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Abstract—The design of low-density parity-check (LDPC) code
ensembles optimized for a finite number of decoder iterations is
investigated. Our approach employs EXIT chart analysis and
differential evolution to design such ensembles for the binary
erasure channel and additive white Gaussian noise channel. The
error rates of codes optimized for various numbers of decoder
iterations are compared and it is seen that in the cases considered,
the best performance for a given number of decoder iterations
is achieved by codes which are optimized for this particular
number. The design of generalized LDPC (GLDPC) codes is
also considered, showing that these structures can offer better
performance than LDPC codes for low-iteration-number designs.
Finally, it is illustrated that LDPC codes which are optimized
for a small number of iterations exhibit significant deviations in
terms of degree distribution and weight enumerators with respect
to LDPC codes returned by more conventional design tools.

I. INTRODUCTION

Since their rediscovery in the 1990s [1], the design of
LDPC code ensembles [2] has often focused primarily on their
impressive capacity-approaching capabilities. The dominant
approaches to design for optimizing the decoding threshold
of LDPC codes are density evolution [3] and extrinsic infor-
mation transfer (EXIT) chart [4] analysis.

Whereas traditionally iteratively decodable codes such as
LDPC codes have been designed under the assumption of
an infinite number of decoder iterations, in practice it is
preferable that the maximum number of iterations considered
in the design be the one targeted by the specific application
considered. Traditional code design methods based on thresh-
old optimization necessarily fail to capture the effect of the
maximum number of iterations in practical scenarios, and the
code designs so produced may not offer the best - or even
good - performance for such scenarios.

The number of decoder iterations required for successful
iterative decoding has recently attracted interest. The design of
non-systematic irregular repeat-accumulate codes and LDPC
codes optimized for a finite number of iterations over the
binary erasure channel (BEC) was investigated in [5] and [6],
respectively, while lower bounds on the number of iterations
required for decoding of turbo-like ensembles were found in
[7].

In this paper we propose an ensemble design strategy
which takes the maximum number of iterations as an input.
This ensemble design strategy, which is based on a modified

analysis using EXIT charts combined with optimization using
differential evolution, is used to design LDPC code ensembles
which are optimized for a finite number of iterations over
the BEC and binary input additive white Gaussian noise (BI-
AWGN) channel. It is seen that for both channels, when the
maximum number of decoder iterations, imax, is constrained,
LDPC codes which are optimized for imax iterations out-
perform those which are optimized for an infinite number
of iterations. Our strategy, in which the problem of fast
convergence is approached from a code design perspective,
contrasts with the strategies adopted in most of the literature, in
which fast convergence is tackled from a decoding algorithm
point of view [8]–[10]. Instead, we are interested in ensembles
such that a code in the ensemble converges quickly with high
probability.

When a small number of iterations is targeted, our approach
returns ensembles with a number of different features with
respect to traditional approaches. It is well known that in
order for an LDPC code ensemble to approach capacity, a
large fraction of degree-2 variable nodes (VNs), is required.
In contrast, in our iteration-constrained ensembles this fraction
is very small when the maximum number of iterations is
small. Also, in contrast to ensembles which are optimized
for a large or unlimited number of iterations, these ensembles
have good behavior with respect to the growth rate of the
weight distribution and with respect to the typical minimum
distance. We also consider the optimization of generalized
LDPC (GLDPC) code ensembles, in which the single parity-
check (SPC) codes at the check nodes (CNs) of an LDPC
code ensemble are replaced with generic linear block codes.
Imposing constraints on the number of decoder iterations for
the BEC, we show that the presence of these generalized CNs
may be beneficial to reduce the number of message exchanges
to achieve a target performance.

II. NOTATION

We define a GLDPC code ensemble as follows. The block
length of a code in the ensemble is denoted by N . There are nc
different CN types t ∈ Ic = {1, 2, . . . , nc}. For each CN type
t ∈ Ic we associate a local linear block code with length st,
code rate Rt, and minimum distance rt. Each local code may
be a single parity-check code of length st, or a more general
linear block code. In the special case where all local codes
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are SPC codes, we have a traditional LDPC ensemble. The
polynomial ρ(x) is defined by ρ(x) =

∑
t∈Ic ρtx

st−1, where
for each t ∈ Ic, ρt denotes the fraction of edges connected to
CNs of type t. Similarly, we define λ(x) =

∑
d∈Iv λdx

d−1,
where for each d ∈ Iv = {2, 3, . . . , dv}, λd denotes the
fraction of edges connected to VNs of degree d. The design
rate of the ensemble, is given by

R = 1−
∑
t∈Ic ρt(1−Rt)∑

d∈Iv λd/d
.

