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Abstract—We consider a special family of spatially coupled
low-density parity-check (SC-LDPC) codes, that is, time-invariant
low-density parity-check convolutional (LDPCC) codes, which are
known in the literature for a long time. Codes of this kind are
usually designed by starting from quasi-cyclic (QC) block codes,
and applying suitable unwrapping procedures. We show that,
by directly designing the LDPCC code syndrome former matrix
without the constraints of the underlying QC block code, it is
possible to achieve smaller constraint lengths with respect to the
best solutions available in the literature. We also find theoretical
lower bounds on the syndrome former constraint length for codes
with a specified minimum length of the local cycles in their
Tanner graphs. For this purpose, we exploit a new approach
based on a numerical representation of the syndrome former
matrix, which generalizes over a technique we already used to
study a special subclass of the codes here considered.

Index Terms—Constraint length, convolutional codes, LDPC
codes, local cycles length, spatially coupled codes, time-invariant
codes.

I. I NTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC)
codes represent a cutting-edge innovation in the context of
modern channel coding in general and of low-density parity-
check (LDPC) coding in particular. In fact, classical LDPC
block codes [1] are known to approach the channel capacity
under belief propagation decoding [2]. SC-LDPC codes rep-
resent a further step in this direction, since they are able to
further reduce the gap to capacity [3] thanks to the threshold
saturation phenomenon.

A special class of SC-LDPC codes is that of low-density
parity-check convolutional (LDPCC) codes, which have been
shown to outperform their block counterparts [4]. These codes
are usually designed by starting from quasi-cyclic low-density
parity-check (QC-LDPC) codes [5] and using a technique
known asunwrapping to produce a semi-infinite description of
the convolutional code [4], [6], [7]. This approach has allowed
to design LDPCC codes with very good performance [8], [9].
However, despite some attempts to achieve small constraint
lengths have been done [10], starting from QC-LDPC codes
and then unwrapping them usually results in LDPCC codes
with large constraint lengths.

In fact, shift register-based circuits like that in [6, Fig.
4] can be used to perform encoding of an LDPCC code,
while decoding can be performed through iterative message
passing algorithms working on a window sliding over the

received sequence [6]. Complexity of these encoding and
decoding techniques increases linearly with the syndrome
former constraint length of the code. Therefore, designing
codes with small constraint length is a valuable target from
the complexity standpoint.

In this paper we study the design of time-invariant LDPCC
codes without starting from QC-LDPC block codes. This is
done by directly designing the syndrome former matrix which
then forms the semi-infinite parity-check matrix of the LDPCC
code. We follow an approach similar to that proposed in [11],
where we introduced a special class of LDPCC codes named
progressive differences convolutional low-density parity-check
(PDC-LDPC) codes. The codes considered in [11] have rate
a−1
a

, with a being an integer> 1, and local cycles with length
≥ 6 in their associated Tanner graph. Another solution to
design codes with the same parameters has been proposed in
[12]. Here we generalize the approach proposed in [11] to the
design of codes with ratea−c

a
, with a andc being two positive

integers such thata > c, and minimum lengthg of the local
cycles in their Tanner graphs. The numerical representation we
adopt for the syndrome former matrix significantly facilitates
searching for short cycles in the code Tanner graph. Similar
efficient searches have recently been performed for QC-LDPC
block codes [13]. This approach permits us to perform theo-
retical and exhaustive analyses forg = 6 andg = 8, as well
as Montecarlo assessments for larger values ofg.

The organization of the paper is as follows. In Section II
we remind the definition of time-invariant SC-LDPC codes
and their relevant parameters. In Section III we introduce a
numerical description of the syndrome former matrix which
facilitates the search of local cycles. In Section IV we provide
theoretical bounds on the minimum constraint length which
is needed to avoid local cycles up to a given length. In
Section V we provide a comparative assessment of the bounds
with exhaustive searches as well as some results based on
Montecarlo simulations. Section VI concludes the paper.

