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Abstract— Brain Machine Interfaces (BMI) are used to estab-
lish a communication pathway between the human brain and
machines. Using BMI, signals from the brain are transmitted
to an external processing unit where they are decoded into
meaningful actions (e.g., browsing the internet using a PC or
grasping an object with a prosthetic hand). BMIs are used to
increase intuitiveness of the control of technical devices that
can help individuals with motor or sensory impairments to
regain their lost dexterity or able-bodied people to augment
their capabilities. In this work, we present an Electromyography
(EMG) based method for decoding object motion in dexterous,
in-hand manipulation tasks. To do that, we use EMG signals
derived from specific muscles of the human hand and forearm,
and an optical motion capture system that records the object
motion. The decoding is formulated as a regression problem
using the Random Forests methodology that is based on a
combination of decision trees. The model was trained using
time-domain features, namely: root mean square, waveform
length and zero crossings. A 5-fold cross validation procedure
is used for model assessment purposes. This preliminary study
achieves significantly high estimation accuracies, proving that
object motion can be directly decoded from myoelectric activa-
tions of the muscles of the human hand and forearm. This work
can support the formulation of EMG based telemanipulation
schemes for advanced robotic and prosthetic hands.

I. INTRODUCTION

Surface electromyography (sEMG) has been used for the
development of Brain Machine Interfaces (BMI) and Brain
Computer Interfaces (BCI) for a variety of applications. It
is a relatively cheap, non-invasive method that can measure
muscle activations from the surface of the human skin. These
activations can be extracted, translated and decoded into
human motion or intention. Most EMG based interfaces have
been proposed for the control of technical devices such as
prosthetic arms and hands. In prosthetics, EMG control is
the most common solution and it typically facilitates the
execution of simple motions in unconstrained space.

But the role of prosthetic devices is to help amputees
regain their lost dexterity and this dexterity concerns not only
simple motions but also dexterous manipulation tasks and
complicated interactions with the environment. In the case
of prosthetic hands, previous studies have focused on the
EMG based control of individual finger movements [1], [2]
and the execution of grasping tasks of low complexity [3].
The EMG based decoding of human motion and the EMG
based control of robot hands in dexterous manipulation tasks
are topics that are still unexplored and this is to the best of
our knowledge the first study that focuses on them.
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Fig. 1. Execution of a dexterous, in-hand manipulation task with
a 3D printed cube. This equilibrium point manipulation imposes a
twirling motion to the object. The figure shows a sequence of the
object motion during manipulation (from subfigure a to d).

Regarding in-hand manipulation, there are many types of
tasks that can be performed depending on the intended object
motion. One of the main types is Equilibrium Point Manipu-
lation (EPM). During EPM, the finger contact points remain
relatively stationary1 on the object surface, while the object
is manipulated (see Fig. 1 for details). EPM is commonly
used for object inspection or for in-hand repositioning and\or
reorientation. Although there are robot hands that have been
designed to achieve EPM [4], development of an EMG based
control scheme that achieves the execution of EPM tasks with
a robot or prosthetic hand is yet to be achieved.

The traditional approach to mapping muscle activity to
object motion involves a three-step process where first the
finger kinematics (i.e., joint angles or velocities) are esti-
mated from the myoelectric activations of the muscles of the
human forearm and hand, then the finger kinematics are used
to compute the fingertip velocities and finally the fingertip
velocities are mapped to the equivalent object velocities
using the grasp matrix, as described in [5]. However, some
drawbacks of this approach are: i) it requires an accurate
EMG based estimation of the finger kinematics that could
be hard to derive (e.g., due to the high dimensionality of
the problem), ii) it relies on the accurate calculation of
the aforementioned parameters (e.g., forward kinematics and
Grasp matrices), and iii) it requires an a-priori knowledge
regarding the human hand anatomy and kinematics (e.g.,
digit sizes) for able-bodied people and on the existence of a
prosthesis model for amputees.

1Involve only some infinitesimal, local rolling and slipping.



In this paper, we propose a machine learning scheme that
maps the myoelectric activations of the muscles of the human
forearm and hand, directly to the examined object motion.
To do so, we formulate decoding as a regression problem
and we use the Random Forests (RF) regression technique.
RF is an ensemble regression method that is based on a
combination of multiple decision trees. The rest of the paper
is organized as follows: Section II discusses the related work,
Section III describes the equipment used in this study and
the experiments conducted, Section IV reports the methods
that were used to train the Random Forests model as well
as the model assessment procedures, Section V presents the
results, while Section VI concludes the paper.