For ensembles with a positive fraction of CNs having
minimum distance 2, we define

C = 2
∑
t:rt=2

ρtA
(t)
2

st
,

where A
(t)
2 denotes the number of weight-2 codewords for

CNs of type t. Moreover, E = N/
∫
λ denotes the number of

edges in the Tanner graph. The number of CNs of type t ∈ Ic
is given by Eρt/st.

III. ENSEMBLE DESIGN STRATEGY

In EXIT chart analysis, the a-priori information at a node
is mapped to the extrinsic output information of that node
by an EXIT function. On the VN side of the Tanner graph,
the average a-priori and extrinsic information are denoted by
IA,V and IE,V , respectively. Similarly, IA,C and IE,C denote
the average a-priori and extrinsic information, respectively, on
the CN side of the graph. By plotting the VN-side and CN-
side EXIT functions against one another on an EXIT chart
for a given value of the channel parameter (for example, the
erasure probability ε and the signal-to-noise ratio Eb/N0 for
the BEC and BI-AWGN channel, respectively), it is possible
to visualize the passing of extrinsic information between the
two sides as a “decoding path” moving between the two EXIT
curves iteration by iteration. The iterative decoding threshold
for an ensemble is the most unfavorable channel parameter for
which the EXIT functions do not intersect.

While the use of EXIT charts in this way can lead to im-
pressive thresholds when designing ensembles, such thresholds
may be of limited usefulness in practical scenarios with severe
constraints on the maximum number of iterations. In order
to design ensembles for such scenarios, the traditional EXIT
analysis should be modified. We remove the condition that
the EXIT functions must not intersect and instead require that
after imax decoder iterations, the output extrinsic information
must exceed some value ξ. We define the iteration-constrained
threshold of an ensemble as the worst value of the channel
parameter (e.g., the highest value of ε or lowest value of
Eb/N0 for the BEC or BI-AWGN channel, respectively) for
which this requirement is satisfied. One consequence of this
new condition is that even when the EXIT curves intersect, we
may consider a channel parameter to be achievable, provided
that the intersection occurs at some point where IA,V > ξ.

Differential evolution is an optimization algorithm often
used to find, for some design rate R, a degree distribution

pair (DDP) (λ, ρ) which gives rise to a good threshold [11].
An initial population containing Np members is generated,
where each member is a length-D vector which expresses
the DDP of an ensemble of design rate R. A trial vector is
then created for each member of the population by combining
a subset of randomly chosen vectors from the population.
If this competing vector offers a better threshold than its
corresponding population member, the member is replaced.
This process is repeated until a stopping criterion has been
fulfilled. The steps involved in differential evolution, as used
in this paper, are given in Fig. 1. The output of the algorithm is
the best member of the population after the stopping criterion
has been reached, i.e., the vector in the final population with
the best threshold. It is important to observe that each time that
a new vector is created (i.e., in steps 2 and 3), it is unlikely
that this vector will still meet the target design rate R and
also satisfy

∑
d λd = 1 and

∑
t ρt = 1. Therefore, during

the creation of each trial vector uli in step 3, it is necessary to
adjust three of the D elements in the vector in order to produce
a vector which satisfies all three constraints. In the event that
some vector elements which are not in [0, 1] are obtained,
these vectors are discarded and new ones are generated.

By using our iteration-constrained EXIT chart analysis to
examine the decoding performance of ensembles generated in
each iteration of differential evolution, it is possible to design
ensembles optimized for a given imax.

1: Generate a random starting population {x0
1, . . . ,x

0
Np
}

where each x0
i is some degree distribution pair (λ, ρ)

with the target design rate R. Let l = 0.
2: For each i ∈ {1, . . . , Np}, generate a mutant vector vli

where vli = xlr1 + F (xlr2 − xlr3) where r1, r2, r3 are
picked uniformly at random without replacement from
{1, . . . , Np}\{i} and F is a constant, usually between
0 and 2.

