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Abstract—Recently, communications systems that are both these studies are based on the assumption of high signal-
energy efficient and reliable are under investigation. In ths to-noise-ratio availability. In a more recent study |[11}et
paper, we concentrate on an energy-detection-based transssion 5 \thors considered a noncoherent single-input multiplpuat

scheme where a communication scenario between a transmitte (SIMO) system with a large number of receive antennas
with one antenna and a receiver with significantly many antenas Y wi 9 u v !

is considered. We assume that the receiver initially calcates and proposed a simple energy-detection-based encoding and
the average energy across all antennas, and then decodes thalecoding scheme. They derived an upper bound for the average

transmitted data by exploiting the average energy level. Tan, symbol error probability of the proposed scheme, and they
we calculate the average symbol error probability by means ghawed through simulations that this upper bound will Vanis

of a maximum a-posteriori probability detector at the receiwer. tially with the i . b f .
Following that, we provide the optimal decision regions. Fu exponentially wi e Increasing number of receive anasnn

thermore, we develop an iterative algorithm that reaches te The aUth9r§ also PVOPOSGd a}sir_nple constellation desigrubas
optimal constellation diagram under a given average transit  on the minimum distance criterion.

power constraint. Through numerical analysis, we explore te In another line of research, the general problem of max-
SyTtedm pTerformanMce. e MIMO detection-based imizing the system performance by deriving optimal design
misgioeﬁ, p%rvT:r_a”gsast'i\(';’ map ag;i;gi” etection-based trans- ¢ -pemes is researched in numerous studies [12]-[14]. For
example in [1R2], the authors proposed a power allocation
strategy that minimizes the bit error rate (BER) in MIMO
spatial multiplexing systems. On the other hand, the asgthor
The steadily growing wireless data traffic is a key reason bie- [13] developed an optimal power allocation strategy for
hind the research for new transmission technologies wigh hiorthogonal frequency-division multiplexing systems irder
performance gains and high energy efficiency. Among thegeminimize the cumulative BER. In all of these studies, it is
technologies, massive multiple-input multiple-outputlfMD)  assumed that both the transmitter and the receiver haveqgperf
systems, also called Large-Scale Antenna systéms [1], m&sewledge of CSI.
a dramatic strike since they are energy efficient and reliabl In this paper, we consider an energy-detection-based com-
[2]. The concept of Massive MIMO, initially proposed inl [3],munications system in which a transmitter with one antenna
is based on using significantly many transmit and/or receiecemmunicates with a receiver with many antennas. We inves-
antennas, which leads to remarkable advances in spectigdte a modulation and demodulation technique based on the
efficiency, beamforming gain and radiated energy efficiencalculation of energy across all receive antennas. Oloigini
[11, [4]. However, the large number of antennas posestlae average symbol error probability after a maximum a-
major challenge for massive MIMO to become a realityosteriori probability (MAP) detector is employed, we pid®/
since obtaining channel side information (CSI) gets motke optimal decision regions. We develop an iterative atlgor
ponderous([5]. Therefore, massive MIMO is applicable withithat converges to the optimal constellation diagram under a
time-division-duplex (TDD) systems, since channel remiity —given average transmit power constrdlint.
can be utilized [[6]. However, when applied in multi-cell
systems such as cellular networks, massive MIMO within
TDD systems leads to another problem, which is called pilotAS shown in Figurg 1(®), we consider a communications

contamination. This is due to that the number of orthogong#€nario in which one transmitter having a single antenna pe
pilot tones is limited in each cell, and these orthogonastpil forms data transmission to one receiver that hasntennas.

tones are reused across cells [6]. During data transmission, the input-output relation isegiby

To overcome the problem of pilot contamination, a consid-
erable research effort has been expended, and severabeslut
have been proposed. One of these solutions is to desigherez is the data symbol sent by the transmitter gnas
systems that do not require CSI at either the receiver or the N x 1-dimensional output vector at the receiver. Above,
transmitter. In this context, a fundamental work is preséim =~ | - . - N

In this paper, we identify the optimal constellation diagréhat minimizes

m_m Where_ space-time COdlng O_Ve't the Grassman maqu]e exact average symbol error probability rather than greupound to it
associated with the channel matrix is performed. Howeves considered i [11].