II. RELATED WORK

The human musculoskeletal system is primarily responsi-
ble for providing the motions and forces required to perform
complex everyday activities. Bioengineers and neurophysiol-
ogists have been trying to model the human musculoskeletal
system for decades. In 1938, Hill [6] developed a model
that simulates the behavior of human muscles, which is
known as the Hill-Type muscle model. However, this model
is quite complex as it has a lot of internal parameters such
as the muscle fibre length and muscle contraction velocity
that vary for different muscle types and different subjects.
Thus, a complex calibration procedure is required to make
the model subject and muscle specific. To overcome these
problems, researchers have focused on machine learning
based approaches [7], [8], [9].

Regarding EMG based decoding using Machine Learning,
the two most common approaches involve either classifica-
tion or regression methods. Classification methods result to
a discrete decision on the user’s intention (i.e., identifying
the task to be executed), while regression methods result to
a continuous estimation of the human motion (i.e., derive
specific trajectories). The non-linear relationship between
the EMG signals and the human motion is one of the
biggest issues researchers face when trying to decode the
human motion or intention from EMG activity [10]. Due to
this, most studies have avoided the decoding of continuous
arm or hand trajectories, focusing on the discrete control
of robotic devices, such as the bidirectional control of a
robotic wrist [11] or the gestures based control of a robot or
prosthetic hand [12], [13]. Several machine learning schemes
based on classification methods have been used to identify
user intention using the myoelectric activations of her\his
muscles and trigger an appropriate control strategy (e.g.,
the execution of a particular grasp with a prosthetic hand).
However, a drawback of this approach is that it uses a fixed,
predetermined set of movement strategies that in the case of
in-hand manipulation tasks does not offer the versatility in
controlling the object motion in a fine and precise manner.

The EMG feature variables can be classified into three
different categories, Time Domain (TD) features, Frequency
Domain (FD) features or Time-Frequency Domain (TFD)
features [14]. TD features contain information that concerns
the amplitude of the EMG signals, while FD features contain

the information about the Power Spectral Density (PSD)
of the EMG signals. TFD features are a combination of
amplitudes and the PSD of the signal. Previous studies [15],
[16] have compared TD features with FD features and reveal
that TD features provide a more consistent performance over
time than FD. Moreover, several studies have focused on the
TD features because of the lower computational complexity
required when deriving these features compared to FD or
TFD features.

Regarding the selection of feature variables, in [17],
Hudgins et al. employed four TD features, namely, Mean
Absolute Value (MAV), Slope Sign Changes (SSC), Zero
Crossing (ZC) and Waveform Length (WL) for the EMG
based control of a prosthesis. ZC and SSC provide insight
on FD aspects that require complex computations. According
to [18], ZC is also an important indicator of muscle fatigue.
WL is a measure of the complexity of the EMG signal, and
is used, along with ZC and SSC, as a quantitative measure
for electrode positions selection (higher WL values lead to
better electrode positions). MAV represents the area under
the rectified EMG signal and quantifies the effort of the
examined muscles. Another TD feature that quantifies this
effort is the Root Mean Square (RMS) that represents the
average power of a signal for a given period of time [19].

In [1], Anam et al. achieved classification of individual fin-
ger movements using myoelectric activations of the muscles
of the forearm and TD features. Spectral Regression Discrim-
inant Analysis (i.e, a modified version of Linear Discriminant
Analysis) was used to reduce the dimensionality of the
problem and an Extreme Learning Machine was applied to
classify the finger movements quickly and accurately. In [20],
Park et al. proposed a methodology for movement intention
decoding using myoelectric activations. The methodology is
based on a Convolutional Neural Network that performs deep
feature learning. The proposed methodology enables them to
have robust movement intention decoding even for inter-user
variability and achieves classification accuracies that range
from 60% to 90%.

In [21], Liarokapis et al. proposed a task-specific frame-
work for the EMG based decoding of human reach to grasp
motions and compared the performance of RF with Linear
Discriminant Analysis (LDA), Quadratic Discriminant Anal-
ysis (QDA), kNN, Artificial Neural Network (ANN) and
Support Vector Machine (SVM). To do that, they used the
myoelectric activations of 16 human upperarm and forearm
muscles and they combined classification and regression
techniques in a synergistic manner. They showed that: i) task-
specific models outperform general models trained for the
entire problem space and ii) RF outperform other learning
techniques in terms of classification and motion estimation
accuracy.