3: For each i ∈ {1, . . . , Np}, introduce crossover to gen-
erate a trial vector uli associated with xli. For j ∈
{1, . . . , D}, the jth element of uli is given by

uli,j =

{
vli,j if X[j] ≤ η or j = Y [i]
xli,j if X[j] > η and j 6= Y [i]

where X[j] are independent and identically distributed
(i.i.d.) continuous random variables uniformly dis-
tributed in (0, 1), Y [i] are i.i.d. discrete random variables
uniformly distributed in {1, . . . , D} and η > 0 is a
constant threshold between 0 and 1.

4: Using modified EXIT analysis, for each i ∈ {1, . . . , Np}
find the iteration-constrained thresholds of uli and xli. If
uli has the better threshold then set xl+1

i = uli, otherwise
set xl+1

i = xli.
5: Set l = l + 1 and repeat from step 2 unless a stopping

criterion has been reached.

Fig. 1. Differential Evolution Algorithm



TABLE I
DETAILS FOR ENSEMBLES A-C

Ensemble A Ensemble B Ensemble C
VN degree d λd

2 1 0.318057
3 0.841365 0.202714
4 0.058171
6 0.147257
13 0.173086
15 0.100714
30 0.158635

CN type t ρt
1 0.134313 1.000000 1.000000
2 0.865687
ε∗ 0.390459 0.365436 0.485836
imax 10 10 200

λ′(0)ρ′(1) – 0.000000 1.908343
λ′(0)C 0.805878 – –

t = 1: Degree-7 SPC Code
t = 2: (15, 11) Hamming Code

IV. ENSEMBLE DESIGN AND ANALYSIS

A. (G)LDPC Codes on the Binary Erasure Channel

Using the approach outlined above, we obtained (G)LDPC
code ensembles optimized for a constrained number of iter-
ations on the BEC, with R = 0.5. The differential evolution
process was initialized with a random population of cardinality
Np = 70 consisting of DDP vectors containing VNs of degrees
{2, 3, . . . , 30}, and with generalized CNs consisting of degree-
7 SPC codes, (7, 4) Hamming codes and (15, 11) Hamming
codes. The optimization was performed for imax = 10 and
the resulting ensemble was named Ensemble A. Ensemble B
was generated by performing the same optimization, but with
generalized CNs disallowed, i.e., with only degree-7 SPC
codes at the CNs. Finally, Ensemble C was optimized for
imax = 200 iterations with generalized CNs allowed, as in
the case of Ensemble A.

In order to compare the performance of codes from the
ensembles, a single code having block length N = 10, 0001

was constructed from each ensemble. These codes were gen-
erated by randomly assigning edge connections in accordance
with the obtained VN and CN degree distributions, while
ensuring no more than one edge connection between any VN
and CN pair. By using long codes which are picked randomly
from the ensembles in this way, we can have high confidence
that the performances we observe are due to the intrinsic
ensemble properties, rather than being a result of a particular
algorithm being adopted in the construction of the finite-length
code. For convenience, we refer to the codes constructed from
Ensembles A, B and C as Codes A, B and C, respectively.

The DDPs for Ensembles A, B and C are given in Table I,
along with the iteration-constrained threshold, ε∗, obtained for
each of these ensembles by our modified EXIT chart analysis.2

1In some cases a slight variation in the values of N and R is necessary in
order to ensure an integer number of VNs and CNs while matching the DDP.

2In Ensemble A, we note that although both (7, 4) and (15, 11) Hamming
codes are allowed at the generalized CNs, the optimization has produced an
ensemble which does not use any (7, 4) Hamming codes.

When optimized for a large number of iterations the frac-
tions of edges connected to generalized CNs vanishes (Ensem-
ble C). In the iteration-constrained case, however, a significant
fraction of the edges in the optimized ensemble are connected
to generalized CNs when these CNs are allowed (Ensemble A).
In the case of Ensemble C, the ensemble optimized for a large
number of iterations, we also observe that the value of λ2, the
fraction of edges connected to degree-2 VNs is quite high.
However for Ensemble B, the LDPC ensemble optimized for
a small number of iterations, λ2 drops to zero.

