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Abstract—Most face recognition systems deal well with high-
resolution facial images, but perform much worse on low-
resolution facial images. In low-resolution face recognition, there
is a specific but realistic surveillance scenario: a surveillance
camera monitoring a large area. In this scenario, usually the
gallery images are of high-resolution and the probe images are
of various low-resolutions depending on the distances between the
subject and the camera. In this paper, we design a low-resolution
face recognition system for this scenario. We use a state-of-
the-art mixed-resolution classifier to deal with the resolution
mismatch between the gallery and probe images. We also set
up experiments to explore the best training configuration for
probe images of various resolutions. Our experimental results
show that one classifier which is trained on images of various
resolutions covering the whole range has promising results in the
long-range surveillance scenario. This system has at least as good
performance as combining multiple face recognition systems that
are optimised for different resolutions.

I. INTRODUCTION
Face recognition at a distance is a challenging subject.

The face images captured at a distance are of low-resolution
so that they contain less information. In addition, the most
common application for face recognition at a distance is
camera surveillance, where the images are usually captured
in uncontrolled situations, which results in illumination and
pose variations. The images are also often noisy due to low
light or compression artifacts. Those various problems suffered
by the images in low-resolution face recognition make them
more difficult to recognize than those in high-resolution face
recognition. In this paper, we will focus on the low-resolution
problem.
There are many methods that have been developed for low-

resolution face recognition. Some of the methods improve
face recognition performance on low-resolution images by
applying super-resolution to increase the image resolution.
Zhang et al. [1] proposed a super-resolution method in mor-
phable model space, which provides high-resolution infor-
mation required by both reconstruction and recognition. Zou
and Yuen [2] developed a data constraint for reconstructing
super-resolution image features so that both the distances
between the reconstructed images and the corresponding high-
resolution images and the distances between super-resolution
images from the same class are minimized. There are also face
recognition methods that perform face recognition directly on
low-resolution images. Li et al. [3] proposed a method that
projects both high-resolution gallery and low-resolution probe

to a unified feature space for classification using coupled map-
pings which minimize the difference between corresponding
images. Moutafis and Kakadiaris [4] proposed a method that
learns semi-coupled mappings for optimized representations.
The mappings aim at increasing class-separation for high-
resolution images and mapping low-resolution images to their
corresponding class-separated high-resolution data. Peng et
al. [5] proposed a likelihood ratio based method for direct
comparison between images of different resolutions. All these
works consider a specific resolution.
In face recognition at a distance, if the camera is monitoring

a large area, the face images captured at a long distance can
have very different resolutions. There are two approaches to
deal with this situation. The first one is to improve acquisition
devices so that the images captured at the farthest distance
have a high enough resolution for recognition. An acquisition
system using wide-field-of-view cameras and near-field-of-
view cameras is proposed by Wheeler et al. in [6]. Wide-field-
of-view cameras monitor the large area which detect and locate
the person. Then Near-field-of-view cameras are controlled
automatically to capture high-resolution face images. Com-
mercial face recognition system is used for recognition. This
system can detect faces at distances of 25-50 m and recognize
faces (first successful face recognition) at distances of 15-20
m. This type of camera systems is also used in [7], [8]. The
second approach is to design a face recognition system for
images captured at various distances. However, there is only
a limited number of publications on this topic. Moon and Pan
[9] proposed an LDA-based long distance face recognition
algorithm. They demonstrated that using images from multiple
distances for training has better recognition performance on far
distances than using single near distance images for training.
Tome et al. [10] proposed an estimator of the acquisition
distance based on the segmented face area and the full image
area. In the face verification process, the scores of DCT-GMM-
based system and PCA-SVM-based system are fused based on
the distance estimator so that for far distance the DCT-GMM-
based system has more weight.
We follow the second approach and explore what is im-

portant in designing a low-resolution face recognition system
for long range surveillance. We use a state-of-the-art low-
resolution face recognition method and explore how we should
set up the classifiers to cover the whole range in this scenario.
The remainder of this paper is organised as follows: we
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describe the scenario of the problem and propose the hypoth-
esis in Section II. The face recognition method we use in the
experiments is introduced in Section III. Experimental results
are reported in Section IV. Section V gives conclusions.

II. SCENARIO AND HYPOTHESIS
We focus on this specific but common surveillance circum-

stance: a surveillance camera monitoring a large area. The
camera is connected to a face recognition system. When a
person appears in the camera view, the face recognition system
detects the person’s face and compares it with the suspects’
faces in the database. The output of the system is the decision
whether this person is one of the suspects or not. In this
situation, the gallery images (from the suspects) that are of
high resolution. The probe images, captured at a distance, are
of low resolution. Because the person can show up at any point
of the monitored area, the resolution of the probe images can
vary a lot.
To design a face recognition system for this scenario, we ad-

dress two problems. Firstly, there is a resolution mismatch be-
tween high-resolution gallery and low-resolution probe while
most classifiers are designed for high-resolution images and
can only work properly for images of the same resolution.
Secondly, usually a single classifier is not able to achieve
sufficient recognition performance for images captured at very
different distances.
To solve the first problem, we use the MixRes classifier

[5]. After training with high-resolution and low-resolution
image pairs, the MixRes classifier can directly compare low-
resolution probe to high-resolution gallery. It is shown in [5]
that this method has promising performance on very low-
resolution probes.
To address the second problem, we test the following

hypothesis: it is beneficial for the recognition performance
of long range face recognition to combine several classifiers
that are tuned to images of different resolutions. Each of
the classifiers gives the best face recognition performance
on images of a certain resolution. The combination of those
classifiers are supposed to give optimal results across the
whole range of distances.

