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Abstract— Wearable and Assistive robotics for human grasp
support are broadly either tele-operated robotic arms or act
through orthotic control of a paralyzed user’s hand. Such
devices require correct orientation for successful and efficient
grasping. In many human-robot assistive settings, the end-user
is required to explicitly control the many degrees of freedom
making effective or efficient control problematic. Here we are
demonstrating the off-loading of low-level control of assistive
robotics and active orthotics, through automatic end-effector
orientation control for grasping. This paper describes a compact
algorithm implementing fast computer vision techniques to
obtain the orientation of the target object to be grasped, by
segmenting the images acquired with a camera positioned on
top of the end-effector of the robotic device. The rotation needed
that optimises grasping is directly computed from the object’s
orientation. The algorithm has been evaluated in 6 different
scene backgrounds and end-effector approaches to 26 different
objects. 94.8% of the objects were detected in all backgrounds.
Grasping of the object was achieved in 91.1% of the cases
and has been evaluated with a robot simulator confirming the
performance of the algorithm.

I. INTRODUCTION

The human upper limb enables reaching, grasping and
manipulations. Patients with paralysis, be it e.g. due to spinal
cord injuries or neurodegenerative diseases, or amputees
suffer from severe actuation limitations in daily life, leading
to difficulties in reaching and/or grasping. Assistive robotic
devices help in these cases, providing support to the patient’s
now limited actuation capabilities. These devices, however,
require low-level control by the end-user, either through
residual motion (e.g. head controlled computer mouse [1]) or
through neural interfaces [2], [3]. The former is not always
feasible, depending on the level of paralysis or amputation,
and the latter is limited by the number of independent
channels that can be read out (typically outnumbered by
the degrees of freedom within wearable or assistive robotic
devices). We need solutions to obtain and decode human
action intentions from other sources, and feed them into the
control loop of the robotic device for intuitive and natural
interaction.

Different modalities have been used for this, with the aim
to enhance the way such devices interact with human users.
Multi-modal systems relying on unaffected abilities, e.g. the
use of gaze-based robotic end-point control for reaching
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Fig. 1: Concepts of assistive robotic devices for reaching and
grasping. Left: Robotic orthotic glove. Right: Tele-operated robotic
hand. Both require wrist rotation control for suitable grasping.

assistance [4]–[6], or the use wearable robotics controlled
through eye winks and voice [7]. In all these cases, a suitable
eventual grasp is only possible with the correct orientation
of the hand; be it the human hand using an orthotic (Figure
1-left), or a tele-operated robotic hand, performing the grasp
(Figure 1-right).

A third option is to use the context of the user and the
robotic actuator to infer the most likely action intention, be
it from a dictionary of human activity [8] or the dynam-
ics of the preceding movements [9]. This paper describes
FastOrient, a compact computer vision-based algorithm for
the control of a robotic wrist’s rotation to obtain a suitable
grasp of the object of interest. The FastOrient algorithm ef-
fectively off-loads complicated low-level details of grasping
orientation to sub-systems that provide automated orientation
adjustment, thereby reducing cognitive load and training time
for the user, and thus ultimately user uptake and technology
embodiment [10].

II. BACKGROUND

Camera based approaches for end-effector orientation con-
trol have been deployed in robotics. Typically, a camera
positioned on top of the end-effector or on the user’s head
to detect certain characteristics of the target object. These
include multi-camera approaches that segment and identify
spherical and cylindrical objects in a fixed workspace[11]:
they combine an eye-tracking device to detect the user’s
gaze point and identify the target object and an RGBD
camera positioned in a fixed mount that allows extracting
depth and RGB information from the environment. Final
robotic hand position and grasp depends on object shape and
orientation. Similarly in [12], where end-effector camera and
object segmentation are used for object boundary extraction
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and detection of orientation. In [13], the shape, size and
orientation of target objects are estimated using a camera
located at the user’s head level and the algorithm extracts
features by approximating the object with geometrical mod-
els. In [14] computer vision techniques are developed to
locate target objects and estimate their size and orientation
using a camera and an ultrasound sensor. Wrist rotation
control using image segmentation of a grayscale filtered
image was added to this system [15]. In autonomous robotics
[16] proposed a machine-learned algorithm that identifies
points for grasping using two or more images of the same
object acquired by an end-effector camera. The more general
pixel-to-torque problem (using cameras to control robots) is
currently only feasible in very large scale simulation settings
of robot grasping and vision using deep learning [17], [18].
However, these approaches currently lack interpretability and
may not translate well to safety-critical human-in-the-loop
and wearable robotics settings.

