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Abstract—In ski jumping, low repetition rates of jumps limit
the effectiveness of training. Thus, increasing learning rate within
every single jump is key to success. A critical element of
athlete training is motor learning, which has been shown to be
accelerated by feedback methods. In particular, a fine-grained
control of the center of gravity in the in-run is essential. This
is because the actual takeoff occurs within a blink of an eye (∼
300ms), thus any unbalanced body posture during the in-run
will affect flight.

This paper presents a smart, compact, and energy-efficient
wireless sensor system for real-time performance analysis and
biofeedback during ski jumping. The system operates by gauging
foot pressures at three distinct points on the insoles of the ski
boot at 100Hz. Foot pressure data can either be directly sent
to coaches to improve their feedback, or fed into a Machine
Learning (ML) model to give athletes instantaneous in-action
feedback using a vibration motor in the ski boot. In the
biofeedback scenario, foot pressures act as input variables for an
optimized XGBoost model. We achieve a high predictive accuracy
of 92.7% for center of mass predictions (dorsal shift, neutral
stand, ventral shift). Subsequently, we parallelized and fine-tuned
our XGBoost model for a RISC-V based low power parallel
processor (GAP9), based on the Parallel Ultra-Low Power
(PULP) architecture. We demonstrate real-time detection and
feedback (0.0109ms/inference) using our on-chip deployment.
The proposed smart system is unobtrusive with a slim form
factor (13mm baseboard, 3.2mm antenna) and a lightweight
build (26 g). Power consumption analysis reveals that the system’s
energy-efficient design enables sustained operation over multiple
days (up to 300 hours) without requiring recharge.

Index Terms—Sport, Biomechanics, Wireless, Wearable, Sen-
sor, tinyML, Data logger

I. INTRODUCTION

Professional sports are fiercely competitive. In ski jumping,
for example, even small improvements in the take-off phase
can make a decisive difference between victory and defeat
[1]. Within the short time of a jump (less than 10 seconds
[2]), athletes must learn to solve complex motor control and
optimization problems while being exposed to harsh environ-
mental conditions, e.g., wind, snow, and low temperatures [3],
[4]. Hence, requiring a high level of physical and mental fitness
from athletes [5].

In ski jumping, the actual act of jumping (the leap) must
be mastered and optimized in a very short period of time
(seconds). Athletes approach take-off tables at run-up speeds
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TABLE I
THE LARGEST SKI JUMPING FACILITIES

Track Hill size Location

Vikersundbakken 240m Vikersund, Norway
Letalnica bratov Gorišek 240m Planica, Slovenia
Kulm-Skiflugschanze 235m Bad Mitterndorf, Austria
Heini-Klopfer-Schanze 235m Oberstdorf, Germany
Čerťák 210m Harrachov, Czech Republic
Copper Peak 160m Ironwood, USA

of up to 25m/s and perform the entire take-off motion within
approximately 300ms [6]. Consequently, any unbalanced body
posture during the in-run (preparation for take-off) and the
take-off itself can cause significant technical challenges and
lead to poor performance of the jump. Therefore, athletes with
the ability to fine-tune their center of gravity during the in-run
phase can improve jumping performance [7]. For this reason,
coaches and federations are exploring new technology-based
solutions to gain a better awareness of the body’s center of
gravity to accelerate the motor learning of the correct jumping
technique [8].

State-of-the-art performance assessment in ski jumping is
usually accomplished with the help of video footage [9].
Jumps are recorded at the coaching tower and evaluated by
trainers, who provide verbal feedback to improve the athletes’
posture and dynamics in the next jump. Studies have shown
that augmented feedback can improve motor learning over
traditional verbal or visual approaches [10], [11]. In ski
jumping, for example, biofeedback methods have so far been
used for stress management during pre-start [12], but, to the
best of our knowledge, there are no wearable devices for
real-time monitoring and biofeedback during the actual ski
jumping workout. Another limiting factor in motor learning of
ski jumping is the limited number of possible repetitions [13].
In contrast to cyclic sports, the ratio between the jump duration
and the time to prepare for the next attempt is large and
usually ranges up to several minutes. This significantly reduces
the number of repetitions and consequently, the amount of
time able to be spent practicing ski jumping over the course
of a ski jumping career [13]. Therefore, an assistive device
providing feedback on the quality of motion could accelerate
motor learning.

