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Abstract—This paper proposes a bio-processor for neural
signal analysis. The device architecture features an analogue
Front-End and a Process Element, the latter can be scaled as
an array. Rather than a single dedicated algorithm, the Process
Element supports multiple analysis modes, utilising the analogue
behaviour of memristors. When used as part of an array struc-
ture, each Process Element can be programmed independently
and furthermore, the array elements can be electrically inter-
connected in an arbitrary manner. The device facilitates an inter-
network of in-memory computation units, i.e. an inter-network
of functions. This supports construction of a system that is
highly scalable, re-configurable and thus adaptive. The device
enables multi-functional neural recording and processing, for
early stage signal exploration. The device has been implemented
using a standard 180nm CMOS process with the addition of back-
end-of-line (BEOL) memristor deposition. Although targeted at
neural signal analysis, the device and the architecture described
is considered general purpose and may find application within
other disciplines.

I. INTRODUCTION

The capture and analysis of neural signals from neural
recording apparatus, together with the application of stimuli
by neuromodulation, has become increasingly commonplace
to decipher activity for diagnosis and/or to address medical
conditions [1]. Neural analysis has been used to detect and
investigate conditions such as epilepsy, the effects of spinal
injury and neurodegenerative disorders such as Dementia,
Parkinson’s disease and Alzheimer’s disease [2]. Such analysis
has also been used to investigate the prospects for brain-
controlled prostheses, mobility aids and appliances. Recent
advances with neural signal processors have been enabled by
implementation of machine learning (ML) algorithms on low-
power integrated circuit chips, which facilitated low-latency
detection of neurological disorders (especially the onset of
epilepsy) on the edge [3]–[7]. However, most processors today
achieve an improvement in energy efficiency by sacrificing
versatility, support limited algorithms and are dedicated to
specific application scenarios. When applied, especially within
an implantable device, it is essential the processor can be
easily reconfigured to adapt to the changes of the tissue-
implant interface conditions and customised to patients. Such
adaptation is preferably achieved through reprogramming of
the device rather than by a surgical hardware upgrade.

Recent advances in memristor or resistive RAM (RRAM)-
based in-memory computing (IMC) techniques have provided
the opportunity to achieve both energy efficiency and ver-
satility. The typical core structure is a crossbar of One-

Fig. 1. The proposed re-configurable neural signal processor based on
memristor/RRAM IMC. In each PE, an 1T1R crossbar array performs energy
efficient IMC for various neural signal processing tasks (e.g. general-purpose
vector-matrix multiplication for neural network acceleration, FIR filtering,
template matching, memristive integrating sensing, and reservoir computing,
etc.) by re-configuring the peripheral circuits. The processing algorithms can
be flexibly constructed by chaining multiple PEs together achieving multi-step
processing involving one or more processing tasks.

Transistor-One-Resistor (1T1R) cells, functioning as both
memory and computational elements. This reduces excessive
energy consumption during memory access. The advantages
of energy efficiency from memristor/RRAM-based IMC have
been demonstrated in various neural signal processor designs
[9]–[12]. With a memristor/RRAM crossbar as the mem-
ory/compute core, a processor can not only perform general-
purpose neural network computation [8] but also support
various signal processing functions and modalities, such as
finite impulse response (FIR) filtering [9], template matching
(TM) [10], memristive integrating sensing (MIS)/analog con-
ductance modulation [11], [12], and reservoir computing (RC)
[13], [14] by using different peripheral circuits for memris-
tor/RRAM interfacing and control. While the proof of con-
cept for these processing functions and modalities have been
demonstrated separately and on standalone memristor/RRAM
arrays, a fully integrated chip that incorporates re-configurable
processing capabilities for versatile neural signal analysis (e.g.
as shown in Fig.1) has not yet been achieved.

Herein we describe an integrated, re-configurable and adap-
tive system. The architecture is presented in Section II, operat-
ing modes in III, the completed design in IV and a discussion
concerning scaling and further work in V.



