Linear Unit (ReLU),
Average Pooling (AP[Kernel Size]), Dropout (Dr(Drop Ratio),
and Residual Normalization (RN( λ = 0.4)) inspired from
[20]). The Inc01 block is constructed as a variant of the
naive inception layer [21] with fixed kernel sizes of [3×3],
[1×1], and [4×1]. Next, two Inc-Res Blocks share the same
architecture as inspired by our prior work in [16], but channel
numbers increase from 128 to 256 to form a deeper view
of the channel dimension. The detailed structure for every
Inc-Res Block is described in the right-hand side of Fig. 2,
which presents two main blocks of IncFT[Channel×Kernel
Size] block and IncT[Channel×Kernel Size] block, and lay-
ers of Conv, BN, Dr, ReLU, AP, Max Pooling (MP[Kernel
Size]), and RN( λ = 0.4). Notably, IncFT[Channel×Kernel
Size] and IncT[Channel×Kernel Size] layers propose different
kernel sizes defined as [K×K] and [1×K]. The value of K
is changed as details on the bottom part of Fig. 2. The idea
of IncFT[Channel×Kernel Size] is proposed to strengthen the
network to learn effectively not only the widespread frequency
bands but also the distribution of energy in certain frequency
bands across the temporal length of the input spectrograms.
Additionally, we suppose that anomalies in lung sounds come
from different duration with different changes in their fre-
quency, which might cause more changes in the temporal
dimension of each spectrogram rather than in certain frequency
bands. Therefore, the IncT[Channel×Kernel Size] is proposed
to focus completely on temporal information from different
dimensions of the time frame in spectrogram inputs. Following
each IncFT[Channel×Kernel Size] and IncT[Channel×Kernel

Size] block, a ReLU, an AP layer, and RN layer are applied
before adding sub-branch results together. The Pooling Block
makes use of global pooling layers to extract three features
from the second Inc-Res Block: (1) global average pooling
across the channel dimension, (2) global max pooling across
the temporal dimension, and (3) global average pooling across
frequency dimensions.

Furthermore, it has been observed in [22] that individual
attention heads acquire distinct sets of weight matrices. When
these self-attention heads are combined, they create a multi-
head self-attention layer. This layer enhances the learning per-
formance to generate more comprehensive embedding features
among different anomalies in respiratory sounds. As a result,
the output of the Pooling Block is then presented to the Multi-
head Attention block as shown in Fig. 2. At each Attention
block, we apply three multi-head attention layers on three
dimensions of frequency, time, and channel. Each multi-head
attention layer is configured to have 16 as the number of heads
and 32 as the key dimension. The output of each multi-head
attention layer is a one-dimensional embedding feature. We
then concatenate these features before feeding them into fully
connected blocks. While the first dense layer comprises a fully
connected layer (FC[C = 512]) followed by a ReLU, Dr, the
second dense layer comprises a fully connected layer (FC[C
= T ]) followed by a Softmax, where T is defined according
to the number of target classes.

Model implementation and Training Loss functions:
We implement our proposed models in this paper using the
Tensorflow framework. As we propose to use mixup data
augmentation, the labels are not one-hot format. Therefore,
we use Kullback-Leibler (KL) divergence loss in the proposed
networks as shown in Eq. (1) below:



TABLE I
PERFORMANCE COMPARISON AMONG SPECTROGRAMS ON THE
VALIDATION SET IN TASK 1-1 AND TASK 1-2 (EVENT LEVEL)

System Task 1-1 Task 1-2
SE/SP AS/HS Score SE/SP AS/HS Score

Wavelet (Amor)
128×128 0.73/0.86 0.79/0.79 0.79 0.57/0.86 0.72/0.68 0.70
128×256 0.77/0.87 0.82/0.82 0.82 0.61/0.87 0.74/0.72 0.73
128×512 0.76/0.90 0.83/0.82 0.83 0.64/0.90 0.77/0.75 0.76

Wavelet (Bump)
128×128 0.77/0.90 0.83/0.83 0.83 0.64/0.90 0.77/0.75 0.76
128×256 0.79/0.88 0.83/0.83 0.83 0.67/0.88 0.78/0.76 0.77
128×512 0.81/0.91 0.86/0.86 0.86 0.67/0.92 0.79/0.78 0.79

Wavelet (Morse)
128×128 0.80/0.84 0.82/0.82 0.82 0.63/0.84 0.74/0.72 0.73
128×256 0.75/0.92 0.83/0.83 0.83 0.62/0.92 0.77/0.74 0.76
128×512 0.84/0.87 0.85/0.85 0.85 0.69/0.87 0.78/0.77 0.77

LossKL(Θ) =

N∑
n=1

yn log(
yn

ŷn
) +

λ

2
||Θ||22, (1)

where LossKL(Θ) is KL-loss function, Θ describes the
trainable parameters of the network, λ denotes the ℓ2-norm
regularization coefficient experimentally set to 0.0001, N is
the batch size, yn and ŷn are the ground truth and the network
output, respectively.