Current on-body sensing technologies in ski jumping are
mainly used to quantify flight trajectory parameters with
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the help of Intertial Measurement Units (IMUs) [14]. These
devices are either strapped onto the athlete’s body [14],
[15], mounted onto skis [16] or attached to the bindings
[13]. Real wearable sensing, however, imposes strict design
requirements which are not met by currently used devices
[17]. They must be energy efficient (to guarantee long run-
time), unobtrusive, and nearly imperceptible (to not interfere
with natural movement behaviors and the jumping technique),
and in particular, they must be equipped with a wireless link
(for real-time data analyses, e.g., on the coaching tower) [18],
[19]. Guaranteeing reliable communication in such a scenario
is quite challenging. The data link needs to support the largest
jumping constructions that exceed distances of 240m from the
caching tower (usually located in the middle of the jumping
facility) up to the end of the slope, Table I [20].

Consumer sports on the other hand, already make substantial
use of wearable wireless technology, such as smartwatches and
fitness trackers for pervasive activity monitoring [21] (e.g. step
count, heart rate, VO2max, etc.), biomechanical performance
assessment [22] (eg. balance, ground reaction forces cadence,
oscillation) as well as for biofeedback [23]. However, in ski
jumping, and specifically in the improvement of the center of
gravity position in the in-run track, such generic devices do
not provide enough application-specific data to improve motor
learning [8], [18].

In this context, we present a tiny, smart, and low-power
wireless sensing system for real-time performance analysis and
biofeedback during ski jumping. Foot pressure distributions
are sampled at three measurement points in the insole of a
ski boot (100Hz sampling frequency) and can be streamed
to the coaching tower during jumping. Moreover, our system
is able to determine the center of gravity by measuring
the foot’s pressure distribution at three distinctive positions
(hallux, pinky, and heel) with an accuracy of 92.7% using
a lightweight machine learning model (38.29 kB memory
footprint) deployed on a novel RISC-V based low power
parallel processor (GAP9), based on the PULP architec-
ture. The system provides classification results in real-time
(0.0114ms/inference) which can serve as input features for
appropriate feedback modalities (e.g. haptic, visual, or bio-
electronic) for athletes. In addition, form factor (height profile:
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Fig. 1. The proposed training system supports two modes: (1) streaming raw
data in real-time for post-action in-depth performance analysis by the coach,
and (2) performing on-the-edge training analysis and providing instantaneous
feedback to the athlete using a vibration motor.

DRV8601
Haptic Motor Driver

MAX38640
Buck Converter

LSM6DSV16BX
6-Axis IMU & Qvar

ISM303DAC
Acc. & Mag

ISP1907HT
BLE SiP

1.8V

R1

C1 FSR

3x

BQ25180
Lin. Battery Charger

ADC In

BLE Antenna

USB Type-C

Interrupt

5V

4.2V

4.2V

Data

1.8V

VUSB

FSR1, Heel

FSR2, Pinky

FSR3, Hallux

Custom 
Electronics

BLE 
Antenna

In-Shoe Pressure 
Sensor (3x FSR)

GAP9
SoC with Milti-Core

compute cluster

Vibration Motor
(Upper Wrist)

(a) (b)

(c)

Fig. 2. (a) Overview of the modified ski boot, the antenna, the custom
electronics mounted just above the heel clamp, and piezoresistive shoe insoles
placed inside the boot. (b) Picture of the shoe insole sensor with three FSRs for
measuring pressure at the heel, pinky, and hallux. (c) High-level architecture
of the custom electronics with three FSR frontends.

baseboard 13mm, antenna 3.2mm) and weight of our system
(26 g incl. battery and antenna) are small and light and thus
below the notification threshold of ski jumpers. Exploiting
Bluetooth Low Energy (BLE) coded PHY as Radio Frequency
(RF) protocol guarantees a reliable data link over the whole
training facility [24].

II. MATERIAL AND METHODS

The proposed system consists of a modified ski boot in
which we integrated three piezoresistive Force Sensing Resis-
tor (FSR) sensors measuring the pressure distribution on the
foot soles of ski jumpers. To evaluate the proposed sensor
subsystem we record raw data from pressure sensors using
three dedicated Analog to Digital Converters (ADCs) with a
12-bit resolution on a System on Chip (SoC). The recorded
data can be sent in real-time over BLE coded PHY to the
coaching tower during jumping (Figure 1, (1)). In parallel,
an XGBoost classifier directly runs on the system to perform
low-latency and energy-efficient analysis of raw pressure data.
The ML model provides instant predictions of the athlete’s
center of gravity and biofeedback is provided by a vibration
motor (Figure 1, (2)). We base the classification task on
XGBoost, a parallelized and highly optimized manifestation of
the Gradient Boosted Tree algorithm [25]. The justification for
adopting an XGBoost classifier within this paper emerges from
its previously demonstrated efficacy in bio-signal classification
tasks in a fast and energy-efficient manner [26], [27].