I. INTRODUCTION

II. SYSTEM MODEL

y = hx + z,
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(a) Channel scenario.
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(b) Constellation diagram.
where w,,, represents the deviation aof from ., due to
Fig. 1: System model. empirical averages. Therefore, we considey as the noise
term in our system. Now, invoking the central limit theorem
and the law of large numbefiswe show that whenN
z is the N x 1-dimensional additive noise vector. Each of itss very large,w,, becomes a zero-mean4 Gauszsian random
elementsin, is a zero-mean Gaussian random variable Witfhriaple with variancer2, = N%Ilgiiﬁp?n + % 2;\1; D,y 164,
varianceo? for n € {1,---, N}. Meanwhile,h represents the

. . wm ~ N(0,02). Hence, we havg ~ N (i, 02,). Itis clear
N x 1-dimensional channel vector, each element of whigh, thgt o? <( o3 ’Z) i< 02 As sgen in[((/lésn wﬁe)n we have a
M+ )

is also a Gaussian-distributed random variable but Withrmeéufficiently large number of antennas at the receiver, we can
. 2 . . . 1
p and variance;,. We also consider the following dynamicsyaracterize the average received energy with the traresit

. 2 _ _K 2 __ 1
for hin: |ul* = gy andoy, = g5 for a known real number gy mpoi powerp,,, the channel parameteds and o2, and

K where0 < K. Note that this is the Rician fading channe{pe n mper of antennas. Hence, assuming that the receiver
model [15]. We further assume that neither tr_le t_ransmlttgbp”es a MAP detector, we have
nor the receiver knows the instantaneous realizations @f th
channel. However, they are aware of the system statistids su T = x, wherek = arg  max  f{ylzm}, 3)
2 me{l,--- ,M}

aso? and K. . . . _

Since an energy-detection-based encoding and decodiviggre is the detector output. Given that, is transmitted,
technique is considered, the transmitter sends real pesitihe conditional probability density function (pdf) gfis

symbols from a constellation 0P = {,/p1,---,/Prm} as 1 ~ 2
> NS LV S (¥ — pm)
shown in Fig[I(8) rather than transmitting complex symbols HHylem} = N oxp =55 |- (4)
M is the constellation size ang, is the power level of the Tm m
m' symbol,z,,, i.e., 2y = /Pm, form € {1,--- ,M}. We Noting thaty is a positive real number, the receiver divides
note thatd) < p; < p2 < --- < pyr < co. Moreover, assuming the positive real line intd/ non-overlapping decision regions:
that each symbol is sent with equal probabilﬁ;jy, we impose Ds,---, Dy, whereD,, corresponds to the decision region
the following average power constraint: of z,,. Following (3) and [(#), we can easily infer that the
M decision regions are defined d3,, = [A\n—1,A\;] for 3
1 me < B (1) Am € [tm,pm+1] as depicted in Fig[d2. By default, we
M~ setA\p = 0 and A\y; = oco. Now, we can easily determine

where j is the average symbol power. Then, we define thtrée symbol error probability. Initially, let us focus on the

signal-to-noise ratio as SNR Z . Finally, we denote the ratio symbols that are at the ends of the constellation diagram.

o o’ Assume thatr; is transmitted. The receiver will be able to
of the power of them!" transmitted symbol to the averagejacode it correctly wherj < \;. Otherwise, the receiver

power byay, = %m‘ output will be wrong. Having the conditional pdf, we can
I1l. AVERAGE SYMBOL ERROR PROBABILITY express the symbol error probability when is transmitted
We assume that in order to decode the transmitted symb@s, Pen = [, f{ylz1}dy = Q (L\/Uﬁ;) where Q(r) =
the receiver utilizes the average received energy acrdss al . .2 , !
antennas, i.ey = W We can express the average receivedar~ J, e”7dt is the Q-function. On the other hand, when

energy across all antennas whey is transmitted as ) IS transmitted, the receiver will decode correctly only
" Hh”2 ||ZH2 Re(h*z) 2Let{z1, e ,:cn}_ be a sequence of i‘ndependent _ar_]d identically distributed
Yy = Pm + +2 vV Pm random variables with mean, and variancer2. Defining X = 3" | @y
N R N , R N , and employing central limit theorem along with the law ofyamumbers, we