The bit error rate (BER) of Codes A, B, and C after 10 and
200 belief propagation decoding iterations are shown in Fig. 2
and Fig. 3, respectively. We focus on the BER instead of the
codeword error rate (CER), as it is known that LDPC codes
from ensembles with thresholds close to capacity (such as
Code C) offer excellent BER waterfall performance while their
CER suffers due to poor distance properties. We are mainly
interested in the waterfall regions of the finite-length codes.
Significantly, we observe that when the decoder is limited to
imax = 10 iterations, the codes from ensembles which are
optimized specifically for 10 iterations (Ensembles A and B)
still exhibit the very steep BER waterfall typical of iteratively
decoded codes. Of these two codes, Code A, the GLDPC code,
outperforms its LDPC counterpart, Code B, in accordance
with their respective iteration-constrained thresholds ε∗. The
poor performance of Code C, the code from the ensemble
optimized for 200 iterations, in Fig. 2 is imputable to the
constrained number of iterations. Apart from its high error
floor due to poor distance spectrum (which was expected,
given the fact that λ′(0)ρ′(1) is significantly larger than 1), as
Code C has been designed for decoding within a maximum of
200 iterations, the decoding path is typically far from complete
when only 10 iterations are allowed, resulting in the very
low slope in the waterfall observed here. When 200 decoder
iterations are allowed, the waterfall for Code C becomes very
steep, showing a significant gain with respect to both Code A
and Code B; however the poor minimum distance of Code C
prevents any significant improvement in the error floor.

As a first-order measure of complexity, it is significant to
note that codes from Ensemble B have fewer Tanner graph
edges than codes of similar length from Ensemble C. The
GLDPC codes from Ensemble A, in turn, have many fewer
edges than LDPC codes of similar length from Ensemble B.
This, however, does not necessarily mean that codes from
Ensemble A will have a lower implementation complexity
(or latency) as the processing at the generalized CNs of the
GLDPC codes will be more complex than that of the SPCs at
the CNs of the LDPC codes.

The iteration-constrained thresholds for Ensembles A and
B obtained by EXIT chart analysis are, as expected, lower
than that of Code C when the number of iterations is not
constrained. In general, a code designed for imax iterations
will, like Code C, perform poorly when fewer than imax

decoder operations are run. As such, the codes optimized for
imax iterations offer a “middle-ground” - having much larger
achievable BEC erasure probabilities than Code C for imax
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Fig. 2. BER of Codes A, B and C over the BEC after 10 decoder iterations.
VN and CN degree distributions are given in Table I.
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Fig. 3. BER of Codes A, B and C over the BEC after 200 decoder iterations.
VN and CN degree distributions are given in Table I.

iterations, but a much poorer threshold for unlimited iterations.

B. LDPC Codes on the AWGN Channel

Using the same procedure, LDPC code ensembles were also
obtained for the AWGN channel. As in the BEC case, the
DDPs in the starting population of the differential evolution
algorithm contained VN degrees from {2, 3, . . . , 30}. The CN
degrees in the initial DDPs ranged from {7, 8, . . . , 15}.

Using the same technique as before, codes were drawn from
Ensemble D, an ensemble optimized for an unlimited number
of iterations, and Ensembles E, F and G, which were optimized
for imax = 10, 20 and 30 iterations, respectively. Each of the
codes have R = 0.5 and N = 10, 000, as before. The DDPs
and associated iteration-constrained thresholds, (Eb/N0)

∗, for
these ensembles are given in Table II. Again, we refer to the
codes constructed from Ensembles D–G as Codes D–G.

