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Abstract—The comprehension of brain activity presents signif-
icant challenges in the field of neuroscience. Contrary to spikes,
Local Field Potentials (LFPs) present improved stability acqui-
sition in chronic implant scenarios and potential reductions in
sampling and processing rates. While existing electrophysiology
acquisition systems focus predominantly on spike detection and
sorting, there is a lack of real-time tools for exploiting LFPs.
To address this gap, we present a Resistive-RAM (RRAM) based
approach to process LFP traces. Our method follows an improved
Memristive Integrating Sensor (MIS) protocol to effectively detect
LFP events recorded from the deep-brain of an awake rat, while
externally stimulated by a tone. Experimental results demonstrate
the feasibility of real-time neural activity processing, offering
insights into detecting meaningful external stimuli and facilitating
efficient neural state estimation.

Index Terms—RRAM, bio-signal processing, edge processing,
local field potential (LFP), memristor, real-time detection

I. INTRODUCTION

Gaining meaningful insights from brain activity remains a
highly complex and challenging problem. Neural recording
techniques play a crucial role in elucidating the principles
of brain function. A fundamental trade-off exists between
invasiveness and resolution, spanning from non-invasive elec-
troencelography (EEG) down to deep brain intracranial record-
ing. Spike detection with invasive implants is currently popu-
lar, as it gives highly detailed information, up to single neuron
activity [1]. However, recent studies investigating Local Field
Potentials (LFPs) have directed interest in their advantageous
effects in comparison to spikes [2], [3]. LFPs are known
for their improved stability in chronic implant scenarios, and
due to their lower frequency content, they hold the potential
for substantial reductions in sampling and processing rates,
thereby offering benefits in terms of power consumption.

LFPs are obtained by low-pass filtering (sub-300 Hz) the
raw, wideband voltage recording from which spikes are also
acquired, and reflect collective activity of the underlying neural
population. These signals are coarser grain, but they present
highly meaningful information for estimating patient’s neural
state or intentions [1], [4], [5]. Presently, there is scarcity
of tools capable to exploit LFPs in real-time, as existing
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Fig. 1. LFP signal processing chain. The animal was implanted with a
chronic monitoring probe. A single frequency tone was played, and the
response acquired using a neural acquisition system. The acquired data was
conditioned to isolate the LFP components and match the voltage dynamic
of the RRAM. The RRAM was directly stimulated by LFP signal, and its
resistance was measured. LFP patterns were detected identifying significant
changes in RRAM resistive state, thus detecting tones.

electrophysiology acquisition systems are limited to spike
detection and sorting.

A rapidly emerging way to process neural signals is us-
ing memristive devices. Resistive Random Access Memo-
ries (RRAMs) are two terminal elements, where the forma-
tion/disruption of a voltage-driven conductive filament mod-
ulates the device resistance. They exhibit thresholding and
integrating behaviours, which are attractive for detecting signal
patterns in spikes and LFPs. Previous works like [6], [7], have
shown RRAMs can be used for spike detection and sorting and
recently 1 transistor - 1 RRAM (1T1R) arrays have been used
for LFP processing [8].

In this paper we present a modified Memristive Integrating
Sensor (MIS) approach [6], for detecting LFP events. MIS
shows how RRAM can successfully encode and compress
spiking events, offering a competitive balance between detec-
tion accuracy and power consumption. The main goal of this
study is to explore the possibility of utilizing LFPs to detect
significant external stimuli and we assess the performance of
this method towards real-time detection.

The document is organised as follows: section II presents
the platform that we implemented to apply the signals to
RRAM, giving details about the devices and the in-vivo neural
recording we used to test our methodology. In Section III



we present the results obtained relying on such experimental
set-up and discuss the data thresholding strategy, and real-
time stimulation detection based on RRAM response to LFP
signals. In section IV a summary of the key findings and their
broader implications is provided.

II. MATERIALS AND METHODS

A. High-level description

The concept of our experiment is outlined in Figure 1. Here,
we used pre-recorded activity from a rat. The activity was
recorded with chronically implanted electrode array, allowing
continuous monitoring of neural activity from freely moving
animals [9]. During the experiment, broadband extracellular
activity in the Ventral Tegmental Area (VTA) of the rat was
recorded while a single frequency sound was played.