A. Hardware Architecture

The proposed smart sensing system is designed to accom-
modate multiple sensors, microcontrollers, and a battery, yet
with a size and weight that is imperceptible to the athlete. Its
light weight of only 26 g, including battery and the antenna,
and the low height profile of 13mm for the device itself and
3.2mm for the antenna, minimize impacts on athletes.

Figure 2 (c) shows a simplified block diagram of the data
logger. The core of the sensor node is the ISP1907HT (Insight
SiP), a System in Package (SiP) based on the nRF52833
SoC (Nordic Semiconductor). It integrates RF matching, as
well as an optional internal antenna and both, a 32 kHz and
32MHz crystal, offering a great balance between light weight,
size, and cost. Moreover, we have integrated a RISC-V-based
microcontroller, tailored for tiny ML applications, into our
system design: the GAP9 (Greenwaves) [28] acts as a co-
processor to accelerate ML workloads while keeping power
dissipation low [29]. The processor has ten cores and is based
on the RISC-V instruction set architecture. The complete
system is supplied from a single lithium-polymer battery of
type ICP521630PM (Renata Batteries) with a total capacity
of 240mAh. An integrated step-down converter MAX38640
(Analog Devices) generates the system operating voltage of
1.8V. To measure the weight distribution on the athlete’s
foot, a shoe insole sensor of type RP-INS-3Z (Taidacent) was
integrated into the ski boot (ref. Figure 2 (a), (b)); three FSRs,
one the heel, the pinky and the hallux. The external antenna
A2O5RPSMA (Data Alliance) was mounted on the shaft of the
boot.

Its waterproof housing and low height profile of 3.2mm
meet the design requirements for ski jumping data loggers.
Biofeedback is given over a small vibration sensor of type
VZ30C1T8460002L (Vibronics) which is controlled over the
haptic motor driver DRV8601 (Texas Instruments).

In addition, our system features a ISM303DAX (ST Mi-
croelectronics), a high-performance 3D accelerometer and
3D magnetometer, as well as a 6-axis IMU of type
LSM6DSV16BX (ST Microelectronics) to collect data about
the ski’s orientation and in-flight angle during future in-field
data collection.

B. Embedded implementation of the body position classifier

From raw ADC signals collected at the pressure measure-
ment points in the ski boot (Figure 3), we derived the center
of pressure of the foot. The neutral position was defined by
the centroid of the three contact points (Figure 2 (b)). We
identified dorsal and ventral shifts from the neutral position
that resulted from a displacement of the center of gravity.

For model training, we first collected a foot pressure
dataset simulating different body positions of ski jumpers.
Subsequently, we adopted an XGBoost classifier to determine
the body position in real time. The XGBoost has the added
benefit of being a low-latency and energy-efficient model. We
deployed our machine learning model on a GAP9 processor,
which has been shown to be at least one order of magnitude
more energy efficient than similar ARM-based solutions [30].

1) Dataset collection and Labelling: We collected a pres-
sure sensor datatset on one volunteer using the proposed sensor
interfaces and a USB 6216 data acquisition system (National
Instruments) operated at a sampling frequency of 400 kHz. We
recorded 3 sessions of 80 seconds, during which the subject
was asked to either stay neutral or to shift the weight in ventral
or dorsal directions every 10 seconds. The recorded raw data
were down-sampled to a rate of 100Hz which corresponds
with our ADC setup on the nRF microcontroller. The complete
dataset contained 27,066 time samples and each time sample
contained 1 data point of every ADC.
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Fig. 3. This figure gives an insight into the laboratory recordings of foot
pressure data. The top row shows the body position of the ski jumper, which
corresponds to our classification label. The graphs in the middle part show
filtered foot pressure data on heel, pinky, and hallux. The bottom figure shows
the normalized and rectified signals of the first derivative of the center of
pressure used to automatically detect the labels.

2) Automatic Labeling and Feature Extraction: For au-
tomatic data labeling, we first filtered the raw ADC data
using a second-order Butterworth low-pass filter with a cutoff
frequency of 50Hz. We then calculated the time derivative
of the centroid (centroid was computed across the three
pressure points at the hallux, pinky, and heel, Figure 2 (b)).
Subsequently, we rectified the derived centroid time series
and extracted the labels (neutral position, dorsal or ventral
displacement) that denote signals between the transition points
in the time series (Figure 3, bottom diagram).

3) Synthesis of the train-test datasets: For the training
and testing of our XGBoost model, we first grouped all
measurements by their label. Then we synthesized the dataset
for offline training and testing by first splitting the dataset into
discrete blocks of 50 samples per ADC1. In the next step, we
concatenated the data buffers of each ADC to one temporal
super-sample consisting of 150 input features. This resulted in
167 super-samples of the ”dorsal” class, 194 of the ”neutral

1We used the input length of 50 samples per pressure sensor as this corre-
sponds to the length of our 16 bit data buffers on the NRF microcontroller.



