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Abstract— Mounting evidence suggests that adaptation is a
crucial mechanism for rehabilitation robots in promoting motor
learning. Yet, it is commonly based on robot-derived move-
ment kinematics, which is a rather subjective measurement
of performance, especially in the presence of a sensorimotor
impairment. Here, we propose a deep convolutional neural
network (CNN) that uses electroencephalography (EEG) as an
objective measurement of two kinematics components that are
typically used to assess motor learning and thereby adaptation:
i) the intent to initiate a goal-directed movement, and ii) the
reaction time (RT) of that movement. We evaluated our CNN on
data acquired from an in-house experiment where 13 subjects
moved a rehabilitation robotic arm in four directions on a plane,
in response to visual stimuli. Our CNN achieved average test
accuracies of 80.08% and 79.82% in a binary classification
of the intent (intent vs. no intent) and RT (slow vs. fast),
respectively. Our results demonstrate how individual movement
components implicated in distinct types of motor learning can
be predicted from synchronized EEG data acquired before the
start of the movement. Our approach can, therefore, inform
robotic adaptation in real-time and has the potential to further
improve one’s ability to perform the rehabilitation task.

I. INTRODUCTION

By delivering intensive, challenging and task-specific
training, rehabilitation robots [1] have now established them-
selves as an alternative treatment for sensorimotor impair-
ments [2]. Given the importance of active participation
during therapy for motor recovery [3], there is an increasing
interest in adapting the robotic therapy and tailoring it to
the needs and skills of the patients [4], [5], [6]. The current
’assist-as-needed’ adaptive controllers use movement-related
kinematics feedback to alter their control strategies, and
subsequently adapt the rehabilitation task components [4],
[7]. Despite their demonstrated success in functional motor
recovery [8], [9], the robot-derived movement kinematics is a
subjective measurement of movement performance as it often
becomes masked by the targeted sensorimotor impairments.
This evidence-based adaptation [7] limits our ability to study
and improve the robotic intervention in rehabilitation.

To overcome this limitation, a fascinating possibility is
to have an adaptive strategy targeting specific movement
components that are implicated in motor learning, either
explicitly or implicitly- depending upon whether or not the
patients deliberately aim to improve these attributes . One
such component implicated in explicit motor learning is
the intent of patients to initiate a movement. It has long
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been known that when rehabilitation training consists of
voluntary movements, a significant improvement in the motor
performance is achieved. This has been associated with
the cortical reorganization of the motor cortex upon motor
training [3]. In our previous work, we used the initiation of
voluntary movements as a faithful indicator of explicit motor
learning [9], followed by clinical outcome [10]. Another
movement component, implicated in implicit motor learning,
is the reaction time (RT) of a movement, defined as the
time passed between the onset of a stimulus and the start
of the movement [11], [12]. We have previously shown that
there is a decrease in average RT of the patients as the
training progresses, further confirming its role as a metric for
motor learning that is used to assess motor deficits [13], [14]
and improvement [9]. Given their immediate applicability in
assessing both implicit and explicit motor learning, these two
movement components can be used as adaptation criteria.

For the adaptation to become clinically important, one
needs to first define the criteria that are indicative of the
motor performance and then to objectively measure them.
Arguably, the most faithful representation of movement is in
its underlying neuronal activity. Indeed, for more than half
a century, a significant amount of studies have identified
specialized neurons in the motor cortex and other cortical
and sub-cortical areas that encode movement components,
including direction [15], amplitude [16], force [17] and
speed [18]. Interestingly enough, a recent study showed that
the motor thalamic neurons encode the movement intent and
RT [19]. Overall, neuronal activity offers an objective as-
sessment of movement components in healthy and impaired
subjects.