The neural activity, band-pass filtered and amplified, was
fed to the RRAM device. The band-pass in 1–100 Hz range
allowed us to eliminate any offset and to remove high-
frequency components. A gain in the order of 104 was needed,
to scale the input voltage (which has a maximum range of
±50 µV ) to a level compatible with the switching threshold
of the RRAM, Vth, ranging between 2.8− 3.2 V.

The pre-processed waveform was then applied directly to a
RRAM device. Here, whenever the input V was greater than
Vth, the RRAM resistive state (RS) changed in a non-volatile
fashion [10]. While the LFPs were applied to the device,
its state was also monitored, and the conductance values
were transferred to a PC. By analysing the time evolution
of the RRAM resistance in real-time, patterns within the
LFP trace corresponding to the played tone stimulation could
highlighted. Further details on the platform implementation
are provided in Section II-D.

Notably, LFP data exhibit variations that are more sym-
metrical in the positive and negative polarities with respect
to spikes. This characteristic lead to the occurrence of SET
(lowest resistive state) and RESET (highest resistive state)
states in the RRAM in an alternating manner. Consequently,
unlike other works, there was no requirement for external
resetting pulses [6]. Also, with respect to spike processing,
the sampling frequency used to feed the neural signal to the
RRAM, could be strongly reduced down to 500 Hz, and even
beyond. This benefit added to the one offered by the RRAM,
which intrinsically acts as a memory stage, therefore enabling
us to access the neural activity less often.

B. RRAM devices

The experiments were performed using solid-state
titania/alumina-based devices with vertical stack structure
(from bottom to top): Pt/TiO2−x/AlOx/Pt fabricated on
SiO2/Si substrates using reactive magnetron sputtering in
Ar/O2 ambient (for the dielectrics) and e-beam evaporation
(for the metals). Depending on the choice of materials the
devices can operate in either binary (Ron/Roff > 10), or
in a smoother analogue fashion as per [10]. For the sake
of this experiment the analogue non-volatile behaviour was
preferred.

Fig. 2. Experimental set-up. (a) The amplified LFP trace was replayed by a
signal generator and fed to the ARC TWO daughter-board hosting the RRAM
devices. Data acquired from ARC TWO were streamed to a PC for processing.
(b) The ARC TWO daughter-board was equipped with switches that alternated
between two states: 1) RRAM biased by the signal generator, and 2) RRAM
connected to the read-out internal circuit of ARC TWO for resistance reading.
These switches effectively downsampled the 40 kHz input to 500 Hz.

C. Neural data collection

Biological experiments were performed at Bar-Ilan Univer-
sity. All procedures were approved by the Bar-Ilan University
Institutional Animal Care and Use Committee. Prior to ex-
periments, the animals underwent a surgical procedure during
which sixteen microwires (35 µm, isonel coated tungsten;
California Fine Wire Company) arranged in 4×4 arrays were
lowered into the brain and fixed in position using dental
cement. During the experiment, broadband neural activity
was amplified and continuously sampled at 40 kHz using
a multi-channel neuronal recording data acquisition system
(OmniPlex, Plexon Inc) [11]. Nine recording channels out of
the sixteen contained activity and were further analysed. The
recorded channels exhibited a significant level of correlation,
and we identified a channel with best signal-to-noise-ratio.
From the selected recording, we extracted snippets correspond-
ing to tone stimulation, followed by a few seconds of basal
activity. These snippets were then assembled into a trace,
forming the basis for our experimental analysis.

D. Experimental set-up

Figure 2 illustrates the implementation of the concept from
Section II-A. The data were filtered using MATLAB software,
and replayed with a ROHDE & SCHWARTZ signal generator
at a sampling frequency of 40 kHz. A gain factor was applied
by the signal generator to get max peak-to-peak of around
6.4 V. The signal was applied to the RRAM through an ARC
TWO board [12], a stand-alone, desktop-controlled system,
hosting the devices-under-test (DUT) on a daughter-board
(DB) equipped with a subminiature A (SMA) connector to
transmit the LFP signal to the RRAM.

