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Abstract—Recently, communications systems that are both
energy efficient and reliable are under investigation. In this
paper, we concentrate on an energy-detection-based transmission
scheme where a communication scenario between a transmitter
with one antenna and a receiver with significantly many antennas
is considered. We assume that the receiver initially calculates
the average energy across all antennas, and then decodes the
transmitted data by exploiting the average energy level. Then,
we calculate the average symbol error probability by means
of a maximum a-posteriori probability detector at the receiver.
Following that, we provide the optimal decision regions. Fur-
thermore, we develop an iterative algorithm that reaches the
optimal constellation diagram under a given average transmit
power constraint. Through numerical analysis, we explore the
system performance.

Index Terms—Massive MIMO, energy-detection-based trans-
mission, power allocation, map detector

I. I NTRODUCTION

The steadily growing wireless data traffic is a key reason be-
hind the research for new transmission technologies with high
performance gains and high energy efficiency. Among these
technologies, massive multiple-input multiple-output (MIMO)
systems, also called Large-Scale Antenna systems [1], made
a dramatic strike since they are energy efficient and reliable
[2]. The concept of Massive MIMO, initially proposed in [3],
is based on using significantly many transmit and/or receive
antennas, which leads to remarkable advances in spectral
efficiency, beamforming gain and radiated energy efficiency
[1], [4]. However, the large number of antennas poses a
major challenge for massive MIMO to become a reality,
since obtaining channel side information (CSI) gets more
ponderous [5]. Therefore, massive MIMO is applicable within
time-division-duplex (TDD) systems, since channel reciprocity
can be utilized [5]. However, when applied in multi-cell
systems such as cellular networks, massive MIMO within
TDD systems leads to another problem, which is called pilot
contamination. This is due to that the number of orthogonal
pilot tones is limited in each cell, and these orthogonal pilot
tones are reused across cells [6].

To overcome the problem of pilot contamination, a consid-
erable research effort has been expended, and several solutions
have been proposed. One of these solutions is to design
systems that do not require CSI at either the receiver or the
transmitter. In this context, a fundamental work is presented in
[7]–[10] where space-time coding over the Grassman manifold
associated with the channel matrix is performed. However,

these studies are based on the assumption of high signal-
to-noise-ratio availability. In a more recent study [11], the
authors considered a noncoherent single-input multiple-output
(SIMO) system with a large number of receive antennas,
and proposed a simple energy-detection-based encoding and
decoding scheme. They derived an upper bound for the average
symbol error probability of the proposed scheme, and they
showed through simulations that this upper bound will vanish
exponentially with the increasing number of receive antennas.
The authors also proposed a simple constellation design based
on the minimum distance criterion.

In another line of research, the general problem of max-
imizing the system performance by deriving optimal design
schemes is researched in numerous studies [12]–[14]. For
example in [12], the authors proposed a power allocation
strategy that minimizes the bit error rate (BER) in MIMO
spatial multiplexing systems. On the other hand, the authors
in [13] developed an optimal power allocation strategy for
orthogonal frequency-division multiplexing systems in order
to minimize the cumulative BER. In all of these studies, it is
assumed that both the transmitter and the receiver have perfect
knowledge of CSI.

In this paper, we consider an energy-detection-based com-
munications system in which a transmitter with one antenna
communicates with a receiver with many antennas. We inves-
tigate a modulation and demodulation technique based on the
calculation of energy across all receive antennas. Obtaining
the average symbol error probability after a maximum a-
posteriori probability (MAP) detector is employed, we provide
the optimal decision regions. We develop an iterative algorithm
that converges to the optimal constellation diagram under a
given average transmit power constraint.1

II. SYSTEM MODEL

As shown in Figure 1(a), we consider a communications
scenario in which one transmitter having a single antenna per-
forms data transmission to one receiver that hasN antennas.
During data transmission, the input-output relation is given by

y = hx+ z,

wherex is the data symbol sent by the transmitter andy is
the N × 1-dimensional output vector at the receiver. Above,

1In this paper, we identify the optimal constellation diagram that minimizes
the exact average symbol error probability rather than an upper bound to it
as considered in [11].
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(a) Channel scenario.

(b) Constellation diagram.