II. T IME-INVARIANT SPATIALLY COUPLED LOW-DENSITY

PARITY-CHECK CODES

The codes we consider are defined by semi-infinite parity-
check matrices in the form (1), where each blockHi, i =
0, 1, 2, . . . ,mh, is a binary matrix with sizec × a. The syn-
drome former matrixHs =

[

H
T
0 |H

T
1 |H

T
2 | . . . |H

T
mh

]

, whereT
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denotes transposition, hasa rows andLh columns. As evident
in (1), H is obtained byHT

s and its replicas, shifted one each
other byc positions. The time invariant LDPCC code defined
by (1) has asymptotic code rateR = a−c

a
, syndrome former

memory ordermh =
⌈

Lh

c

⌉

−1 and syndrome former constraint
lengthvs = (mh + 1)a =

⌈

Lh

c

⌉

a.

H =
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. (1)

An alternative representation ofHs which is often used in
the literature exploits polynomials∈ F2[x]. In this case, the
code is described by ac× a matrix with polynomial entries,
that is

H(x) =











h0,0(x) h0,1(x) . . . h0,a−1(x)
h1,0(x) h1,1(x) . . . h1,a−1(x)
...

...
. . .

...
hc−1,0(x) hc−1,1(x) . . . hc−1,a−1(x)











,

(2)
where eachhi,j(x), i = 0, 1, 2, . . . , c−1, j = 0, 1, 2, . . . , a−1,
is a polynomial∈ F2[x] or a null term. The code representation
based onHs can be converted into that based onH(x) through
the following simple procedure. First of all, starting fromHs,
the multisetI containing the sets of indexes (beginning from
zero) of the symbols1 in each row ofHs must be computed.
Then, thej-th column ofH(x) is obtained from the setIj ∈ I,
j = 0, 1, 2, . . . , a− 1, as follows:

1) Initialize hi,j(x) = 0, i = 0, 1, 2, . . . , c− 1.
2) ∀l ∈ Ij , computeld = ⌊l/c⌋, lm = l mod c and add

xld to hlm,j(x).
This procedure is an inverse of the unwrapping techniques

proposed in [4], [6]. In fact, most previous works are devoted
to the design ofH(x) and thenHs is obtained through
unwrapping. However, designingH(x) requires to first choose
the form of the polynomialshi,j(x) (null, monomials, bi-
nomials, etc.) and then optimize their exponents. Such an
approach has also been followed in [14], where some low rate
LDPCC codes with small constraint length have been found.
The matrix H(x) is also used in [15] to find unavoidable
cycles and design LDPCC codes free of short local loops.
In this paper we aim at finding the codes with minimum
constraint length over all possible configurations. For this
purpose, working withHs is advantageous in that it allows to
perform a single step optimization over all possible choices.

Therefore, we focus onHs and we need the transformation
from Hs to H(x) described above to perform comparisons
with the design examples reported in previous works. As we
will see in Section V, our approach allows to find codes with
shorter constraint length than those in [15].

III. L OCAL CYCLES

Local cycles are closed loops starting from a node of the
Tanner graph associated to an LDPC code and returning to the
same node by passing only once through any edge. Since the
Tanner graph is derived from the code parity-check matrix,
local cycles can be defined over such a matrix as well. This
way, we are able to directly relate the constraint length of an
SC-LDPC code to its local cycles length.

Following an approach similar to that introduced in [11],
we describe the matrixHs through a set of integer values
representing the differences between each pair of ones in each
row of Hs. These differences are denoted asδi,j , wherei is
the row ofHs (i = 0, 1, 2, . . . , a− 1) andj is the column of
Hs corresponding to the first of the two symbols1 forming the
difference(j = 0, 1, 2, . . . , Lh − 2). The index of the second
symbol 1 forming the difference is easily found asj + δi,j .
For each difference we also compute the values of twolevels
which are relative to the value of the parameterc. Thestarting
level is defined asls = j mod c, while the ending level is
defined asle = (j + δi,j) mod c. Both levels obviously take
values in{0, 1, 2 . . . , c− 1}.