The DB was regulated by switches that alternated the
connection of the DUT between two configurations: 1) LFP
signal lines via SMA, and 2) read-out circuitry on ARC TWO



Fig. 3. Response of an RRAM device to an LFP neural recording. (a) One-channel extracellular recording acquired in the VTA, band-pass filtered 1–100 Hz
and amplified by a factor of 6.4×104 to match with the RRAM voltage dynamics. Black vertical lines denote stimulus presentation (a musical note played to
the awake animal). Grey boxes frame areas of the neural signal in which we actually observed variation of the LFP activity, induced by the tone stimulation.
(b) RRAM response to the neural signal. The resistive state of the RRAM was acquired after every sample of the trace is applied. The signal was applied
with a frequency of 500 Hz, same for read-out frequency. Read-outs were grouped into batches of 70 values. By applying a simple thresholding condition
on the RRAM response it was possible to detect the boxed areas of the LFP trace. In both graphs, red batches represent supra threshold batches (in this case
Rstart, bc - Rend, bc > 2%Rstart, bc, indicating the detection of a meaningful area.

implemented by a trans-impedance amplifier. Figure 2b depicts
this protocol. During phase 1, a voltage-read circuit on the
ARC TWO board was also used to record the input signal
applied to the devices, which made it simple to align the
stimulus with RRAM response. By adjusting the toggling
frequency of the switches, the sampling frequency for the
RRAM stimulation was tuned, enabling us to down-sample the
received input. In our experiment the complete switches cycle
duration was 2 ms, with the RRAM being biased by the LFP
for 400 µs and subsequently read by applying a default read
voltage (0.5 V). The read operation itself took approximately
1.5 ms. This sets the biasing frequency of the RRAM at
500 Hz. Acquisition of the top graph involved employing the
internal voltage read circuit on the ARC TWO board, which
records the input signal applied to the devices.

RRAM read-outs were obtained in batches of 70 values,
corresponding to the maximum storage capacity of the internal
FPGA instruction buffer controlling ARC TWO. These read-
out batches were subsequently transmitted to a PC for real-
time analysis. Each batch had a duration of approximately
140 ms, with a read-out performed every 2 ms. This duration
aligned well with interesting variations in the LFP, such as
those caused by external stimuli. Consequently, the software
analysis following each read-out was conducted on a batch-by-
batch basis, taking advantage of the temporal dynamics that
match closely, and enabling the detection of high-amplitude
LFP signals that corresponded to stimulations applied to the
animal.

III. DATA PROCESSING AND RESULTS

The processing and analysis is structured into two main
parts. In the first part, we investigate the experimental data
to determine the optimal strategy for processing the resistive
changes and extracting meaningful patterns. Key parameters,

including threshold criterion and observation window, are
established during this phase. In the second part, based on the
observations from the previous analysis, we propose a real-
time solution for detecting stimulation-induced LFP changes.

A. Detection and thresholding

Figure 3 displays the data of an experiment ran with the
earlier described methodology. The top trace illustrates the
signal applied to the RRAM and the bottom trace represents
the corresponding resistive state throughout the experiment.
Tone stimulation events are represented on both plots by black
vertical lines, while grey boxes highlight areas where LFP
activity is correlated with the external stimulation. Focusing
on the bottom graph, we see the main RRAM resistive drops
happened within the grey boxes, reveling the overall RRAM’s
reactivity to significant LFP events, while presenting good
filtering action to minor fluctuations. To detect meaningful
resistance changes, we conducted an investigation to select
an appropriate thresholding strategy. As described in Section
II-D, the RRAM readings were obtained in batches of 70
values, enabling batch-by-batch online analysis. Initially, we
compared the maximum resistive variation between adjacent
points within each batch to a resistance threshold, denoted
as Rth. Above-threshold points were interpreted as stimulus
events. This is identified as Strategy 1A in Table I. Two
variations of this approach were also considered, where re-
spectively the condition was applied to the absolute value
of ∆R (1B), and subsequently where the threshold value
is not a fixed value, but a percentage of the resistive state
at the beginning of the batch Rstart, bc (1C). To make the
computation more efficient, we then chose a bolder approach,
and took into consideration only the the first and the last
resistive value within the batch, Rstart, bc and Rend, bc. Here, we
considered the resistive drops Rstart, bc−Rend, bc, and compared