. X
PmtWm,1 024 Wm,2 Wim,3 havelimp oo \/ﬁl»"z ~ N(0,02) [16].




whenAy,—1 < y. Then, the symbol error probability is givenM . Now, we have the optimization problem as
by

- . . o
_ _ p’ = argmin P,, st — DPm = D, (8)
Pen =1 —/ f{ylzatdy P M mz:; "
AM—1
A\ _ \ where p* is the vector that holds the power levels of the
-1-Q <M172”M> Q (“M 2M 1) carriers of the optimal constellation diagram. The above op
M M timization problem does not hold a closed-form solutiord an

As for the symbols that are located in between and It is in general an NP-hard problem. Therefore, we resort to
zy, We can easily see that when, is transmitted for an iterative algorithm that converges to the optimal sohuti

m e {2,---, M — 1}, we have the symbol error probability Furthermore, regarding the convexity 6f as a function of
\ p, we provide the following result:
Pop=1 _/ Y|z, ydy Proposition 1: The average symbol error probability,
Am—1 given in [B) is convex in the space spannedpy
M — Am—1 Am = fm Proof: Omitted due to the space constraints. O
== +e| =" _ _
Vo2 VO In the sequel, we develop a stepwise algorithm to handle

. . . . . the minimizati blem ir{8). Initially, let
Since each symbol is transmitted with probabl%y, we can € minimization problem irl{8). Initially, let us express as

express the average symbol error probability as a function ofp = [py, -+, par} ANAA = [Ar, -+, Arr-a] as
M
o 1 P, A pm (9)
Po=: E_: Pom M Z

M1 where

,um+1_)\m
) (\/G_>+Q s )| ) ( >+Q<7Mm) o)
m Um+1 \/a

Given a power allocation vectqs = [py,--- ,par], We can for 1, {2, ~1}
immediately notice that the objective function i (5, is
separable intd/ — 1 sub fur;;:u?ns, ie., g(p1) = ( ) andg(par) = Q (uM 0)1;\34_1> .
M Z h(A Recall thatpu,, is deflned in [[2). Now, let us assume that
we are initially given a power allocation vectgi®?). Then,
where we can easily obtain the optimal decision region boundaries
- ) in the first step by using{7), which we denote b)(/o
h(Am) = Q <m75m> Q[ At om 6) [\, A 1. secondly, let us consider that we are given
\/a Tt a vector of decision region boundaria&”. For any given\,

the optimal solution for[{]9) can be obtained by the Lagramgia

where < < . We can show that the function e .
fom S Am S fln method. However, obtaining a closed-form solution fo

i(Am) in @) is convex with respect t,, in its defined range is a very difficult task, and not available without numerical

[ftn, ptm+-1]. Hence, by t?k'”g the dgnvgtlve G( ) with analysis. Hence, we follow a different simplified approach,
respect to\,, and equating the derivative to zero, we can

easily obtain the optimal,,, that minimizesi(\,,,). Hence, the and treat each sub-functioy(p,,) separately. For giver,

optimal boundary defined with,,, between two consecutiveg(pl) will be_ minimized v_vhenpl is sett0 0, I.e.p1 = 0. As
decision regions (i.e., the regions pf, and p,,,+1) IS given for the functiong(pr,) defined in[(1D), we can see thap,)
T m is convex with respect tp,,, in the defined regioh\,,—1, A, ].

by Then, g(p,,) will be minimized when
A, = o2+ pm03n+l _pm-ﬁ-lUg@ @) A+ A1
m = 0, U$n+1_072n pm:%_ag- (11)
\/Cf?nff?nH {(pm+1 )+ (02,1 — 02,) log m+1} Subsequently, we can obtain,; by
+ 5 5 . M—1
Om+1 — Tm pym = Mp — Z Pm- (12)
IV. OPTIMAL POWERALLOCATION m=1