Fig. 2. Chip architecture. The front-end circuit conditions the incoming sensor
signals for onward processing [15]. It contains 16 analogue channels each con-
sisting of a low-noise amplifier, band-pass filter and variable-gain amplifier.
The bandwidth and gain of the channels are both programmable, making it
feasible to record multiple biomarkers such as action potentials (APs), local
field potentials (LFPs), and intracranial/extracranial electroencephalography
(EEG) recordings. The front-end also supports a pass-through mode allowing
the input signals to be processed by the PE directly to perform multi-step
neural signal processing by chaining multiple processor chips together. The PE
performs the processing functions using a memristor crossbar as a fundamental
computation structure to which the stimuli are controlled by a Reconfigurable
Interface (RI). The PE supports both analogue or digital inputs and analogue
or digital outputs. The inputs can be sourced from the analogue front-end in
gain/filter mode, the front-end in pass-through mode or from a digital stream
applied to a Digital-to-Analogue Converter (DAC). The front-end outputs or
signals obtained from the DAC are presented to the memristor crossbar. The
crossbar outputs are converted to analogue outputs by a dedicated current-
to-voltage (I2V) circuit per bit-line and may also be converted to a digital
output, using a dedicated Analogue-to-Digital Converter (ADC) per bit-line.

II. CHIP ARCHITECTURE

In this paper we present the design of an integrated
CMOS/Memristor bio-processor using memristor-based pro-
cessing elements (PEs) with re-configurable peripheral circuits
to support multiple neural signal processing modalities in-
cluding FIR, TM, MIS, and RC as shown in Fig 2. It also
includes a 16-channel neural sensing front-end. A single PE
is implemented in this design with a flexible data interface
such that multiple PEs can be inter-connected via chip-chip
interconnections at printed circuit board level. The sub-blocks
of the PE are described as follows.

1) DAC: The DAC consists of an 8-bit R-2R design, where
the output voltage linearly spans the amplitude between two
externally applied reference voltages. The digital input is
applied serially using a double-buffered register. The first stage
being a serial shift register, the second stage being a static
register. The second stage is loaded on demand from the first
stage, hence the first stage can be reloaded without disturbing
the state of the second stage. A PE has 16 8-bit DAC registers.

2) Memristor Crossbar: A bespoke 16 x 16 TiO2, PMOS,
1T1R structure is used for the crossbar, the memristor being
integrated by deposition onto the surface of the silicon wafer
[16]. The memristor device has a bipolar switching character-
istic; ideal for both digital and analogue application.

3) I2V: The crossbar bit-lines are connected to a dedicated
I2V. This is an operational-amplifier based transimpedance
amplifier (TIA) with adjustable range.

4) ADC: Each I2V output is connected to a dedicated ADC.
The ADC consists of an 8-bit ramp design, where the output
code linearly spans the amplitude between two reference
voltages. By adjusting the reference voltages, the ADC may
be used to provide a threshold or activation function, such as
Rectified Linear Unit (ReLU). The ADC result is read using a
double-buffered register. The first stage being a static register,
the second stage being a serial shift register. The second stage
is loaded on demand from the first stage, hence the second
stage may be read without disturbing the ADC operation while
a conversion is in progress. A PE has 16 8-bit ADC registers.

5) RI: As shown in Fig. 2, The RI comprises primarily
of a local controller and 16 units of switched-capacitor (SC)
amplifiers, pulse-width modulation (PWM) generators, selec-
tion switches and multiplexers. The local controller receives
configuration bits from the global shift register chains and
provides programmable clocks and control signals for the SC
amplifiers and other circuits, according to the operating mode
of the PE. A more detailed circuit diagram and the clock
schemes of the RI is shown in Fig.3 and the RI operation
principles are described together with the re-configurable
neural signal processing modes in Section III.

III. RE-CONFIGURABLE OPERATION MODES

The configurations of the processor for different operating
modes are illustrated in Fig. 3. The basic functions include
electroforming and readout modes. Using these two basic func-
tions in an interleaved manner, write-and-verify iterations can
be applied to program the memristors to the desired resistance
states. The supported neural signal processing modalities are
as follows.

1) General-Purpose Vector Matrix Multiplication (GP
VMM): GP VMM is an essential operation in neural network
computation. The trained weights are stored as memristor
conductance and the VMM operation is performed by applying
the input signal vectors on the SLs. The input vectors can be
from either the DACs (digital inputs) or the SC amplifiers
through their embedded analog drivers (analog inputs). The
VMM calculation results are read on the BLs where the
I2V/TIAs and ADCs convert the summed currents into analog
or digital outputs. Each PE can process up to 16 input neurons
and support 16 output neurons in a single layer. Deeper or
larger scale neural networks can be constructed using the PE
in several iterations or using multiple PEs in parallel.