III. APPARATUS AND EXPERIMENTS

The experiments were performed by two healthy subjects
who are both male and aged 24. The study has received the
approval of the University of Auckland Human Participants
Ethics Committee (UAHPEC) with the reference number



Fig. 2. Manipulation tasks performed. Subfigure a) shows a pitch motion, subfigure b) shows a roll motion, subfigure c) shows a yaw
motion and subfigure d) shows a twirl motion. Axes are color coded and the colored dots at the origin indicate that the axis is orthogonal
to the page. The white colored arrows in subfigures a), b) and c) show the direction of the movement, while the black arrow in subfigure
d) shows the movement of the z-axis that is bounded by the dashed lines.

Fig. 3. Electrode placement positions for EMG data collection on the right arm hand system. The double dot with the connected line
represents a double-differential EMG electrode. Electrodes 1, 2 and 3 are placed at the back of the palm measuring the interossei muscles
myoelectric activations. Electrodes 4, 5, and 6 are placed at the front of the palm measuring the lumbrical muscles myoelectric activations.
Electrode 7 is placed at the base of the thumb measuring the flexor pollicis brevis muscle myoelectric activations. Finally, electrode 8 is
placed near the elbow measuring the extensor digitorum superficialis muscle myoelectric activations. Ground is represented with a single
dot and is placed at the elbow where muscular activity becomes minimal.

#019043. Prior to the study all subjects provided written
and informed consent to the experimental procedures. The
experiments were performed by each subject with their
dominant hand. One subject was left hand dominant while
the other was right hand dominant.

A. Experimental Tasks

Each subject was given verbal and visual instructions on
how to perform 3-dimensional equilibrium point manipula-
tion tasks using the Rubik’s cube of the Yale-CMU-Berkeley
grasping object set [22]. For all the manipulation tasks,
each subject was to sit upright with their forearm rested on
a custom-made stand. Each manipulation task session was
executed with a sequence starting with a 5 s rest period
(where the hand holds the object in a stationary pose),
followed by 10 repetitions of the manipulation motion for
each trial. There were 10 of these trials per session. Adequate
resting time between every trial (approximately 30 s) was
used to reduce muscle fatigue for all subjects. Fig. 2 shows
visualizations of each manipulation task. It must be noted
that all motions are expressed relatively to the global planes
of movement (global reference frame of the Vicon system).
The different types of manipulation tasks performed during
the experiments, are as follows:

• Pitch: a coordinated movement of the fingers that cre-
ates a pitch rotation of the cube

• Roll: a coordinated movement of the fingers that creates
a roll rotation of the cube

• Yaw: a coordinated movement of the fingers that creates
a yaw rotation of the cube

• Twirl: a coordinated movement of the fingers that cre-
ates a spiral motion similar to wine glass twirling

B. Experimental Setup
EMG snap cables attached to stickers were used to record

the EMG signals, and these signals that were acquired and
preprocessed by a g.Tec g.USBamp bioamplifier. A sampling
rate of 1200 Hz was used, along with a Butterworth bandpass
filter (5 Hz-500 Hz) and a 50 Hz notch filter (used to reduce
the electric noise). To record the motion of the Rubik's cube,
a Vicon optical motion capture system that consists of 8
Vicon T-series cameras connected to the Giganet system and
appropriate reflective markers were used. The Vicon Tracker
software captures the trajectories of the reflective markers
and extracts the corresponding transformation matrices. The
markers on the cube were placed in a way that they do
not affect the natural hand postures during the grasp, as the
contact points do not change significantly during EPM. The
sampling rate of the Vicon system was 100 Hz. A trigger



Fig. 4. A block diagram of the proposed EMG-based learning scheme. EMG data containing the measurements of the myoelectric
activations of the examined muscles were filtered and time domain features were extracted. These features were then used as input
training data and input validation data during the training and validation phase of the decoding model. The object motion data is recorded,
upsampled and transformed to the object reference frame. The training and validation phase guarantee that if the predicted object motions
closely follow the actual recorded motions of the object, then the model is accepted as the final model that will be used for online
EMG-based control. If the model assessment is not satisfactory, the model is retrained with different Random Forests parameters until it
can accurately predict the object motion.

cable was used to connect to the g.Tec bioamplifier in order
to facilitate data synchronization. Due to the differences in
sampling rates, the object motion data was upsampled to
match the sampling frequency of the EMG data.