Fig. 1: System model.

z is theN × 1-dimensional additive noise vector. Each of its
elements,zn, is a zero-mean Gaussian random variable with
varianceσ2

z for n ∈ {1, · · · , N}. Meanwhile,h represents the
N×1-dimensional channel vector, each element of which,hn,
is also a Gaussian-distributed random variable but with mean
µ and varianceσ2

h. We also consider the following dynamics
for hn: |µ|2 = K

K+1 andσ2
h = 1

K+1 for a known real number
K where0 ≤ K. Note that this is the Rician fading channel
model [15]. We further assume that neither the transmitter
nor the receiver knows the instantaneous realizations of the
channel. However, they are aware of the system statistics such
asσ2

z andK.
Since an energy-detection-based encoding and decoding

technique is considered, the transmitter sends real positive
symbols from a constellation ofP = {√p1, · · · ,√pM} as
shown in Fig. 1(b) rather than transmitting complex symbols.
M is the constellation size andpm is the power level of the
mth symbol,xm, i.e., xm =

√
pm, for m ∈ {1, · · · ,M}. We

note that0 ≤ p1 < p2 < · · · < pM < ∞. Moreover, assuming
that each symbol is sent with equal probability1

M
, we impose

the following average power constraint:

1

M

M∑

m=1

pm ≤ p̄, (1)

where p̄ is the average symbol power. Then, we define the
signal-to-noise ratio as SNR= p̄

σ2
z
. Finally, we denote the ratio

of the power of themth transmitted symbol to the average
power byαm = pm

p̄
.

III. AVERAGE SYMBOL ERROR PROBABILITY

We assume that in order to decode the transmitted symbol,
the receiver utilizes the average received energy across all
antennas, i.e.,̃y = ‖y‖2

N
. We can express the average received

energy across all antennas whenxm is transmitted as

ỹ =
‖h‖2
N

pm
︸ ︷︷ ︸
pm+wm,1

+
‖z‖2
N︸ ︷︷ ︸

σ2
z+wm,2

+2
Re(h∗

z)

N

√
pm

︸ ︷︷ ︸
wm,3

Fig. 2: Decision regions and boundaries for decoding.

= pm + σ2
z︸ ︷︷ ︸

µm

+wm,1 + wm,2 + wm,3︸ ︷︷ ︸
wm

(2)

= µm + wm,

where wm represents the deviation of̃y from µm due to
empirical averages. Therefore, we considerwm as the noise
term in our system. Now, invoking the central limit theorem
and the law of large numbers,2 we show that whenN
is very large,wm becomes a zero-mean Gaussian random
variable with varianceσ2

m = 2K+1
N(K+1)2 p

2
m +

σ4
z

N
+

2σ2
z

N
pm, i.e.,

wm ∼ N (0, σ2
m). Hence, we havẽy ∼ N (µm, σ2

m). It is clear
that σ2

1 < σ2
2 < · · · < σ2

M . As seen in (2), when we have a
sufficiently large number of antennas at the receiver, we can
characterize the average received energy with the transmitted
symbol powerpm, the channel parametersK and σ2

z , and
the number of antennasN . Hence, assuming that the receiver
applies a MAP detector, we have

x̂ = xk wherek = arg max
m∈{1,··· ,M}

f{ỹ|xm}, (3)

wherex̂ is the detector output. Given thatxm is transmitted,
the conditional probability density function (pdf) of̃y is

f{ỹ|xm} =
1√
2πσ2

m

exp

(
− (ỹ − µm)2

2σ2
m

)
. (4)

Noting that ỹ is a positive real number, the receiver divides
the positive real line intoM non-overlapping decision regions:
D1, · · · , DM , whereDm corresponds to the decision region
of xm. Following (3) and (4), we can easily infer that the
decision regions are defined asDm = [λm−1, λm] for ∃
λm ∈ [µm, µm+1] as depicted in Fig. 2. By default, we
set λ0 = 0 and λM = ∞. Now, we can easily determine
the symbol error probability. Initially, let us focus on the
symbols that are at the ends of the constellation diagram.
Assume thatx1 is transmitted. The receiver will be able to
decode it correctly wheñy ≤ λ1. Otherwise, the receiver
output will be wrong. Having the conditional pdf, we can
express the symbol error probability whenx1 is transmitted

as Pe,1 =
∫∞
λ1

f{ỹ|x1}dỹ = Q

(
λ1−µ1√

σ2
1

)
, whereQ(x) =

1√
2π

∫∞
x

e−
t2

2 dt is the Q-function. On the other hand, when
xM is transmitted, the receiver will decode correctly only

2Let {x1, · · · , xn} be a sequence of independent and identically distributed
random variables with meanµx and varianceσ2

x. DefiningX =
∑n

i=1
xn

and employing central limit theorem along with the law of large numbers, we
havelimn→∞

X−nµx√
n

∼ N (0, σ2
x) [16].



whenλM−1 ≤ ỹ. Then, the symbol error probability is given
by

Pe,M = 1−
∫ ∞

λM−1

f{ỹ|xM}dỹ

= 1−Q

(
λM−1 − µM√

σ2
M

)
= Q

(
µM − λM−1√

σ2
M

)
.