2) Finite Impulse Response (FIR) filtering: FIR filtering is
commonly used to pre-process neural signals by extracting
features in the frequency domain. Brain wave patterns have
been associated with different brain states and these occur
in specific frequency bands [9], [17]. The PE configuration
for FIR is largely the same as for VMM, but the timing of
the SC amplifier clocks in the RI differ to implement a 16-
sample delay line, whereby each SC amplifier and each row
of the crossbar serve as one FIR tap. The conductance of the
memristors is defined by the FIR filter coefficients in this case.
Each column of the crossbar serves as one frequency band.
Each PE can support up to 16-channel, 16-tap FIR filtering.



Fig. 3. PE configurations for different processing modalities. During electroforming, most of the circuit blocks in the PE are disabled and/or bypassed except
the DACs and a few switches and multiplexers. The electroforming signals are supplied from the DAC through the source lines (SL0−15) with the reference
voltage (V ref W ) applied through the bit lines (BL0−15). The memristors are electroformed in an interleaved manner by activating the selectors through the
word lines (WL0−15) which are controlled by the RI. In readout mode, the resistance of the memristors are measured by applying a 0.2V voltage difference
(which is below the resistive switching threshold) across the devices through the SLs and BLs. The signal R/W̄ (controlled by the local controller) is used
to connect or disconnect the I2V/ADC circuits with the crossbar array when reading from or writing to the memristors. During VMM, FIR, and TM, the 16
SC amplifiers in the RI are activated which generate the stimuli voltages on the SLs based on the input signals. In VMM the 16 SC amplifiers are clocked
synchronously with each SC amplifier representing one input neuron, and each I2V/ADC on the BLs represents one output neuron. In FIR and TM, the 16
SC amplifiers are clocked in a time-interleaved fashion creating a 16-sample delay line. In FIR mode each row of the memristors represents the coefficients
of one FIR filter tap and each column represents one frequency band, while in TM each row represents the template coefficients and each column represents
one waveform template. In MIS, the SCA amplifiers are PWM modulated to drive the memristors with higher energy efficiency. The PWM pulses are applied
on the BLs and bi-phasic pulses are achieved by applying the polarity information through the SLs. The SC amplifiers are clocked in time-interleaved fashion
similar to FIR/TM. In RC, the SC amplifiers can be configured to apply a positive or negative sign (weight) to the inputs. The reservoir internal connection
coefficients are implemented on the WLs which can be easily re-configured to support multiple reservoir topologies (e.g. simple cycle reservoir, delay line
reservoir, etc). The I2Vs readout the current memristor resistance states weighted by WLs and feed the results back to the SC amplifiers which sum the
results with the sign-weighted inputs and generate the voltage stimuli to update the memristor resistance states. Each column of memristors represents one
16-node reservoir and each PE consists of 16 reservoirs to process 16-channel inputs. Each row of memristors represents one internal node in the reservoirs
which process one sample of the input time-series. To process 16 channels, the SC amplifiers are time-division multiplexed. After all memristors are updated
(reservoir dynamics finish), the outputs are calculated by applying the DAC signals (trained weights) on the SLs and reading out the VMM results on BLs.

3) Template Matching (TM): The TM mode compares
the inputs against waveform templates represented by the
memristor resistance states. The configuration of PE for TM
is mostly the same as for FIR; the only difference being that
memristors are programmed to store the template coefficients
instead of FIR coefficients. The matching results can be read
out on the BLs either all at once or one cell at a time, to allow
flexible data normalisation required in TM.