C. Muscle Selection

For all experiments, myoelectric activations were mea-
sured from seven muscles of the hand and one muscle of
the forearm using double-differential EMG electrodes (please
see Fig. 3). Three of the hand electrodes were placed at the
back of the hand measuring the myoelectric activations of the
interossei muscles, while three electrodes were placed on the
front of the palm measuring the myoelectric activations of
the lumbrical muscles. The last electrode of the hand was
placed on the base of the thumb in order to measure the
myoelectric activations of the flexor pollicis brevis muscle.
The forearm electrode was placed near the elbow to measure
the myoelectric activations of the extensor digitorum super-
ficialis muscle. The selection of the electrode positions was
inspired by existing literature [23], [24] as well as by the
Innerbody website [25]. The Innerbody website provides an
accurate 3D muscle anatomy atlas of the human hand and
arm, as well as an outline of the contributions of each muscle
to the motion of the human joints.

IV. METHODS

A. Feature Extraction

The EMG signals that were acquired and filtered by the
bioamplifier were segmented using a sliding window of
200 ms with an increment of 10 ms for the extraction of
the time domain features. The size of the window and the
increment value are hyperparameters that were optimized to
improve the estimation accuracy. The window length should
not be too long, due to real-time constraints, but it should be
adequately large to avoid large variances of the features that
can degrade the performance of the trained model [14]. The
following three TD features were extracted from each EMG
channel: Root Mean Square Value (RMS) [19], Waveform
Length (WL) and Zero Crossings (ZC) [17], [26].

1) Root Mean Square Value: The RMS value is one of
the most commonly used values in the TD. It represents the
square root of the average power of the signal for the given
time period. The RMS value is defined as:

RMS =

√√√√ 1

N

( N∑
k=1

(xk)2
)
, (1)

where N is the size of the window applied to the data.



Fig. 5. Comparison of the feature variable importances for each subject. The importance scores have been derived using the inherent RF
feature variables importance calculation procedure. The results have been normalized over the 5-fold cross-validation method.

2) Waveform Length: WL is the measure of the com-
plexity of the EMG signal. It represents the measure of the
waveform amplitude, frequency, and duration all in a single
parameter and is defined as:

WL =

N∑
k=1

|∆xk|, (2)

where ∆xk = xk − xk−1.
3) Zero Crossings: ZC is the number of times the signal

crosses the zero value in a given time period. This feature
can be used to get a rough measure of muscle fatigue [18].
The count of ZC is incremented when:

xk < 0 && xk+1 > 0

‖‖
xk > 0 && xk+1 < 0

&&

|xk − xk+1| > Vt

(3)

where Vt is a voltage threshold selected according to the
signal noise. This algorithm does not increment the ZC if
it falls in the deadzone as it tries to eliminate the effect of
noise on the zero crossings.

The input dimension of the data for the learning algorithm
is 3 EMG features per channel ∗ 8 channels = 24 input

features. The output dimensionality is determined by the
rotation of the object along the axes of interest (which are
1 axis for roll, pitch and yaw motions and 3 axes of for the
twirl motion).

B. Random Forests Based Object Motion Decoding

For object motion decoding we solve a mapping problem
between the EMG space and the object motion, using the
Random Forests regression methodology that was originally
proposed by Tin Kam Ho of Bell Labs [27] and Leo Breiman
[28]. RF is an ensemble learning method that can be used
for both classification and regression. RF consists of multiple
decision trees and the output of the forest is the most
popular class among the decisions of the individual trees
for the classification case or the average of the estimations
of the individual trees in the regression case. Some of the
main advantages of RF are: i) they run efficiently on large
databases, ii) are able to handle thousands of input variables
without variable deletion, iii) are extremely fast, iv) can
handle multi-dimensional spaces and multi-class problems
and v) offer excellent predictive performance.