Based on this representation of the syndrome former ma-
trix, it is easy to identify closed loops in the Tanner graph
associated toH. In fact, a local cycle occurs every time a
sum of the typeδi1,j1 ± δi2,j2 ± . . . ± δil,jl equals zero,
and the length of the cycle is2l, with l being an integer
> 1. An example is reported in Fig. 1, where a cycle with
length 6 corresponds to the relationδ2,3 + δ3,2 − δ1,0 = 0.
Not all the possible sums or differences ofδi,j are valid to
generate local cycles. In fact,δx,y can be added toδi,j iff the
starting level of the former coincides with the ending level
of the latter. Instead,δx,y can be subtracted toδi,j iff their
ending levels coincide. In addition, the first and the last levels
of the sumδi1,j1 ± δi2,j2 ± . . . ± δil,jl must coincide. Let
us denote asδi,j

(ls)
(le)

the differenceδi,j with its associated
starting and ending levels. For the example reported in Fig.
1, we haveδ2,3

(0)
(2) + δ3,2

(2)
(1) − δ1,0

(0)
(1) = 0, which therefore

complies with the above rules. Owing to the special structure
of H, some further rules hold concerning the existence of
closed loops. In fact, it must be taken into account that the
shift of the replicas ofHT

s within H is neither cyclic nor
quasi-cyclic. Therefore, a closed loop due to the differences
in a single row ofHs can or cannot exist depending on the
positions of the symbols1 in that row. For example, a cycle
with length6 due to a single row ofHs with weightw ≥ 3
exists iff at least3 symbols1 are at the same level. Instead,
a circulant matrix with row weight≥ 3 always yields length
6 cycles. Moreover, in a sum of differences, the sameδi,j
cannot appear with both signs in two adjacent terms. Based
on these considerations, for a given matrixHs a very efficient
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Fig. 1. Example ofH with a local cycle of length6.

numerical procedure can be exploited to find all the local
cycles with a given maximum length. Such a procedure has
been implemented in software, and has allowed to perform
exhaustive (when possible) or Montecarlo (otherwise) analyses
of the syndrome former matrices with minimum constraint
length and free of local cycles up to a given size. Moreover,
by studying the cases in which differences may or may not be
summed or subtracted, it is possible to obtain lower bounds on
the minimum constraint length which is needed to avoid local
cycles up to a given length, as described in the next section.

IV. M INIMUM CONSTRAINT LENGTH

Let us consider some practical values of the minimum local
cycles lengthg and aim at estimating the minimum syndrome
former constraint length which is needed to ensure that shorter
cycles do not exist. In the following we provide theoretical
lower bounds of this type forg = 6 andg = 8.

A. Absence of cycles with length < g = 6

In order to meet the conditiong = 6, we must ensure that
local cycles with length4 do not exist. Such short cycles occur
when, for somei, j, i′, j′, j 6= j′,

δi,j = δi′,j′ and ls = l′s, (3)

i.e., in order to avoid length4 cycles there must not be any
two equal differences starting from the same level. We observe
that the two differences may even be in the same row ofHs.

Let us first consider a regularHs with row weightw = 2.
In this case, each row ofHs only contains one difference
δi,j and each difference can be used up toc times without
incurring length4 cycles (by using all the possiblec levels as
starting levels). For a givenLh, the differences starting from

the first one of thec available levels can take up toLh − 1
values. Similarly, the differences starting from the second level
can take up toLh − 2 values, and so on, until up toLh − c
values for the differences starting from the last level. Since
the differences corresponding to any two of thea rows ofHs

must be different in value and/or starting level, we have

a ≤

c−1
∑

i=0

(Lh − i− 1) = cLh −

(

c+ 1

2

)

, (4)

that is

Lh ≥

⌈

a+
(

c+1
2

)

c

⌉

.

