Loading [MathJax]/extensions/MathZoom.js
Design of a flexible force-sensing platform for medical ultrasound probes | IEEE Conference Publication | IEEE Xplore

Design of a flexible force-sensing platform for medical ultrasound probes


Abstract:

Automated ultrasound scanning is a growing research field. However, existing platforms for mounting the ultrasound probe do not possess any soft, compliant properties tha...Show More

Abstract:

Automated ultrasound scanning is a growing research field. However, existing platforms for mounting the ultrasound probe do not possess any soft, compliant properties that would ensure the safety of the patient. Moreover, many current ultrasound manipulators do not include tactile feedback or employ rather expensive commercial force sensors. This paper proposes the design of a flexible platform with soft joints. The device equips an ultrasound manipulator with both compliant behaviour and 6-axis force feedback without the need of a commercial force sensor. A general methodology was developed to derive the symbolic compliance matrix of such a flexible mechanism. Subsequently, a finite element analysis of the platform was carried out and the results were compared to the analytical solutions. The results show that force sensing based on the analytical method has an error of 5-16% compared to the FEA simulation, depending on the degree of freedom.
Date of Conference: 26-29 June 2016
Date Added to IEEE Xplore: 28 July 2016
ISBN Information:
Electronic ISSN: 2155-1782
Conference Location: Singapore

Contact IEEE to Subscribe

References

References is not available for this document.