TABLE I
THRESHOLD STRATEGIES

Strategy Name Threshold
1A max((diff(R)) > Rth

1B max(abs(diff(R))) > Rth

1C max(diff(R)) > %Rstart,bc

2A Rstart,bc −Rend,bc > Rth

2B Rstart,bc −Rend,bc > %Rstart,bc

3 Rmax,bc −Rmin,bc > %Rmin,bc

them initially to Rth (Strategy 2A), and then to %Rstart, bc
(2B). This approach offers hardware optimization benefits by
enabling further downsampling and eliminating the need for
storing and shifting intermediate data to track maximum or
minimum resistive drops. Additionally, we explored a strategy
that involves accessing the maximum and minimum resistance
values within a batch (Strategy 3), trying to check whether it
performs any worse than the more hardware friendly approach
of start end.

Fig. 4. Comparison of Receiver Operating Characteristic (ROC) curves for
different thresholding conditions. RRAM state read-outs are processed in
batches, and a thresholding condition is applied to each batch to identify
significant events. Various threshold strategies are evaluated, and the ROC
curve for each strategy is plotted. The strategy that produces the best
performing ROC curve is given by approach 2B.

The performance of these criteria was analyzed by plotting
the Receiving Operating Characteristic (ROC) curves, Fig. 4.
Among them, criteria 2B, comparing the Rstart,bc - Rend,bc

drop to the resistance at the beginning of the batch, demon-
strated superior performance. Areas of supra-threshold activity
in the experiment are highlighted in red in Figure 3.

B. Towards real-time detection

However, during LFP events identified by grey areas in Fig.
3, there were instances where multiple consecutive batches
surpassed the threshold due to the prolonged duration of
an LFP event (which could last up to 200–300 ms, while
each batch was 70 ms). This can be problematic for real-
time detection as it inflates the number of false positives

Fig. 5. Real-time detection of LFPs. (a) The neural signal applied to the
RRAM; (b) corresponding RRAM threshold crossings that were monitored
and stored for every batch of 70 values, using threshold strategy 2B, identified
in Fig. 4, and a threshold of 2%Rstart,bc. Aggregations of ten consecutive
batches were scanned, and if at least one crossing was observed, a stimulation
was detected; (c) red stars indicate a detected event, while ground truth is
represented by black vertical lines.

which need to be minimised in order to achieve reliable
near real-time detection. Expanding on threshold strategy 2B,
which was previously applied to individual batches, we now
encompassed a larger time window, consisting of X non-
overlapping, consecutive batches. Within this superbatch, we
counted the number N of instances that crossed the threshold,
and established a second cut-off condition. Essentially, if the
rate of threshold crossings, [(N crossings)/(X batches)], was
greater than a chosen minimum rate, M , then an LFP event
was detected. By implementing this approach, the detection
remained consistent as a single event, even when there were
multiple crossings within X consecutive batches. Figure 5
shows a snapshot of the real-time detection process, where in
(c) we compare the presence of the external tone stimulation
in black, with our detections, represented by red stars. Here,
the threshold was set at 2% of Rstart,bc, which gave best
TPR-FPR balance. Setting M = 1, and X = 7, and running
the detection process, we got an accuracy of 85%, with a
minimized FPR of 1.5%.

IV. CONCLUSIONS

To summarise, we presented a method to efficiently process
and detect LFP signals using a RRAM-based setup. LFP
traces were downsampled and applied to RRAM devices while
their response was monitored. Depending on the thresholding
strategy applied, we were able to tune the accuracy of the
process and minimise the false positive rate. By expanding
the time domain of the process, we achieved near real-time
detection of LFP events.

Although LFPs offer unique balance between granularity,
stability in chronic acquisition, and variation speed, adequate
methods or techniques for their online monitoring are still
missing. Our approach offers a unique capability to seamlessly
interface RRAM with analogue neural signals in a MIS
fashion, opening the way to provide neuroscience with a new
tool to perform real-time tracking of LFP events.
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