Considering that it must beLh > c, we have

Lh ≥ max

{

c+ 1,

⌈

a+
(

c+1
2

)

c

⌉}

. (5)

We can extend (4) to the case of a regularHs with row
weightw > 2 by considering that, in such a case, each row of
Hs corresponds to

(

w

2

)

differences that must meet condition
(3). Hence (4) becomes

a

(

w

2

)

≤ cLh −

(

c+ 1

2

)

,

while (5) becomes

Lh ≥ max

{

c+ 1,

⌈

a
(

w

2

)

+
(

c+1
2

)

c

⌉}

. (6)

When we have an irregularHs with row weights wi,
i = 0, 1, 2, . . . , a − 1, each row ofHs corresponds to

(

wi

2

)

differences. Therefore (6) becomes

Lh ≥ max

{

c+ 1,

⌈

∑a−1
i=0

(

wi

2

)

+
(

c+1
2

)

c

⌉}

. (7)

B. Absence of cycles with length < g = 8

The minimum length of local cycles isg = 8 when
condition (3) is met and length6 cycles of the type shown
in Fig. 1 and described in Section III are avoided.

Let us first consider the case withc = 1 andHs with row
weight w = 2. Since summing two odd integers we always
get an even number, the following proposition easily follows.

Proposition IV.1 For c = 1 and w = 2, if all the δi,j are
different and odd, then local cycles with length< g = 8 do
not exist.

From Proposition IV.1 it follows that, if we wish to min-
imize Lh, we can choose the values ofδi,j equal to
{1, 3, 5, . . . , 2a− 1} and the code will be free of cycles with
length< g = 8.

Another possible choice yielding absence of cycles with
length< g = 8 follows from the fact that, for a given odd
integer x, summing two values∈

[

x+1
2 ;x

]

always gives a
result> x. Therefore, the following proposition holds.



Proposition IV.2 For c = 1 andw = 2, if the δi,j values are
equal to{a, a+ 1, a+ 2, . . . , 2a− 1}, then local cycles with
length< g = 8 do not exist.

Based on these propositions, we can prove the following
lemma.

Lemma IV.1 For c = 1 andw = 2, local cycles with length
< g = 8 can be avoided iff

Lh ≥ 2a. (8)

Proof: From Propositions IV.1 and IV.2 we have that the
maximum value of a difference that is needed to avoid cycles
with length < g = 8 is 2a − 1. Therefore we haveLh ≥
1+2a−1 = 2a. In order to prove the converse, let us consider
that, for a given even integery, summing two values∈

[

1; y2
]

always gives a result∈
[

y

2 + 1; y
]

. In general, from the set
[1; y] we can select at mosty2 values which may be summed
pairwise resulting in other values in the same set. If we choose
the values of the differences from the set[1; 2a− 2], we only
havea−1 values which may be summed pairwise resulting in
other values in the same set. Therefore, we can only allocate
a − 1 differences without introducing length6 cycles, which
is not sufficient to cover all thea rows ofHs.

Equation (8) can be extended to the casec > 1 by
considering that, in such a case, each difference value can
be repeated up toc times (by exploiting all thec available
levels as starting levels). Therefore, forw = 2 and c > 1 we
have

Lh ≥ max

{

c+ 1,
2a

c

}

. (9)

Let us consider larger values ofw, i.e., w ≥ 3. For c = 1,
each row ofHs has one or more cycles with length6, since
at least3 symbols1 are at the same level (as described in
Section III). Instead, forw ≥ 3 and c > 1 we can follow the
same approach used for the case withg = 6, thus obtaining

Lh ≥ max

{

c+ 1,
2a

(

w

2

)

c

}

. (10)

When the rows ofHs are irregular with weightswi, i =
0, 1, 2, . . . , a − 1, as done for the case withg = 6, we can
consider that each row ofHs corresponds to

(

wi

2

)

differences
and hence (10) becomes

Lh ≥ max

{

c+ 1,

⌈

2
∑a−1

i=0

(

wi

2

)

c

⌉}

. (11)

V. EXAMPLES

In Figs. 2-4 we report the bounds onLh obtained as
described in Section IV as a function ofa, for some values
of w, g andc. We also compare these bounds with the results
obtained through exhaustive searches over all the possible
choices ofHs, performed through efficient numerical tools.