IV. THE EXPERIMENTAL RESULTS AND DISCUSSION

On Event Level (Task 1-1 and Task 1-2 on Validation
set): As the experimental results are shown in Table I, it
can be seen that when the number of time frames in each
type of Wavelet spectrogram is extended (i.e. from 128 to
256 and 512), the performance is further improved in both
Task 1-1 and Task 1-2. This can be explained as when more
temporal information is provided, the proposed model has the
greater ability to exploit effectively information across the
temporal length of each spectrogram. For instance, extending
from 128 to 256 and 512 helps Wavelet (Bump) increase
from 0.83 to 0.86 in Score in Task 1-1 and achieves an
improvement of 3% in Score in Task 1-2. Compare among
three evaluating spectrograms, Wavelet (Bump) outperforms
Wavelet (Morse) and Wavelet (Amor), and achieves the highest
Scores at the size of 128×512 in both Task 1-1 and Task 1-
2 with 0.86 and 0.79, respectively. It indicates that Wavelet
(Bump) spectrogram is the most appropriate representation to
capture distinct features of respiratory events.

On Record Level (Task 2-1 and Task 2-2 on Validation
set): Similar to Task 1-1 and Task 1-2, the increase of time
frames (ranging from 256 to 512 and 1024) in each type of
Wavelet spectrogram results in improvements in both Task 2-1
and Task 2-2 as shown in Table II. This again indicates the
benefits of widening time frames in every spectrogram and
the efficiency of our proposed model which is developed to
focus on temporal information. For instance, the significant
improvement of 15% in AS and 13% in HS are obtained in
Task 2-1 when Wavelet (Bump) is extended from 140×256
to 140×1024. Notably, when the spectrograms are set to
140×1024, Wavelet (Morse) outperforms Wavelet (Amor) and
Wavelet (Bump), and achieves the highest performance of
Score in both Task 2-1 (at 0.71) and Task 2-2 (at 0.55).

TABLE II
PERFORMANCE COMPARISON AMONG SPECTROGRAMS ON VALIDATION

SET IN TASK 2-1 AND TASK 2-2 (ENTIRE RECORDING LEVEL)
System Task 2-1 Task 2-2

SE/SP AS/HS Score SE/SP AS/HS Score
Wavelet (Amor)

140×256 0.66/0.59 0.63/0.62 0.62 0.33/0.59 0.46/0.43 0.45
140×512 0.56/0.78 0.67/0.65 0.66 0.35/0.78 0.56/0.48 0.52

140×1024 0.77/0.64 0.70/0.70 0.70 0.41/0.64 0.52/0.50 0.51
Wavelet (Bump)

140×256 0.54/0.57 0.55/0.55 0.55 0.33/0.78 0.55/0.46 0.51
140×512 0.54/0.83 0.69/0.65 0.67 0.32/0.83 0.58/0.46 0.52

140×1024 0.58/0.83 0.70/0.68 0.69 0.32/0.85 0.59/0.46 0.53
Wavelet (Morse)

140×256 0.60/0.76 0.68/0.67 0.67 0.27/0.76 0.52/0.40 0.46
140×512 0.57/0.76 0.66/0.65 0.66 0.35/0.76 0.56/0.48 0.52

140×1024 0.67/0.76 0.71/0.71 0.71 0.40/0.76 0.52/0.52 0.55

TABLE III
COMPARE OUR PROPOSED SYSTEMS TO THE OTHERS SUBMITTED IEEE

BIOCAS 2023 CHALLENGE (SCORE(%) ON THE BLIND TEST SET)

Systems Task 1-1 Task 1-2 Task 2-1 Task 2-2
Top 1(Our system) 0.810 0.667 0.744 0.608

Top 2 0.733 0.646 0.759 0.538
Top 3 0.769 0.632 0.661 0.512
Top 4 0.720 0.593 0.665 0.549
Top 5 0.668 0.555 0.723 0.524
Top 6 0.748 0.599 0.699 0.411
Top 7 0.785 0.648 0.547 0.417
Top 8 0.756 0.467 0.658 0.458

This indicates that Wavelet (Morse) spectrogram is the most
suitable representation for respiratory recordings.

On IEEE BioCAS 2023 grand challenge (All tasks):
Given the experimental results on both the event level and
the entire encoding level, we indicate that our models with
Wavelet (Bump) at the size 128×512 and Wavelet (Morse)
with the size of 140×1024 achieve the best Scores on Task
1 and Task 2, respectively. We, therefore, use these systems
to submit to the IEEE BioCAS 2023 grand challenge and
evaluate our systems with the blind Test set [23]. As the results
shown in Table III, our proposed model trained on Wavelet
(Bump) at size 128×512 has achieved Top-1 performance in
tasks of event level. In particular, we gain the highest Score
of 0.810 and 0.667 on Task 1-1 and Task 1-2, respectively. As
regards the recording level, when the proposed model is trained
with Wavelet (Morse) spectrogram at a size of 140×1024,
we surpass other systems to have the best Score of 0.608
in Task 2-2. Even though Task 2-1 has a lower Score of
0.744, compared to that in Top-2, our proposed system still
outperforms other systems in general.

V. CONCLUSION

We have presented an Inception-residual-based network
architecture supported by spatio-temporal-focusing and multi-
head attention mechanisms for detecting respiratory anomalies.
The results on IEEE BioCAS 2023 challenge, which achieved
the Top-1 performance, have proven that the efficiency of
using higher time frames in the Wavelet (Bump) spectrogram
for tasks on the event level and in the Wavelet (Morse)
spectrogram for tasks on the recording level. In addition,
the proposed model shows its ability in learning temporal
information when the time frame of each spectrogram is
extended.
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