III. MIXRES CLASSIFIER
Here we briefly describe the MixRes classifier, which is

originally named Mixed-Resolution Biometric Comparison
[5]. The MixRes classifier is especially designed for comparing
images captured at different distances. It is based on the
likelihood ratio of a pair of mixed-resolution input images.
This method is similar to [11] (also described in [12]) which
is derived for comparing images of the same resolution.
This classifier transforms the reference sample x and test

sample y to a common lower dimensional space by

xc = ZR (x − r) , (1)
yc = ZT

(
y − t

)
, (2)

where r and t are the grand means of, respectively, the
reference and probe training sets. The transformations ZR and

ZT are computed in a training phase. They are built up of a
PCA step, reducing the dimensionality of probe and reference
to manageable proportions as well as whitening them, followed
by an LDA step that aims for optimal discrimination after
transformation to a common lower dimensional subspace. This
method and the training procedure are described in [5]. The
log-likelihood ratio is then computed as

log(l(xc,yc)) = −1
2

D∑

i=1

log
(
1 − ν2

i

)
+

1
4
s(xc,yc), (3)

where νi is the between-class covariance of feature element i
after the LDA step and

s(xc,yc) = (4)

−
D∑

i=1

νi

1 − νi
(xc,i − yc,i)2 +

D∑

i=1

νi

1 + νi
(xc,i + yc,i)2.

IV. EXPERIMENTS
The goal of our experiment is to test the hypothesis formu-

lated in Section II that combining multiple face recognition
systems, optimised for different resolutions improves the face
recognition performance in the long-range surveillance sce-
nario.
The Human ID database [13] is chosen because it is suitable

for simulating the scenario as described in Section II. This
database contains high-resolution mug shots which we use as
gallery. It also contains parallel gait videos which are the best
source for the probe images. There are maximum four sessions
recorded at different time. We have 588 mug shots from 312
subjects. There are at most four mug shots per person. Most
people have one or two mug shots. The parallel gait videos
are captured when a person was walking towards the camera.
Because the videos are not taken under controlled condition,
there are some pose and illumination variations. We use Viola-
Jones face detector [14] (implemented in MATLAB) to detect
the faces in the videos. From the detected faces we choose the
images of near frontal pose and relatively good quality for our
experiments. From the detected faces we selected images with
nine different resolutions: 70× 70, 60× 60, 50× 50, 45× 45,
40 × 40, 35 × 35, 30 × 30, 25 × 25, and 23 × 23 pixels. The
distance between the eyes goes down from 28 pixels for 70×70
to 9 pixels for 23 × 23. For each resolution, two images are
randomly selected from each video. The number of images
for each resolution is different because some of the videos
do not have images with all the nine resolutions. Detailed
information about the data we use is in Table I. All the
images are aligned using manually marked eye-coordinates.
The regions of interest are cropped using an elliptic mask.
Sample images are shown in Fig. 1.
In order to test our hypothesis, we performed experiments,

which are discussed below.
First, we test on how the classifier performs on images of

different resolutions when it is trained with images of different
resolutions. This is not only to test our hypothesis is correct,
but also to find out if the difference is significant between the
classifiers trained with different resolution images.



TABLE I
NUMBER OF IMAGES AND SUBJECTS OF EACH RESOLUTION USED IN OUR
EXPERIMENTS. RES: RESOLUTION. NI: TOTAL NUMBER OF IMAGES. NS:

NUMBER OF SUBJECTS.

Res 70 60 50 45 40 35 30 25 23

Ni 707 664 755 837 768 811 827 877 873
Ns 251 259 279 282 281 276 276 276 272

Fig. 1. Sample images of each resolution after pre-processing.

Cross-validation is used in our experiments. During the
training procedure, we randomly selected images of 200
subjects for training. The high-resolution training images are
from the mug shots and the low-resolution training images are
from the video images of each resolution. Because the high-
resolution training images are always from the mug shots set,
we always mean the low-resolution training sets when we refer
to different training sets in the remainder of the paper. The
images of the rest of the subjects are used for testing. There
is no overlap between subjects for training and testing. After
training with images of each resolution, we test the classifier
using images of all the nine resolutions. The cross-validation
has 100 rounds and the average verification rates (also known
as genuine acceptance rates) at False Acceptance Rate (FAR)
equals to 0.1 are shown in Fig. 2. The standard deviations of
the verification rates are around 0.04.
As we can see, for each probe resolution, training with

images of the same resolution gives the best results. Especially
when comparing the classifiers trained with images of 70×70
and 23×23 pixel-resolutions, the performance differences are
significant: the difference of the verification rates on 70 × 70
probe is 0.25 and the difference on 23 × 23 probe is 0.13.
The classifiers, which are trained with resolutions different
from the probe resolution, usually perform worse at the probe
resolution. This supports our hypothesis. We can design a
system with nine classifiers, each of them dedicated to a
certain probe resolution. However, some of the classifiers,
which were trained with images of neighbouring resolutions,
have similar performance. For example, the classifiers 70 and
60 has similar performance on probe resolutions 70× 70 and
60×60. This means it could be possible to reduce the number
of classifiers needed in the system.
In the second experiment we explore how many classifiers