By virtue of their non-invasiveness and high temporal
resolution, electroencephalography (EEG) has established
itself as an objective measure for assessing motor behav-
ior [20], [21], and has also become a reliable measurement
of the cognitive functions involved in the execution of motor
tasks in stroke [22], [23]. The first approaches to decode
EEG relied on hand-crafted features such as common spatial
pattern [24] and classifiers such as support vector machines
(SVM) to segregate those features. However, these methods
do not generalize well to new subjects [25], and their need
for hand-crafted features further impedes their use in real-
time. Deep neural networks [26] overcome these limitations
through unsupervised feature extraction and powerful gen-
eralization [27]. These networks have recently started to be
used in classifying EEG signals for various mental decoding
tasks with remarkable performance [28].

Here, we propose a deep learning approach to predict two
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fundamental movement components associated with motor
learning, namely the intent to initiate a goal-directed move-
ment and RT, using EEG data as a measurement that circum-
vents the limitations imposed by the impaired kinematics. To
do so, we developed a convolutional neural network (CNN)
that was trained to decode EEG activity and predict: i) the
intent of the subject to initiate a movement (intent vs. no
intent), and ii) RT in initiating the movement (2 classes-
fast vs. slow). We evaluated our CNN on data acquired
from an in-house experiment where 13 subjects moved a
rehabilitation robotic arm in four directions on a plane
in response to visual stimuli. The CNN achieved average
test accuracies of 80.02% and 79.82% for movement intent
and RT classification respectively. These results support our
ongoing effort to devise a rehabilitation strategy that adapts
based on an objective measurement of specific movement
components, further personalizing therapy.

II. METHODS

A. Subjects and Experimental Apparatus

Thirteen healthy subjects (age=23±2, 5 females, right
handed) participated in this experiment. Subjects provided
written consent and the experimental protocol was approved
by the local Institutional Review Board (IRB). The EEG data
were recorded using a 128-channel Biosemi ActiveOne EEG
system with sampling frequency of 1024 Hz. The motor
task was performed on the InMotion Arm Robot (Bionik
Laboratories Corp.)(Figure 1), with the robot data collected
at a sampling frequency of 180 Hz. Subjects were seated at
an appropriate distance from the screen so that they could
perform the task comfortably without moving their torso.

B. Experiment

Building on a previous experimental protocol [29], [12],
we developed a goal-directed task and asked the subjects
to perform it on the arm rehabilitation robot. The task
environment comprised of a pointer and a target box (Figure
1). The pointer indicated the current position of the end-
effector of the robotic arm in the 2D plane of motion.
Subjects were asked to move the pointer to the target box “as
fast as possible”. After the pointer entered the target box, the
next target box appeared with a delay of 20ms with small
added jitter. The target appeared at random in any of the
four orthogonal directions- left, right, up or down. Subjects
performed the task in two modes: i) active mode, where
subjects performed the motion, and ii) passive mode, where
motion was performed by the robot with the subject’s arm
affixed to the robotic end effector. Each subject performed
210 active and 210 passive motion trials.

C. EEG Minimal Preprocessing and Labeling

Minimal data preprocessing was done to get rid of the
contamination in the EEG data, as described below. The
minimal preprocessing on the one hand ensured the CNN
would learn the representations by itself and, on the other
hand, made it possible for the CNN to be compatible with
a real-time system. A bandpass filter of 1 Hz - 40 Hz was

Fig. 1: Experimental Setup: Subjects executed a goal-directed
motion task in their interaction with the Bionik InMotion
Arm rehabilitation robot. EEG data were acquired as sub-
jects performed the task in synchrony with the kinematics
recordings recorded by the robot.

applied to remove the low and high frequency artifacts and
drifts. Independent component analysis (ICA) was used to
get rid of occular artifacts. We then segmented the data into
trials containing the events of interest. The time window
for segmentation was chosen by grid search: -0.5s to 0.0s
for both movement intent classification and RT (with t=0s
indicating the start of the motion). We normalized the seg-
mented trials using z-score normalization and downsampled
all the trials to 250 Hz to reduce the computational load.
For classifying the movement intent, all active motion trials
were labelled as ’Intent’ and all passive motion trials were
labelled as ’No Intent’. The movement intent dataset had
210 data points for each class per subject. To compute the
RT, we measured the time difference between the onset of a
stimulus and the start of the movement, where the movement
was said to be started when the velocity exceeded a certain
threshold. We discretized the RT into two classes- fast and
slow, by choosing suitable thresholds that were determined
from the histogram of RTs for each subject separately, based
on the distribution of their RT across the experiement. In
addition, all trials corresponding to RTs that were outliers,
i.e. less that 0.15 seconds and greater than 0.8 seconds were
removed from consideration, similarly to our previous studies
[12], [30]. This resulted in RT datasets of varying size for
each subject, with an average size of 75 data points per class
(SD = 14).