As for the symbols that are located in betweenx1 and
xM , we can easily see that whenxm is transmitted for
m ∈ {2, · · · ,M − 1}, we have the symbol error probability

Pe,m = 1−
∫ λm

λm−1

f{ỹ|xm}dỹ

= Q

(
µm − λm−1√

σ2
m

)
+Q

(
λm − µm√

σ2
m

)
.

Since each symbol is transmitted with probability1
M

, we can
express the average symbol error probability as

Pe =
1

M

M∑

m=1

Pe,m

=
1

M

M−1∑

m=1


Q

(
λm − µm√

σ2
m

)
+Q


µm+1 − λm√

σ2
m+1




 . (5)

Given a power allocation vectorp = [p1, · · · , pM ], we can
immediately notice that the objective function in (5),Pe is
separable intoM − 1 sub-functions, i.e.,

Pe =
1

M

M−1∑

m=1

h(λm)

where

h(λm) = Q

(
λm − µm√

σ2
m

)
+Q


µm+1 − λm√

σ2
m+1


 . (6)

whereµm ≤ λm ≤ µm+1. We can show that the function
h(λm) in (6) is convex with respect toλm in its defined range
[µm, µm+1]. Hence, by taking the derivative ofh(λm) with
respect toλm and equating the derivative to zero, we can
easily obtain the optimalλm that minimizesh(λm). Hence, the
optimal boundary defined withλm between two consecutive
decision regions (i.e., the regions ofpm and pm+1) is given
by

λm = σ2
z +

pmσ2
m+1 − pm+1σ

2
m

σ2
m+1 − σ2

m

(7)

+

√
σ2
mσ2

m+1

{
(pm+1 − pm)2 +

(
σ2
m+1 − σ2

m

)
log

σ2
m+1

σ2
m

}

σ2
m+1 − σ2

m

.

IV. OPTIMAL POWER ALLOCATION

In this section, we provide the optimal constellation diagram
that minimizes the average symbol error probability (5) under
the average power constraint (1) for a given constellation size,

M . Now, we have the optimization problem as

p⋆ = argmin
p

Pe, s.t.
1

M

M∑

m=1

pm = p̄, (8)

where p⋆ is the vector that holds the power levels of the
carriers of the optimal constellation diagram. The above op-
timization problem does not hold a closed-form solution, and
it is in general an NP-hard problem. Therefore, we resort to
an iterative algorithm that converges to the optimal solution.
Furthermore, regarding the convexity ofPe as a function of
p, we provide the following result:

Proposition 1: The average symbol error probabilityPe

given in (5) is convex in the space spanned byp.

Proof: Omitted due to the space constraints. �

In the sequel, we develop a stepwise algorithm to handle
the minimization problem in (8). Initially, let us expressPe as
a function ofp = [p1, · · · , pM ] andλ = [λ1, · · · , λM−1] as

Pe(p,λ) =
1

M

M∑

m=1

g(pm), (9)

where

g(pm) = Q

(
µm − λm−1√

σ2
m

)
+Q

(
λm − µm√

σ2
m

)
(10)

for m ∈ {2, · · · ,M − 1},

g(p1) = Q

(
λ1 − µ1√

σ2
1

)
andg(pM ) = Q

(
µM − λM−1√

σ2
M

)
.

Recall thatµm is defined in (2). Now, let us assume that
we are initially given a power allocation vectorp(0). Then,
we can easily obtain the optimal decision region boundaries
in the first step by using (7), which we denote byλ(0) =

[λ
(0)
1 , · · · , λ(0)

M−1]. Secondly, let us consider that we are given
a vector of decision region boundariesλ(0). For any givenλ,
the optimal solution for (9) can be obtained by the Lagrangian
method. However, obtaining a closed-form solution forpm
is a very difficult task, and not available without numerical
analysis. Hence, we follow a different simplified approach,
and treat each sub-functiong(pm) separately. For givenλ1,
g(p1) will be minimized whenp1 is set to 0, i.e.,p1 = 0. As
for the functiong(pm) defined in (10), we can see thatg(pm)
is convex with respect topm in the defined region[λm−1, λm].
Then,g(pm) will be minimized when

pm =
λm + λm−1

2
− σ2

z . (11)

Subsequently, we can obtainpM by

pM = Mp̄−
M−1∑

m=1

pm. (12)

Then, usingp1 = 0, pm in (11) and pM in (12), we
form p(1) in the second step. In the case ofpM taking
any value betweenpm−1 and pm, i.e., pm−1 < pM < pm
for m ∈ {2, · · · ,M − 1}, we reorganizep(1) as p(1) =
[p1, · · · , pm−1, pM , pm, · · · , pM−1]. Then, we continue the al-
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Algorithm 1
Brute−Force

Fig. 3: The optimum power allocation diagrams in a given
constellation, which are obtained by employing Algorithm 1
and brute-force when SNR= 0 dB, N = 500 andM = 6.

gorithm until we reach a solution that satisfies the termination
conditions. In order to formulate, we present our algorithmas

p(0) → λ
(0) → p(1) → λ

(1) → · · · → p(⋆).