It has been shown by [19], [20] that humans tend to grasp
objects along their long axis. This grasp allows taking the
object with high stability and enables correct grasping in
most cases. Thus, grasping orientation is not important for
spherical or rounded objects, as all their axes are equal. Our
assumption is that reaches often terminate in grasps and the
object’s that we can obtain the correct orientation of the wrist
from the principal axes of the object. This forms the basis
for the method described in this paper, which aims to achieve
suitable grasping through a computationally light-weight and
compact algorithm.

III. METHODOLOGY

Wrist orientation control is the key step to providing a
suitable grasp of an object of interest. The general archi-
tecture of our algorithm, titled FastOrient, is presented in
Figure 2. First, an RGB image is acquired with a PlayStation
3 Eye Camera (PS3 Eye). Then, different image processing
techniques are applied to the image to detect and identify the
target object of interest. The detected object’s orientation is
then computed with reference to the corresponding gripper’s
orientation. This orientation is sent to the robot controller
to rotate its end-effector and allow a suitable grasp of the
object. For the purpose of this paper, a Universal Robots
UR10 arm is used in simulation - this is interchangeable
with any robotic system that allows wrist rotation.

FastOrient is implemented using MATLAB (R2015b 32-
bit) with functions from its Image Processing Toolbox. VRep
(VRep PRO EDU 3.3.1 32bit Version), a robot simulation
environment, is used to reproduce and evaluate the algorithm
on a robotic system. The general structure of FastOrient can
be seen in Algorithm 1. Note that 15 frames are obtained
for analysis, this is to increase robustness by considering the
median orientation, avoiding effects arising from potentially
deviated detections.

1) Image acquisition: The PS3 Eye is a digital camera
producing 640x480 pixel images at a 60Hz frame rate. It
integrates an infrared filter and two adjustable fixed-focus
zoom lenses. The 75-degree field of view lens was selected

Fig. 2: General architecture of FastOrient. (1) Camera on top of
the UR10 gripper; (2) RGB image during approaching movement;
(3) Segmented image with detected objects; (4) Target object
identification and orientation computed; (5) UR10 Robot in VRep
simulator environment.

to enable acquisition of planes at long distances and avoid
blurred objects within the image. The camera is positioned on
top of the end-effector of the device. This is a more intuitive
positioning than those proposed by [11], [13] as it allows to
get the ”hand’s point of view” during reaching movement.
This positioning is more affected by motion noise but ensures
the object of interest is located in the camera’s field of view.

2) Color spaces: Shadows can be identified as parts of the
object itself and illumination spots may impair the complete
detection of the item of interest. [21] reports that shadows
share chromaticity values with the background but the bright-
ness of pixels corresponding to these shaded areas is consid-
erably lower. Accordingly, the Hue-Saturation-Value (HSV)
space is chosen here to account for these differences. The
Red-Green-Blue (RGB) model cannot separate chromaticity
from brightness, while in HSV, the Value channel represents
the brightness and, the Hue and Saturation channels together
give rise to chromaticity [21]. Different thresholds can be
directly applied to the Saturation and the Value channels
for the removal of shadows and illumination effects. The
application of thresholds in the HSV channels removes the
effects of shadows but also limits the detection of grayscale
objects. As a result, pre-processing of the image in the RGB
space is needed. The grayscale parts of the image are thus
painted in a different color, in RGB and before projection to
HSV, so that they can be easily detected later. The algorithm

Algorithm 1 FastOrient

1: Initialise camera;
2: for i = 0 to 15 do
3: Acquire RGB image;
4: Paint grayscale pixels green;
5: Project image into HSV colourspace;
6: Select target object via minimum distance algorithm;
7: Extract features;
8: Calculate object orientation;
9: end for

10: Calculate median orientation;
11: Calculate suitable gripper orientation;
12: return estimated angle to robot;



counts the number of black (RGB code: [0, 0, 0]) or dark
gray (RGB code range considered: [95-125, 95-125, 95-125])
pixels of the acquired RGB image (see Figure 3.1). This
is done to distinguish the cases in which black or dark
backgrounds occupy a large part of the image. If this is the
case, the pixel colors should remain unchanged so as to avoid
the background being selected as the object. Accordingly, if
more than 100, 000 pixels are considered dark (the acquired
images have 307, 200 pixels, i.e. 32.5%), the algorithm does
not change their color. However, it will look for white pixels
and change their color to green, so that white objects can be
detected in dark backgrounds. Nevertheless, if the number
of dark pixels is below the threshold, the algorithm paints
different ranges of grayscale pixels: black, gray and white, in
green color. This is done by directly changing the colour of
the pixel to the RGB value [77, 153, 77], which corresponds
to green, as seen in Figure 3.2. Finally, a new RGB image
is built with the corresponding color modifications so that
the image segmentation can start with all the information
concerning grayscale objects.