Fig. 2: The 5 layer CNN architecture. The inputs to the CNN were EEG data of dimension 128 x 125 (0.5s recordings from
128 channels sampled at 250Hz). The filter size for convolution was 5 x 5 for movement intent and 3 x 5 for RT for all
the layers. Batch normalization and Maxpooling was applied to the output of each convolutional layer. The output of the
convolution layer was flattened and the resulting feature vector was passed through a fully connected layer. Finally, softmax
was applied to convert the output of fully connected layer to class probabilities.

D. Notations

For each subject i, we created a dataset Di =
{(X1

i ,y
1
i ),(X

2
i ,y

2
i ), .....,(X

ni
i ,yni

i )}, where ni denotes the num-
ber of trials recorded for that subject. For every trial j,
X j ∈R128×T is a 2 dimensional matrix which was created by
stacking recordings from all the channels. T is the duration of
recording of each trial. The labels y j of the trial j contained
a value from {0,1} corresponding to the two classes.

E. The Convolutional Neural Network

We developed a multi-layered CNN (Figure 2) for classi-
fying movement intent and RT, that performed convolution
in spatial and temporal space. The inputs to both networks
were preprocessed EEG trials acquired from 128 channels
and sampled at 250 Hz. We passed the outputs of each
convolutional layer through ReLU non-linearities and then
applied batch normalization, to normalize the ReLU outputs
to zero mean and unit variance. Batch normalization has
regularization properties and is helpful in preventing over-
fitting [31]. We also applied max pooling at the end of each
layer to reduce computational load. Max pooling has also
the desirable property of translational invariance which often
gives better generalization across subjects. The last layer in
both networks was a fully connected layer with softmax that
took in the flattened feature vector produced by the last
convolutional layer and converted it to class probabilities.
The choice of the CNN hyper-parameters, i.e. the number
of layers, kernel size, etc. were limited by the training data
size and the input dimension, and were found using a grid
search over the allowable hyper-parameters space. The CNN
architectures for classifying movement intent and RT are
shown in Tables I and II.

F. Network Training

The CNN computed a mapping from the EEG trial to
the labels, f (X j,θ) : R128×T → {0,1} where θ were the
trainable parameters of the network. The network was trained
to minimize the average loss over all training examples:

θ̂ = argmin
1
N

Σ
N
i=1l(X i,yi;θ), (1)

where N denotes the number of training examples and l is the
loss function, which in our case was the binary cross entropy
loss function. The batch size was 64. For optimization, we

TABLE I: CNN Architecture for Movement Intent

Layers Output Shape
Conv1 (5x5) 32 x 124 x 121

ReLU + BatchNorm 32 x 124 x 121
MaxPool (3x3) 32 x 41 x 40

Conv2(5x5) 64 x 37 x 36
ReLU + BatchNorm 64 x 37 x 36

MaxPool (3x3) 64 x 12 x 12
Conv3 (5x5) 128 x 8 x 8

ReLU + BatchNorm 128 x 8 x 8
MaxPool (3x3) 128 x 2 x 2

Fully Connected 1 x 2
Softmax 1 x 2

TABLE II: CNN Architecture for RT

Layers Output Shape
Conv1 (3x5) 32 x 126 x 121

ReLU + BatchNorm 32 x 126 x 121
MaxPool (2x2) 32 x 63 x 60

Conv2(3x5) 64 x 61 x 56
ReLU + BatchNorm 64 x 61 x 56

MaxPool (2x2) 64 x 30 x 28
Conv3 (3x5) 128 x 28 x 24

ReLU + BatchNorm 128 x 28 x 24
MaxPool (2x2) 128 x 14 x 12

Conv4 (3x5) 256 x 12 x 8
ReLU + BatchNorm 256 x 12 x 8

MaxPool (2x2) 256 x 6 x 4
Fully Connected 1 x 2

Softmax 1 x 2

used Adam, a variant of stochastic gradient descent, with
learning rate of 10−3.