4) Memristive Integrated Sensing (MIS): MIS is an emerg-
ing method for low-latency and low-power neural signal detec-
tion and classification based on the principle that each neural
signal leaves a distinguishable signature on the resistance
state when applied to a memristor [11], [12]. The MIS mode
requires writing to the memristors continuously. Therefore,
the SC amplifier output is PWM modulated for improved
energy efficiency, allowing memristors to be driven using logic
gates. Similarly to FIR/TM, the SC amplifiers are clocked in
the time-interleaved fashion with each row of the memristors
processing one sample in a 16-sample time window. Each
column of the memristors process inputs from one of the 16
front-end channels. The PE is re-configured into readout mode
after each time window so that the memristor states are read

for further processing.
5) Reservoir Computation (RC): RC is a type of Recurrent

Neural Network (RNN) whereby the input data is transformed
into spatiotemporal patterns in a high-dimensional space by an
RNN within the reservoir itself [19]. It is especially efficient
for pattern analysis of signals with rich temporal dynamic
features such as neural signals, and physical RCs can be easily
implemented using memristors [13], [14]. The PE can function
as a physical RC equivalent to the ‘minimum complexity echo
state network’ [18] governed by the following equations:

xt+1 = H(V st+1 +Wxt) (1)

yt+1 = Uxt (2)

where x is the reservoir internal states mapped to the resistance
of the memristors, W is the reservoir internal connection
weights (0 or 1) and mapped to the WL selection bits, H
is reservoir activation function mapped to the nonlinear mem-
ristor V-R dynamics, V is the input connection weights (fixed
unity value for all inputs, with random signs) and mapped to
the SC amplifier sign configurations, U is the trained weights
for the output layer and mapped to DAC signals on the SLs,



finally y is the reservoir output. The RC operations requires
two phases: in phase I (governed by Eq. 1), the reservoir
dynamic is achieved by updating the memristor states xt+1

using stimulus generated from the RI/SC amplifiers which sum
the next-state input vectors st+1 weighted by random signs
V and the current node states xt weighted by the internal
connection coefficients. In phase II (governed by Eq. 2), the
reservoir outputs are obtained by taking the VMM results
(trained output layer weight vectors multiplied by the reservoir
state matrix) on the BLs and read out by the I2Vs and ADCs.

IV. RESULTS

The processor core layout is shown in Fig. 4. The chip

Fig. 4. Processor core. The Front-End (marked in yellow) measures
0.6x1.2mm, the PE 1.6x1.4mm. Block ”MR” is the memristor array.

has been implemented using a standard 180nm CMOS BCD
technology (Fig. 4), with the memristors to be integrated in
house through post-CMOS processing on the back-end-of-
line. As shown in Fig. 5, simulations in Cadence Virtuoso
demonstrate the processor operates in multiple modes in one
signal simulation run. The design is compared with state-of-
the-art memristor-based bio-signal processors in Table. I.

TABLE I
COMPARISON WITH MEMRISTOR-BASED BIO-SIGNAL PROCESSORS

Metric [9] [10] [11] [12] This work
Fully-integrated chip N N N N Y
Memristor array size 1k 16x16 32x32 32x32 16x16
Number of channels 1 32 1 16 16
Processing function FIR +

SLP1
TM MIS MIS FIR/TM/

MIS/RC
Re-configurable N N N N Y
1Single-layer perceptron

V. DISCUSSION AND CONCLUSIONS

As described, the architecture of the processor includes
a fundamental, re-usable PE element. Up-scaling may be
accomplished by increasing the PE count. Thus a single PE
instance may be integrated as a die with multiple such die
then interconnected as a 2D or 3D array. Similarly, multiple
instances of PE may be arrayed (integrated) on a die with
multiple such die arranged in a 2D or 3D array.

(a)

(b)

Fig. 5. (a) Sweeping the 7 operation modes in one transient simulation. (b)
Zoom-in view of the waveforms during RC operation

The interconnection schemes allow different parts of a PE
array to be used for different purposes. For example, a first
sub-array of PE elements may be used to acquire neural data
using MIS mode. A second sub-array may perform FIR in par-
allel. A third sub-array may use RC to perform classification.
Furthermore, since PE can be controlled independently, a PE

Fig. 6. PE interconnection schemes. Each PE in an array can be configured
independently and with analogue or digital inputs and/or outputs. Analogue
connections are always concatenated successively (connection is parallel),
digital connections can be concatenated arbitrarily (connection is serialised),
analogue and digital can be mixed, digital connections may be split or
combined at bit level.

array may be used to execute data capture using MIS. From
observations of the collected data, a signal artefact of interest
may become evident. The PE array may then be reprogrammed
to execute template matching for that specific artefact.

In conclusion, this paper has presented an integrated, re-
configurable system which represents a platform on which to
develop adaptive neural analysis systems.
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