3) Image segmentation: The main goal of the image seg-
mentation procedure is to convert the image into information
easier to analyse.

Binarisation: As seen in Figure 3.4, this consists of the
transformation of the original image into a black and white
one. In the binary image, the object pixels are white and
the background is represented in black. This conversion
is performed by applying a threshold on the HSV values
to separate the object’s pixels from the background ones
considering each channel’s histogram. Otsu’s method is
applied to find the optimal threshold for each image. This
method assumes the image contains two classes of pixels,
foreground and background, and considers the gray-level
histogram of each class distribution. Then, it defines the
optimal threshold that minimizes the overlap between both
distributions and allows a better discrimination between the
classes [22], [23]. Better results were observed if only the
Saturation and the Value channels were thresholded and
Hue information was not considered for image segmentation.
Finally, the information of both channels is combined using
an intersection (logical and operation).

Post-processing of the Binarised Image: In order to im-
prove the quality of object detection and make the detected
shape more precise, different post-processing methods are
applied (see Figure 3.5). Areas smaller than a threshold of
1500 pixels (value found empirically) are removed with an
opening function. This is done to remove all the small areas
of the detection that do not correspond to the object but
to background or shadows. Holes in the detected parts are
filled using the imfill MATLAB function. A combination
of opening and closing functions are also applied to remove
noise and make shapes smoother using the imopen and
imclose MATLAB functions.

4) Feature Extraction: The different properties from the
objects detected in the image have been measured using the
regionprops MATLAB function. The features extracted
from the objects are as follows. The centroid: regionprops

Fig. 3: Computer vision pipeline for complete target detection
procedure. (1) RGB camera image, (2) Grayscale pixels detected
and painted in green, (3) Projection into HSV color space, (4) Image
segmentation for analysis of object’s features, (5) Post-processing
to improve detection quality, (6) Object’s orientation (blue) and
gripper’s orientation (yellow) calculated.

calculates the center of mass of the region used to calcu-
late the minimum distance algorithm. The bounding box:
regionprops gives the smaller rectangle containing the
region used to create a mask for target object discrimination.
The orientation: regionprops returns a scalar correspond-
ing to the angle of the long axis of an ellipse that has the
same second moment of inertia as the object region, with
respect to the horizon.

5) Target object detection: To discriminate the target
object from all the other objects that are detected in the
image, the same procedure as [14] is used, selecting the
object located closest to the center of the image.

6) Robotic end-effector orientation calculation: The ori-
entation of the detected object is calculated for each obtained
frame and the median is computed. Then, the perpendicular
orientation is calculated for the end-effector orientation in
order to place the gripper along the long axis of the object
(see Figure 3.6). This orientation is sent as a command to
the robotic arm as the output of FastOrient.

IV. EVALUATION EXPERIMENTS AND RESULTS

The evaluation is divided into three sections: (1) detection
of the target object, (2) the object and gripper orientation as
returned by FastOrient, and (3) the rotation of the robotic
gripper in VRep, the robotic simulation environment. The
evaluation is performed in six different experiment setups
considering 26 different objects with each approach repeated
ten times.

A. General conditions

To simulate the reaching movement, the PS3 Eye is
positioned on top of an operator’s right closed fist to collect
image data from natural human reaches. The base of the
camera is in contact with the back of their hand and the lens
is focusing forwards (see Figure 4.a). A total of 26 different
objects are tested for the evaluation of the control algorithm
(see Figure 4.b). These are objects used in activities of daily
living, with different shapes, colors and materials. Five dif-
ferent backgrounds are defined to evaluate the system. These
backgrounds represent almost all possible daily situations for



Fig. 4: Evaluation experiment setup and definitions. (a) Camera
placement on operator’s hand to collect image data from natural
human reaches, (b) our 26 objects used for evaluation, various
backgrounds and surfaces used for evaluating robustness: (c) Beige
table background, (d) White background, (e) Dark background, (f)
Desk background, (g) Open lab background, (h) Evaluation setup
with the operator reaching for the object of interest.

object grasping (see Figure 4.c-g). The lights in the lab are
on during the experiments and the curtains are open in order
to have natural light.