Fig. 2. Verification results of training and testing with images of different
resolutions. X axis: probe image resolution, Y axis: Verification Rate (VR) at
FAR 0.1.

are necessary in the system. There are four different con-
figurations of classifiers trained with image sets of different
resolution divisions, shown in Table II.

TABLE II
DIVISION OF RESOLUTIONS FOR TRAINING IN THE SECOND EXPERIMENT.

Division Resolutions

DIV1 70, 60, 50, 45, 40, 35, 30, 25, 23
DIV2 70-50, 45-40, 35-30, 25-23
DIV3 60-40, 35-23
DIV4 70-23

DIV1 has nine classifiers trained on each resolution. DIV2
has combined two or three neighbouring resolutions in the
training set which results in four classifiers. DIV3 has two
classifiers, each of them are trained on images of four neigh-
bouring resolutions. DIV4 only has one classifier, but the
training images have all the nine resolutions. All images in
each training set are up-sampled to the highest resolution in
this training set. For example, the training set of the second
classifier in DIV2 consists of images of original resolutions
45×45 and 40×40. The images of original resolution 40×40
are up-sampled to 45 × 45 before they are used to train
the classifier. In the testing phase, if the input image has a
resolution of 45×45 or 40×40, they will be scaled to 45×45
and this (the second) classifier is used to compute scores.
To ensure a fair comparison between the four settings, we

randomly select five images per subject for training for all the
classifiers in the four divisions even though much more images
are available in the last three settings. The results are shown
in Fig. 3.
As we can see, the performance on each testing resolution

is similar for all the four training divisions. The differences
between the average values are within their standard devia-
tions. This means that, for a long range surveillance system,
it is not necessary to have a number of classifiers optimised
for different resolutions. We can use only one classifier but



Fig. 3. Verification results of classifiers trained with different resolution
divisions of the training data. X axis: probe image resolution, Y axis:
Verification Rate (VR) at FAR 0.1.

trained on images captured at different distances. Although the
first experiment confirmed our hypothesis and showed that it
is indeed beneficial to combine classifiers tuned to various
resolutions, the second experiment showed that the same
performance can be achieved when one classifier is trained
with images with varying resolutions. The latter solution has
a lower computational complexity. In addition, because there
is usually not that many real low-resolution training images
available, a single classifier can make the best use of the
training data.
Then we compare the results of our optimised system,

which is the DIV4 from the second experiment, to the results
of Train70 and Train23 from the first experiment and a
commercial face recognition system. We compare with this
commercial system because commercial face recognition sys-
tems are used in real-life surveillance cases. The results of the
commercial system are obtained using all the images available
at each resolution (no training image required), and manually
marked eye-coordinates of the images are provided to the
system. To make best use of the training images in DIV4, 40
images per subjects are used to train the classifier. The other
configurations are the same as in the previous experiments.
The verification rates at FAR equals to 0.1 are shown in Fig.
4.
As we can see, DIV4 performs the best across all the

testing resolutions. Train70 has similar performance as the
performance of DIV4 at resolution 70 × 70, but the differ-
ence between them becomes significant when the resolution
decreases. This is similar with Train23, which has the closest
result to DIV4 at resolution 23 × 23. The commercial face
recognition system performs differently as it is designed for
high-resolution face recognition. At the highest resolution
70 × 70, it performs only slightly worse than DIV4, but the
performance dropped quickly when the resolution decreases
and from resolution 40 × 40 to lower, the results are very
close to random guessing.

Fig. 4. Comparison of DIV4, Train70 and Train23 to FaceVACS. X axis:
probe image resolution, Y axis: Verification Rate (VR) at FAR 0.1.

V. CONCLUSION

Most face recognition systems deal well with high-
resolution facial images, but perform much worse on low-
resolution facial images. We focus on a specific but realistic
surveillance scenario: face recognition at a distance for long
range surveillance. Our aim is to design a face recognition
system for a range of resolutions. We use an existing mixed-
resolution face recognition method and investigated whether
it is beneficial for the recognition performance of long range
face recognition to combine several classifiers that are tuned
to images of different resolutions. Our experimental results
show that if a classifier is only trained on images captured
at a single distance, it could not perform well on the images
from a very different distance. However, if we combine the
images captured at various distances for training, a single
classifier can perform at least as good as a combination of
different classifiers when each of them are trained on images
captured at a single distance. We also show that this one
classifier system outperforms a state-of-the-art commercial
face recognition system.
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