Fig. 4. The confusion matrix shows the results of the deployed XGBoost
model on GAP9. The test set was fully excluded from network training and
consisted of 109 ”supersamples” (representing 20% of the total data set)

position” class, and 178 super-samples of the ”ventral” class.
From this dataset, we randomly selected 80% of the data into
the training and 20% into the test set. We trained our XGBoost
model using a logarithmic loss function and set the number
of estimators to 270 (90 for each class).

4) Edge-deployment: To deploy the tree ensemble of our
XGBoost model onto the GAP9 processor, we utilize a similar
methodology as described in [27]. Therefore, an in-house com-
piler written in Python transfers the XGBoost model’s main
characteristics (feature array, threshold array, index array) in
an automated way to a C lookup table. We then split the
computation of the boosters evenly between the cores of the
GAP9’s computational cluster, and the number of estimators
is adapted to be divisible by 9, such that the computational
load is evenly distributed between nine cluster cores.

C. Power measurements

For the power analysis of the system, we used the Power
Profiler Kit 2 (Nordic Semiconductor) to source and measure
its consumption at 1.8V. Separate measurements for data
acquisition and BLE transmission have been conducted. For
analyzing the inference task, we ran the GAP9 at 240 MHz
and measured its power consumption by sourcing the micro-
controller and measuring its consumption also at 1.8V.

III. RESULTS AND DISCUSSION

A. System Operation

We determined our systems’ total power consumption at
2.52mW. Out of this, 848 µW is needed for data acquisition
from the FSRs, and 1.67mW is used for raw data streaming
over BLE at 0 dBm. With the selected battery of 240mAh
at 3.7V, a total lifetime of more than 300 h can be achieved.
This suggests being more than enough to sustain multi-day
hill training without recharging.

B. Classification Results on the Edge

The confusion matrix given in Figure 4 summarizes the
classification results for testing our XGBoost model on GAP9.
Our model achieves 92.7% accuracy in identifying body
positions from laboratory-recorded data. The results show

TABLE II
PERFORMANCE PARAMETERS OF XGBOOST IMPLEMENTATION ON GAP9

RUNNING AT 240MHZ

Energy cost per inference [µJ] 0.251
Time per inference [ms] 0.0109
Memory footprint [kB] 38.29

that the prediction accuracy on the test set is similar be-
tween classes. However, actual center of gravity shifts in
experienced ski jumpers are subtle and hardly perceptible to
the untrained observer. A transfer to real ski jumping data
might therefore require more fine-grained label definitions.
Performance numbers of the embedded implementation of our
XGBoost model on GAP9 are provided in Table II. Low
energy numbers (0.251 µJ per inference) and fast inference
(0.0109ms/inference) are achieved by distributing the com-
putational load across a nine-core computational cluster. We
further explored the potential benefits of such a parallelization
approach compared to single-core operation. Our findings
highlight a remarkable 6.51× acceleration in inference speed
(from 0.071ms to 0.0109ms) and a significant 3.56× energy
reduction (from 0.9 µJ to 0.25 µJ). Inherent architectural as-
pects inevitably limit the speedup factor to reach the theoretical
limit of 9×. These include sharing of four floating-point units
by the nine cores, conflicts arising from concurrent access to
Tightly Coupled Data Memory (TCDM) banks, and instruction
misses on the instruction cache.

IV. CONCLUSION

This work presented a novel sensing and training system
for body position analyses during ski jumping. Our system
can transmit data to coaches and provide direct in-action
feedback to athletes by exploiting the advantage of a dual-
SoC architecture. Our system is the first truly wearable training
tool in ski jumping that can provide ski jumpers with a new
training experience and could shorten the time for motor learn-
ing. Moreover, real-time data transmission of biomechanical
relevant features can impact TV broadcasting (e.g. by giving
viewers more dynamic insights into a ski jump).

The evaluation of the system in a laboratory scenario shows
promising results for both, the biofeedback performance and
the battery lifetime. The deployment of the XGBoost classi-
fication algorithm to GAP9 has successfully demonstrated its
efficacy in identifying the ski jumpers’ body position in an
energy-efficient fashion, while simultaneously upholding the
stipulations associated with real-time detection and classifica-
tion. Future work will involve transferring our hardware and
algorithms into the wild by recording a dataset from a large
number of subjects. We anticipate that model predictions will
require further optimization when applied to real-world data.
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