Reaching approaches are divided into four types, (1)
Top approach: is defined as being perpendicular to the
surface where the object is positioned; (2) Lateral approach:
is parallel to this surface; (3) Angulated approach: is at
approximately 60 degrees with respect to the surface, and
(4) Variable approach: represents the most natural approach
for each object, as preferred by the human operator. The
arm trajectory follows a straight line from its initial position
(approximately 35cm from the object) to its final point
(approximately 20cm from the object). Combinations of the
reaching approach types and backgrounds are then selected
as follows to define six experiment setups: 1. Beige Table
+ Top, 2. White + Top/Lateral (depending on the object),
3. Desk + Lateral, 4. Dark + Top/Lateral (depending on the
object), 5. Open Lab + Angulated (Open Lab 1), and 6. Open
Lab + Variable (Open Lab 2).

B. Evaluation of target object selection

Target object selection is evaluated for all objects and
backgrounds. In order to assess performance, the output

image obtained after the segmentation process is classified
through visual inspection, into categories as follows. Com-
plete detection: output shape corresponds exactly to the real
shape of the object; Partial detection affected by shadows:
output shape is not the same as the real one, some parts are
added due to effects of shadows; Partial detection affected
by illumination: output shape is incomplete, some parts are
missing due to effects of illumination; Partial detection
affected by gray parts: output shape is incomplete, all the
parts are detected except for the grayscale parts in the object;
None: the object is not detected at all.

C. Evaluation of object orientation detection

The output of the object orientation detection, shown
visually as a line drawn along the object’s axis as detected on
the image, is also evaluated through visual inspection. The
returned orientation is then classified as follows. Complete
alignment with the object’s long axis; Affected by partial
detection where the detected orientation deviates from the
long axis by < 20°, grasping is still allowed; Incorrect where
deviation is > 20°, grasping is not possible; None, where no
orientation is retrieved due to the object not being detected
in the previous step.

D. Evaluation with robot simulation

VRep is an environment for robot simulations. The robot
used for the simulation is the Universal Robots UR10
robot, an anthropomorphic 6 degrees-of-freedom robotic
arm, equipped with a two finger gripper as its end-effector.
Within the simulation environment, a vision sensor is added
between the gripper fingers to simulate the camera view. The
VRep simulation is controlled via MATLAB through VRep’s
internal APIs. The aim of the interface is to communicate the
FastOrient orientation angle from MATLAB to VRep.

Five different environments are simulated, replicating the
different backgrounds tested. Five different objects with
different shapes and colors are also selected for this (banana,
orange, red bottle, blue mug and red tool in Figure 4.b). Each
object is positioned in one of the experiment backgrounds
and for each of them, three different reaching approaches
have been tested: Top, Lateral and Angulated. The final
orientation of the gripper with respect to the object and the
view from the vision sensor will confirm whether grasping is
possible in the simulation and consequently, if the algorithm
has worked correctly.

E. Results and discussion

1) Target object selection performance: Considering a
general detection category which also includes partial de-
tections, 94.8% of cases are detected by FastOrient. In
particular, all items are detected with the Beige Table,
White and Open Lab 1 background. 96% of the objects
are detected for the Dark and Open Lab 1 cases. A smaller
percentage is detected for the Desk background (77%) due
to the presence of a large number of black pixels, which
prevents the algorithm from painting grayscale objects in
green and consequently affects their detection. Across all



Fig. 5: Detailed object detection performance results in percentages
of complete detection, partial detection due to shadows, illumination
or grayscale parts in objects and non-detected items, for the six
different experiment setups.

experiments and repetitions, 56.3% of cases are completely
detected. However, 2.63%, 16% and 19.9% of the detections
are affected by shadows, illumination or the presence of
grayscale parts in objects, respectively. 5.19% of the objects
are not detected at all. Full results can be seen in Figure 5).

2) Object orientation detection performance: Results
show that all the complete detection cases result in complete
orientations clearly aligned with the object’s long axis.
For the cases of partial detection affected by shadows, the
majority of the cases give an aligned orientation where
grasping is still allowed (70%) while the others are defined
as incorrectly oriented. Although the effect of illumination
and the presence of grayscale parts may give a partial
detection, the implication in the orientation retrieved from
FastOrient depends on the proportion of the area detected.
Approximately 50% of the cases affected by illumination
still retrieve a correct orientation, 35% result in slightly
deviated orientations and 15% have a wrong orientation. For
the partial detection caused by grayscale parts, approximately
55% of the cases result in a completely aligned orientation,
40% are affected and give an orientation within the twenty
degrees margin of error and 5% of the cases result in a wrong
orientation. Obviously, all the cases where the object is not
detected lead to no orientation returned.