In the following, we wrap up the above solution into an
iterative algorithm:

Algorithm 1: Optimal power allocation

1: Set smallǫ as a stopping criterion where0 < ǫ;
2: Initialize p = [p1, · · · , pM ] and setp1 = 0 such that the

average power constraint in (1) is satisfied, andp1 < p2 <

· · · < pM ;
3: while True do
4: Givenp, computeλ = [λ0, · · · , λM ] using (7);
5: Given λ, computep⋆ = [p⋆1, · · · , p⋆M ] by using (11)

and (12);
6: if p⋆m−1 ≤ p⋆M ≤ p⋆m for anym then
7: Setp⋆ = [p⋆1, · · · , p⋆m−1, p

⋆
M , p⋆m, · · · , p⋆M−1]

8: end if
9: if ‖p− p⋆‖2 < ǫ then

10: break;
11: else
12: Setp = p⋆;
13: end if
14: end while

The above algorithm reaches the optimal solution after 6
iterations when the constellation size isM = 4 and the number
of receive antennas isN = 500, and it requires about 15
iterations to reach the solution whenM = 6 with the same
number of receive antennas.

V. NUMERICAL RESULTS

In this section, we present the numerical results. Throughout
the paper, we consider the following settings and parameters
unless specified otherwise. In each figure, except Fig. 3, we
have plots as a pair in one of which we display the results when
K = 50, and in the other the results are obtained regarding a
channel whenK = 0. We note that the channel whenK =
0 is considered to be the Rayleigh channel in which there
is no dominant propagation along the line-of-sight, while the
channel whenK = 50 has a strong line-of-sight propagation.
Additionally, we set the stopping criterionǫ = 10−6.
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(b) K=0

Fig. 4: The average symbol error probability,Pe, v.s. the
number of receive antennas,N , for M = 10 and different
SNR andK values.

SettingK = 50 in Fig. 3, we display the optimal power
allocation ratios among the carriers of an optimal constellation
diagram using Algorithm 1 when SNR= 0 dB. We further
compare the results with those obtained using the optimal
Brute-force search. We can easily see the good match between
the results. Furthermore, we plot the average symbol error
probability as a function of the number of receive antennas,
N , in Fig. 4 when SNR= 0, 3, and 6 dB. Regardless of
the line-of-sight character, there is dramatic decrease inthe
average probability of error with increasingN . As expected,
the decrease is higher whenK = 50 than it is whenK = 0.
Similarly, we plot the average symbol error probability as a
function of the number of constellation symbols,M , in Fig. 5
for SNR= −6, −3, and0 dB in order to see the effects ofM
when SNR is small. We can easily infer that the number of
receive antennas has a great impact in obtaining small values
of Pe even when SNR is small especially at lower constellation
sizes. Finally, we plot the average symbol error probability,Pe,
as a function of SNR in Fig. 6 for different number of symbols
in a given constellation,M . We see that with increasingM , Pe

increases. We further note that due to a dominant line-of-sight
effect we have better results in Fig. 6(a).

VI. CONCLUSION

In this paper, we have investigated the optimal power allo-
cation design for noncoherent energy-detection-based systems
in which receivers are furnished with notably many antennas.
Under an average transmit power constraint, we have attained
the average symbol error probability of a MAP detector,
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Fig. 5: The average symbol error probability,Pe, v.s. the number of symbols in a given constellation,M , for N = 500 and
different SNR andK values.
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Fig. 6: The average symbol error probability,Pe, v.s. the signal-to-noise-ratio (SNR) forN = 500 and differentM andK

values.

and we have identified the optimal decision regions for this
setting. Showing that the average symbol error probability
is convex in the space spanned by the symbols of a given
constellation diagram, we have provided an iterative algorithm
that converges to the optimal power allocation policy among
the symbols of this constellation. Through numerical results,
we have analyzed the effects of the channel parameters such
as the line-of-sight character, the number of receive antennas,
and the constellation size on the performance levels.
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