Decision trees are built top-down from a root node, and in-
volve partitioning the data into subsets that contain instances
with homogeneous values. In a RF-based learning scheme,
N such trees are grown. For each tree the RF uses a different
bootstrap sample set from the original data. One-third of the
samples are left out of this set (they are called out-of-bag



TABLE I
CORRELATION AND ACCURACY RESULTS FOR EACH SUBJECT

Motion Pitch Roll Yaw Twirl

Subjects 1 2 1 2 1 2 1 2

Correlation (%) 88.2 82.5 80.2 77.3 95.4 92.7 85.6 81.8 87.2 92.0 91.3 79.9
Standard Deviation (%) 4.0 5.1 4.8 1.7 1.3 2.0 3.6 9.8 4.0 2.8 3.1 3.1

Accuracy (%) 74.4 65.6 63.4 55.8 88.1 84.9 69.1 67.1 69.6 84.0 80.9 59.6
Standard Deviation (%) 9.0 9.7 7.1 2.5 3.4 3.4 6.0 15.2 14.3 5.3 7.8 8.3

samples) and are not used in the construction of the N th

tree. In the classification case, the number of votes casted are
counted for the correct class for every tree in the forest. Then
the values of the feature variable m are randomly permuted
in the out-of-bag samples and the votes are recomputed
and recounted. Subtracting the number of votes casted for
the correct class in the permuted out-of-bag data from the
number of votes casted for the correct class in the untouched
out-of-bag data, we get the importance score of a feature
variable m, for each tree. The raw importance score for each
feature variable, is computed as the average importance score
of all trees of the RF. In the case of regression, RF work
essentially the same way as in the classification case, but
instead of counting the number of votes, they compute the
average of the individual tree estimations.

In this study, we use the RF regression technique to per-
form an EMG based estimation of the object motion during
the execution of dexterous manipulation tasks. To do that,
the TD feature data is divided into two sets, one for training
and the other for validation. If the performance of the model
during the training and validation phases is unsatisfactory,
it is retrained by tuning the RF parameters. More details
regarding the proposed EMG based learning scheme can be
found in Fig. 4. The results presented in Section V are the
average values of the 5-fold cross validation procedure.

V. RESULTS AND DISCUSSION

In this section, we present and discuss the experimental
results that validate the efficiency of the proposed method-
ology. In particular, we focus on the feature variable impor-
tances, the correlation between the actual and the predicted
object motions and the estimation accuracies.

In Fig. 5, we present the importance plots for each
feature variable for both subjects, as derived by the RF
inherent feature variables calculation procedure [29]. From
this figure, it is evident that for subject 1, the lumbrical
muscles are important for the execution of pitch, yaw and
twirl motions, the interossei muscles are important for the
execution of roll motions, the flexor pollicis brevis muscle is
important for the execution of twirl motion and the extensor
digitorum superficialis does not contribute significantly in the
execution of the examined tasks. For subject 2, the lumbrical
muscles are important for the execution of yaw motions, the
interossei muscles are important for the execution of twirl
motions, the flexor pollicis brevis muscle is important for
the execution of yaw motion and the extensor digitorum
superficialis is important for the execution of pitch, roll and

Fig. 6. Plots of actual yaw motion vs estimated yaw motion from
the Random Forests regressor model for both subjects. A shows the
plots for Subject 1, while B shows the plots for Subject 2.

twirl motions. The above preliminary results indicate that
the muscle selection for the EMG based decoding of object
motions in dexterous manipulation tasks should be done in a
subject-specific manner and that the inter-subject variability
of the myoelectric activations is very significant.

Fig. 6 shows the plots of the predicted and actual yaw mo-
tion for each subject. For both subjects, it can be seen that the
predicted motion data follows the trends of the actual motion
data with the direction of movement being synchronized. In
this study, we assess the efficiency of the trained models by
using the Pearson correlation coefficient and the percentage
of the NMSE for accuracy, comparing the predicted and
the actual object motion. For the NMSE percentage, 100%
means that the two trajectories are identical.

Table I shows the means and the standard deviations of
both metrics over the 5-fold cross validation procedure that
was used for model assessment. The correlations between the
predicted and the actual values is very high and this shows
that the model is able to closely predict the trend of the
object motion. In terms of accuracies, the predicted values
were high and the model is able to track quite efficiently the
actual object motion. It must be noted that a perfect EMG
based estimation of the object motion (100% accuracy), is



not possible due to dynamic phenomena such as uncontrolled
slipping and rolling. These phenomena are common during
the execution of dexterous, in-hand manipulation tasks.

VI. CONCLUSIONS

In this work, we presented an EMG-based methodology
for decoding object motion in dexterous, in-hand manipula-
tion tasks. To do that, we used EMG signals derived from
specific muscles of the human hand and forearm, and an
optical motion capture system that records the object motion.
Time-domain features were extracted from the recorded
EMG signals. The decoding was formulated as a regression
problem using the Random Forests methodology that is based
on decision trees. The estimation results are significantly
high, proving that EMG-based decoding of object motion
is actually feasible.
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