The BERs of these codes for 10 decoding iterations are
shown in Fig. 4. Again, we observe that the most appealing

TABLE II
DETAILS FOR ENSEMBLES D–G

Ensemble Ensemble Ensemble Ensemble
D E F G

VN degree d λd
2 0.244010 0.033563 0.19128 0.175711
3 0.154621 0.567888 0.037810
4 0.065721 0.068026 0.307464 0.279311
5 0.084352 0.061890 0.068726
6 0.088753 0.083437
7 0.048109
8 0.039511 0.083481
12 0.283606
14 0.046918
18 0.323032
30 0.272447 0.390333

CN degree s ρs
7 0.001226
8 0.803716 0.998775
9 0.196284 0.902024 0.177118
10 0.822882
11 0.097976

(Eb/N0)∗ (dB) 0.259614 1.827213 1.124776 0.803599
λ′(0)ρ′(1) 3.660147 0.436314 3.443055 2.987091
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Fig. 4. BER of Codes D–G over the AWGN channel after 10 decoder
iterations. VN and CN degree distributions are given in Table II.

performance for imax = 10 iterations is exhibited by the code
that is designed for that particular number of iterations, and
that the codes which have been designed for imax > 10
iterations exhibit poor performance when simulated for 10
iterations. We note that these codes exhibit significantly higher
error floors than Code E (the code from the ensemble opti-
mized for 10 iterations). Similar to the BEC case, it is notable
that Code E has only a very small fraction of edges connected
to degree-2 VNs, while in Codes D, F and G, λ2 contributes
a significant fraction of the overall number of edges.

C. Growth Rate and Distance Properties

A useful tool in the analysis of LDPC and GLDPC code
ensembles is the growth rate of their weight distribution (i.e.,
the asymptotic exponent of their weight distribution), given by



G(α) = lim
N→∞

1

N
logEMN

[AαN ]

where α is the codeword weight normalized with respect to
the block length N , EMN

is the expectation operator over the
ensemble MN , and Aw denotes the number of codewords of
weight w of a randomly chosen code in the ensemble MN

[12], [13].
An ensemble is said to have good growth rate behavior

if and only if the initial slope of the growth rate curve is
negative. This is the case for LDPC and GLDPC codes when
λ′(0)ρ′(1) < 1 or λ′(0)C < 1, respectively [12]. Also, it
is desirable that the value α = α∗ at which G(α) crosses
the horizontal axis is relatively large. Codes from ensembles
which do not have good growth rate behavior typically exhibit
a high error floor. From Tables I and II it may be seen that
of Ensembles A–G, only Ensembles A, B and E have good
growth rate behavior.

The growth rates of Ensembles A–G are shown in Fig. 5. As
noted above, the poor growth rate behavior of Ensembles C,
D, F and G leads us to expect that codes drawn from these
ensembles will have high error floors, as seen in Fig. 2 and
Fig. 4. The poor performance of these codes after 10 iterations
is therefore a consequence of both their inability to complete
their long decoding paths within a small number of iterations
and the poor growth rate behavior of their ensembles. Indeed,
as seen in the case of Code C in Fig. 3, even when simulated
for the number of iterations for which they are optimized,
these codes exhibit high error floors as a result of their bad
growth rate behavior.

In order to empirically verify that LDPC codes designed
for a small number of decoding iterations are very favorable
in terms of minimum distance (which is suggested by the
results obtained for the asymptotic growth rate of the weight
distribution), we performed the following experiment. A con-
strained ensemble optimization based on EXIT charts and
differential evolution was carried out for an infinite number
of iterations, but imposing the constraint λ′(0)ρ′(1) < 0.5
in order to enforce a good growth rate behavior. This is a
classical ensemble design strategy to obtain a good trade-off
between waterfall and error floor performance. The obtained
DDP is λ(x) = 0.062498x + 0.479743x2 + 0.049808x5 +
0.117758x8 + 0.290192x29 and ρ(x) = x8. Next, we con-
structed a finite length (1024, 512) LDPC code according to
this DDP using the progressive edge growth (PEG) algorithm
[14] and analyzed its weight distribution through the algorithm
proposed in [15]. The minimum distance of this code was
found to be 44. We then constructed via the PEG algorithm
a (1024, 512) code from Ensemble E and analyzed its weight
distribution via the same algorithm. The minimum distance
of this second code was found to be substantially larger, in
particular equal to 58. This strengthens our conclusion that
very good minimum distance properties are inherent to LDPC
codes designed for iterative decoders severely constrained in
terms of maximum number of iterations.
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Fig. 5. Growth rates of Ensembles A–G. VN and CN degree distributions
are given in Tables I and II.
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