Then, usingp; = 0, p, in @) and py, in (@2), we

form p(!) in the second step. In the case pf; taking

In this section, we provide the optimal constellation dé&agr any value betweemp,,—;1 and p,,, i.€., pm—1 < pm < Pm

that minimizes the average symbol error probabilily (5)emdfor m € {2,---,M — 1}, we reorganizep(*) as p") =
the average power constraift (1) for a given constellatio®, s [p1, -+, pm_1, P, Pms - -+ »Pa—1]- Then, we continue the al-
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Fig. 3: The optimum power allocation diagrams in a given (a) K=50

constellation, which are obtained by employing Algorithm 1
and brute-force when SNR 0 dB, N = 500 and M = 6.
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gorithm until we reach a solution that satisfies the terniomat
conditions. In order to formulate, we present our algoritsn

p(o) — A(O) — p(l) — A(l) ey p(*) 107%[---SNR=0dB

Average Symbol Error Probability,

--'SNR=3dB
In the following, we wrap up the above solution into an w0 Ll e e
iterative algorithm: Number of Receive Antennas, N
Algorithm 1: Optimal power allocation (b) K=0
1: Set smalle as a stopping criterion whele< ¢; Fig. 4: The average symbol error probabilitf,, v.s. the
2: Initialize p = [p1,--- ,pn] @and setp; = 0 such that the number of receive antennad], for M = 10 and different
average power constraint il (1) is satisfied, anc p» < SNR andk values.
- < pu;
3: while True do
4. Givenp, computeX = [Xo, -+, Ax] using [7); Setting X = 50 in Fig.[3, we display the optimal power
5. Given A, computep* = [pf, -+ ,p},] by using [11) gjiocation ratios among the carriers of an optimal coretiei
anO! (12); diagram using Algorithm 1 when SNR 0 dB. We further
6 if pj, 1 <py < p;, foranym then compare the results with those obtained using the optimal
7 S_etp* =l P 1 A P 5 P Brute-force search. We can easily see the good match between
8 _end if the results. Furthermore, we plot the average symbol error
o if [p—p*[* <ethen probability as a function of the number of receive antennas,
10: break; N, in Fig.[4 when SNR= 0, 3, and 6 dB. Regardless of
11 else the line-of-sight character, there is dramatic decreasthén
12: Setp = p*; average probability of error with increasing. As expected,
13 endif the decrease is higher whéti = 50 than it is whenk = 0.
14: end while Similarly, we plot the average symbol error probability as a

The above algorithm reaches the optimal solution afterf@nction of the number of constellation symbald,, in Fig.[3
iterations when the constellation sizelis = 4 and the number for SNR= —6, —3, and0 dB in order to see the effects af
of receive antennas i&% = 500, and it requires about 15when SNR is small. We can easily infer that the number of
iterations to reach the solution whevi = 6 with the same receive antennas has a great impact in obtaining small value

number of receive antennas. of P, even when SNR is small especially at lower constellation
sizes. Finally, we plot the average symbol error probahi,
V. NUMERICAL RESULTS as a function of SNR in FidL] 6 for different number of symbols

n a given constellation)/. We see that with increasiny, P.

In this section, we present the numerical results. Throughc; ; ; .
the paper, we consider the following settings and parametér}creases. We further note that due to a dominant linegiftsi

unless specified otherwise. In each figure, except[Hig. 3, \%(ect we have better results in Fg. §(a).
have plots as a pair in one of which we display the results when
K =50, and in the other the results are obtained regarding a
channel whenkK = 0. We note that the channel wheid = In this paper, we have investigated the optimal power allo-
0 is considered to be the Rayleigh channel in which theoation design for noncoherent energy-detection-basedrags

is no dominant propagation along the line-of-sight, while t in which receivers are furnished with notably many antennas
channel whenk = 50 has a strong line-of-sight propagationUnder an average transmit power constraint, we have attaine
Additionally, we set the stopping criterian= 10-5. the average symbol error probability of a MAP detector,

VI. CONCLUSION
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and we have identified the optimal decision regions for thi$7] B. M. Hochwald and T. L. Marzetta, “Unitary space-time dutation for
setting. Showing that the average symbol error probability
is convex in the space spanned by the symbols of a givqgl

constellation diagram, we have provided an iterative atlgor

that converges to the optimal power allocation policy amon%]
the symbols of this constellation. Through numerical ressul
we have analyzed the effects of the channel parameters such channel”IEEE J. Sel. Areas Communol. 25, no. 7, pp. 1446-1456,

as the line-of-sight character, the number of receive aragn
and the constellation size on the performance levels.
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