3) Robot simulation performance: To test if the orienta-
tion of the gripper is the appropriate one to achieve the grasp-
ing of an object, simulations using the VRep environment
and the UR10 robot are performed. In these simulations, the
gripper is rotated by FastOrient. The final configuration of
the gripper needs to have its fingers aligned with the yellow
line (e.g. in Figure 3.6). The robot’s other joints are actuated
so that the gripper gets close to the object to evaluate if the
grasping is correct. The vision sensor added on the gripper
allows to have visual feedback from the simulated robot
movement. The example of a banana approached from the
top is shown in Figure 6, to visualize how the simulation
works. During the approaching movement, the corresponding
end-effector orientation is calculated by FastOrient. This
angle is sent to the VRep environment and the gripper is
rotated (as shown in Figure 6.3). Then, a faster approach
takes place to position the gripper close to the object, Figure
6.4. From this final configuration of the robot, the positioning
of the gripper gives information of the grasping. If its fingers
are perpendicular to the long axis of the object, as for the
banana in Figure 6.4, the object can be easily picked up.

4) Repeatability: Boxplots are drawn for each object and
experiment to represent the variability of each orientation
detection and consequently, study the reproducibility of the
system. Although the object is not always positioned at
orientation zero (horizontal line) in the setups, relative angles
are computed so that all the variations are started from
angle zero. The different computed orientations are set to
be between −90° and 90°. The performance of the system
is precise and robust for all the experiments. It can be seen
in the corresponding boxplots that, for most of the cases,
the variability for the orientation given for the 10 repetitions
is within a 4° range or less for all experiments. This small
variability can be due to small effects of illumination and
shadows or to other effects such as the instability inherent
to the approaching movement. For each experiment, the
round objects’ boxplots are the ones that show a higher
variability between repetitions and have been marked in
blue to differentiate them from the rest. This is because
round objects do not have a clear orientation and hence,
the algorithm’s variability is justified. The boxplot for the
”Open Lab 2” experiment setup is included as an example
in Figure 7.

Across our experiments, the variability for each experi-
ment is very low, confirming the good reproducibility of
the system. Nonetheless, we observe outliers. Experiments
3, 5 and 6 are the more accurate ones as their outliers are
comprised in the −2° to 2° range. For the rest of experiments,
the outliers are spread further within a −4° to 8° range. Note,
that most objects can be grasped reliably with a larger mis-
alignment than observed here. Accordingly, external effects
such as the time of the day and lighting conditions in which
the experiments are performed do not affect the performance
of the algorithm in a considerable manner as experiments
are performed independently at different times. Although
during the early morning and late afternoon the effect of
illumination can create more shadows in our data, yet our
algorithm removes them properly as no extra variability is

Fig. 6: Grasp orientation optimization algorithm in simulation. (1)
The robot is reaching for the object location, (2) The vision sensor
is used to detect the banana, its orientation and to then calculate
the suitable grasp orientation, (3) The robot’s wrist is rotated into
the suitable grasp orientation, (4) The robot reaches in to fulfill the
grasp.



Fig. 7: Boxplot for each object tested in the Open Lab 2 background
to evaluate the hand orientation algorithm for the ten repetitions.
The boxplots painted in blue correspond to round objects.

added to specific experiments.

V. CONCLUSIONS

We presented computer vision guided control of wrist ori-
entation for wearable and assitive robotics to help individuals
with motor disabilities. Typically these devices rely on the
human user’s direct control for the minutiae of interaction.
In our case, we demonstrated that our FastOrient algorithm
works out-out-of-the-box which does not require a complex
training learning pipeline and is sufficient to allow a natural
wrist and grasp interaction. With the technology that we
have demonstrated, we should be able to use gaze-based 3D
positioning of the arm for grasping, as demonstrated in [4]–
[6], wink-based detection of grasping intention [7], and now
automatic processing of the grasp orientation based on the
findings of this paper, without the requirement for the user
to fine-tune the orientation of the hand, resulting in a full,
intuitive assistive system. We have demonstrated FastOrient
across 5 different realistic surfaces and for 26 different
objects pertaining to standard activities of daily living. Fas-
tOrient executed successful grasps in 91.1% of the evaluated
cases. While this method may not be suitable for objects
with very complex shapes, it is nonetheless sufficient for the
many typical objects used here. Our compact computer vision
algorithm FastOrient can be efficiently ported to small, light,
low-power embedded systems, by cross-compiling from its
MATLAB sources to numerous embedded platforms. This
facilitates its deployment in a variety of systems, such as
upper arm prosthetics, orthotics or exoskeletons.
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