G. Network Validation

We evaluated our proposed CNN in three ways:
1) Leave-one-out: Data from all but one subject were used

for training. Evaluation was done on the left-out subject.
This tested the CNN’s ability to generalize to new
subjects, that were not included in training.



Fig. 3: A: CNN accuracies for the 2 classification tasks when evaluated using leave-one-out and subject-specific training.
B: Left - Averaged confusion matrix for movement intent classification evaluated using leave-one-out; Center - Averaged
confusion matrix for movement intent classification evaluated using subject-specific training; Right - Averaged confusion
matrix for RT classification evaluated using leave-one-out. Numbers are in percentage.

2) Subject-specific training: Data from a single subject
were split randomly into training and test in the ratio
4:1. Validation was done on the test data. This tested
the ability of the CNN to predict movement components
when trained on individual subjects.

3) All data: Data from all subjects were split randomly
into training and test in the ratio 4:1. This allowed us
to determine how well the CNN performs if it has access
to data from a large number of subjects.

While the movement intent classification was evaluated using
all three evaluation techniques, RT classification was evalu-
ated using only 1) and 3) since the number of data points
per subject for RT were low to train a deep network, for the
given variability of the labels (RT).

III. RESULTS

A. Leave-one-out Evaluation

To measure the generalization performance of our CNN,
we evaluated it using the leave-one-out technique. Our
CNN achieved an average accuracy of 80.08%±5.70% for
movement intent classification, and 79.82%±2.37% for RT.
Subject-specific results are shown in (Figure 3A: red and
green bars). While the CNN’s prediction of movement intent
was most accurate for subject 10 (93.75%), the RT CNN had

the best performance for subject 3 (83.34%). In general, the
CNN performed well enough for all subjects.

B. Subject-specific Training

We trained and evaluated our CNN for each subject
separately, to test its ability to infer each individual’s intent
when data from only that person were available (Figure 3A:
blue bar). In this case, our CNN had an average accuracy
of 88.97%± 6.27% for movement intent. Given that the
network was trained for each subject separately, its increase
in accuracy over leave-one-out was expected because of the
reduced variability in the EEG.

C. Training on All Data

Next, we evaluated our CNN on data from all the subjects,
partitioned randomly into train and test in the ratio 4:1.
This is a good indication of how our model can perform
when data from a large pool of patients is available before-
hand. The results, averaged over 10 random partitions, are
shown in Table III. We notice that there is an improvement
in the performance of the CNNs, when compared to leave-
one-out evaluation, since the CNNs were trained on a more
representative set of trials that were collected from all the
subjects participated in the experiment.



TABLE III: Classification Accuracies for All data Training

Task Mean Accuracy
Movement Intent 87.34% ± 2.83%

Reaction Time 84.68% ± 3.68%

D. Confusion Matrices

The averaged confusion matrices shown in Figure 3B
demonstrate that the network can predict both classes of the
two classification tasks equally well. This is further revealed
in the F1 scores, defined as the harmonic mean of precision
and recall. Specifically, the F1 scores were 0.80 (leave-one-
out) and 0.88 (subject-specific) for classifying the movement
intent, and 0.80 for classifying RT (leave-one-out).

IV. DISCUSSION

Here, we presented a deep learning framework to predict
two movement components implicated in explicit and im-
plicit motor learning, which are applicable in adapting reha-
bilitation robots: i) movement intent and ii) movement RT.
Our framework consists of a CNN that associates the EEG
activity with these components. The CNN achieved high test
accuracies for all the evaluation cases, thus demonstrating
its practical effectiveness in our ongoing effort to develop an
adaptive robot based on individual components of movement.