From Fig. 2 we observe that, for the cases withw = 2
and g = 6, the matching between the theoretical bound and
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Fig. 2. Bounds onLh and values found through exhaustive searches as a
function of a, for w = 2, g = 6 and some values ofc.
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Fig. 3. Bounds onLh and values found through exhaustive searches as a
function of a, for w = 3, g = 6 and some values ofc.

the values found through exhaustive searches is perfect for
all the considered values ofc. Indeed, in this situation, all the
practical cases are modeled by the bound, therefore it is always
possible to find a solution achieving the bound. Instead, when
we have larger row weights ofHs, the theoretical bound may
not be achievable in practical terms. This results from Fig.3
for w = 3. However, we also observe that the deviations of
the experimental values from the theoretical curves are rather
small. The results of exhaustive searches are well matched
with the theoretical bounds also for the case withw = 2 and
g = 8, as we observe from Fig. 4. In this case, we note that
the gap to the bound increases for increasing values ofc.

The same efficient tools used to perform exhaustive searches
can also be exploited to perform Montecarlo experiments
aimed at finding codes with small constraint length and
absence of cycles with length up to some valueg. This way,
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Fig. 4. Bounds onLh and values found through exhaustive searches as a
function of a, for w = 2, g = 8 and some values ofc.

it has been possible to find improved results with respect to
previous solutions from the constraint length standpoint.For
example, in [8] a code witha = 6, c = 3, w = 3 andg = 10
is provided with

H(x) =





1 x2 x24 x25 x54 x85

1 x21 x15 x11 x8 x59

1 1 1 1 1 1



 ,

havingmh = 85 andLh = 258. Through a Montecarlo search
performed with the tools described above, we have found a
code with the same parameters and girth, having

H(x) =





1 x33 1 x17 x30 x11

x16 x8 x33 1 1 x33

x38 1 x34 x20 x4 1



 ,

i.e., mh = 38 andLh = 117, thus resulting in a considerable
reduction over the former. Similarly, in [15] a code witha = 5,
c = 3, w = 3 andg = 12 is provided with

H(x) =





x166 x181 x19 1 x58

x12 x95 1 x154 x138

x27 1 x185 x117 x170



 ,

havingmh = 185 andLh = 558, while we were able to find
a code with the same parameters and girth, having

H(x) =





x52 1 x32 1 x48

1 x51 x47 x45 1
x33 x25 1 x16 x44



 .

This code hasmh = 52 and Lh = 159, which also is a
considerable improvement. Another example in [15] with the
same choice of the parameters achievesmh = 134, which still
is considerably larger than the value we have found.

Concerning performance of these codes, there is a trade-off
with their constraint length. However, codes with moderately
small constraint lengths may still achieve better performance
than their block counterparts. For example, we have verified

through Montecarlo simulations of BPSK modulated transmis-
sion over the AWGN channel that one of our LDPCC codes
with w = 3, a = 9, c = 3, g = 8 and vs = 1143 exhibits
a gain of about0.3 dB at BER = 10−5 with respect to the
WiMax standard LDPC block code with the same rate (2/3)
and length2304.

VI. CONCLUSION

We have studied the design of time-invariant SC-LDPC
codes with small constraint length and free of local cycles up
to a given length. By directly designing the syndrome former
matrix, we have obtained codes with smaller constraint length
with respect to those designed by unwrapping QC-LDPC block
codes. We have also provided theoretical lower bounds on the
minimum constraint length which is needed to achieve codes
with a fixed minimum length of the local cycles, and shown
through exhaustive searches that practical codes achieving or,
at least, approaching these bounds can be found.
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