Here, we targeted the movement intent from the EEG
activity because of the role of voluntary movements in
improving motor performance [3]. Neurological deficits,
particularly in the supplementary motor area (SMA), have
been found to directly affect the ability of patients to initiate
movement [32]. Further, [33] suggested a possible compen-
satory recovery mechanism through recruitment of healthy
medial and lateral premotor circuitry. In the clinical setting,
ours [9] and other’s [34] studies have revealed significant
improvements in the number of self-initiated movements
executed by the patients between admission and discharge.

We also targeted the prediction of RT from the EEG,
because RT is one of the most well-studied behavioral
indicators of neurological integrity. Interestingly, RT has not
only been found to be related to neurological deficits, but also
it is responsive to intervention [35], including exercise and
practice [11], [7]. In light of the fact that the sensorimotor
control of the upper extremities is driven by cortical and
subcortical areas, our finding that RT behavior is similar
in lower and upper extremities [12], [30] expands the role
of a presumptive supraspinal pathway from coordinating
to controlling discrete lower extremity movements. In fact,
when we incorporated RT in the clinical evaluation of the
MIT-pediAnklebot [9], we found statistically significant
improvements in RT between admission and discharge, when
children with cerebral palsy received therapy for 3 weeks.

Taken collectively, the EEG-derived movement compo-
nents are promising in complementing the kinematics-based
adaptation, further assessing and treating the neurological
impairments. A hybrid set of kinematics- and EEG-based

measures of motor learning could help robots to adapt to
one’s cognitive and motor efforts that will no longer be
masked by the inherent variability of sensorimotor impair-
ments. For example, we have previously shown how cogni-
tive components of a serious game can be adapted to promote
patient engagement during sensorimotor therapy [36]. In ad-
dition to opening up the possibilities of adapting gamification
of rehabilitation when only gross kinematics measurements
can be acquired, a number of robots have also been de-
veloped that encourage voluntary movements by remaining
passive unless the patient initiates the movement [7]. Further,
by giving new knowledge on how EEG-features are related to
distinct movement components, our deep learning approach
can also be used to assess the level of neurological deficit,
and how well such deficit responds to a particular treatment.

Adding to the mounting studies demonstrating the ef-
fectiveness of deep neural networks in predicting cognitive
functions from EEG [37], this paper shows how CNN can
use its two-dimensional structure to extract task-specific
spatiotemporal features from the inherently noisy EEG sig-
nals, to assess the movement components. The leave-one-
out evaluation results suggest that our CNN generalizes well
across subjects, which is promising in being used for new
patients, with minimal to no training.

Since a successful motor recovery requires both repetitive
movements [38] and active participation [39], an adaptation
based on specific movement components could further tai-
lor rehabilitation and promote plasticity. For example, an
adaptive robotic therapy could target each one of the two
movement components: for movement intent, the robot’s
assistance would adapt to encourage voluntary movements;
for RT, the robot would use the percentage of fast RT as
an indicator of functional motor recovery or even relate it
to motor skill consolidation. In addition, while we focused
here on rehabilitation of upper extremity, it can be argued that
the two adaptation criteria apply to lower extremity robots as
well. We have previously shown the similarity between the
distribution of RTs in the upper and lower extremities [30].
Hence, our work can potentially target a variety of reha-
bilitation tasks. In that sense, our work can complement
the current “assist-as-needed” controllers that rely on robot-
derived metrics of motor performance for adaptation [4],
[40], [9], by adding an EEG-based measurement that may
not be affected by the sensorimotor impairment.

V. CONCLUSION

Overall, the paper discusses our ongoing efforts to de-
compose motor recovery into its fundamental components
and, therefore, it has the potential to shape the design of
new rehabilitation robots with a built-in adaptability. The
integration of the two movement components, namely the
intent to move and RT, into the adaptation of assistive
devices will result in a) rehabilitation robots that deliver more
personalized therapy, by targeting separate attributes of the
activity-dependent neural plasticity, and b) an increase of
the knowledge of how the brain learns. Overall, this work
aims to help in the transition from the evidence-based to



science-based rehabilitation, and optimize the collaborative
interaction between humans in need and robots in service.
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