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Abstract—The development of delay-sensitive applications
that require ultra high reliability created an additional challenge
for wireless networks. This led to Ultra-Reliable Low-Latency
Communications, as a use case that 5G and beyond 5G systems
must support. However, supporting low latency communications
requires the use of short codes, while attaining vanishing frame
error probability (FEP) requires long codes. Thus, developing
codes for the finite blocklength regime (FBR) achieving certain
reliability requirements is necessary. This paper investigates the
potential of Convolutional Neural Networks autoencoders (CNN-
AE) in approaching the theoretical maximum achievable rate
over a Gaussian channel for a range of signal-to-noise ratios at a
fixed blocklength and target FEP, which is a different perspective
compared to existing works that explore the use of CNNs
from bit-error and symbol-error rate perspectives. We explain
the studied CNN-AE architecture, evaluate it numerically, and
compare it to the theoretical maximum achievable rate and the
achievable rates of polar coded quadrature amplitude modula-
tion (QAM), Reed-Muller coded QAM, multilevel polar coded
modulation, and a TurboAE-MOD scheme from the literature.
Numerical results show that the CNN-AE outperforms these
benchmark schemes and approaches the theoretical maximum
rate, demonstrating the capability of CNN-AEs in learning good
codes for delay-constrained applications.

Index Terms—Autoencoder, Channel Coding Rate, CNN, End-
to-End learning, Finite Blocklength Regime.

I. INTRODUCTION

Over the last two decades, wireless communications have

become a crucial part of our daily lives and have experienced

exponential growth. Before the apparition of fifth-generation

(5G) networks, these systems served human-centric networks

such as conventional multimedia or voice-based services

(images, videos, audio, etc.). However, the emergence of var-

ious services and applications (machine-type communication,

remote medical diagnosis, smart cities, etc.) has imposed new

constraints on wireless networks. For instance, some emerging

applications have tight delay constraints and require high

reliability to operate efficiently and safely (e.g. autonomous

vehicles). For such applications, short codes must be used

since they contribute to low latency [1], and codewords should

be chosen optimally to attain high reliability.

From an information theory perspective, the existence of

a codebook that can achieve a target frame error probability
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(FEP) at a given codelength is proven as long as the coding

rate is below the theoretical maximum coding rate in the

finite blocklength regime (FBR) characterized in [2]. The

challenge is to find this optimal code. From a practical

perspective, conventional communication systems are often

designed as a concatenation of independent blocks using

a binary encoder/decoder and a modulator/demodulator to

construct a code that is easy to analyze, optimize, and design.

For example, the 5G in 3GPP Release 16 Specification #

38.212 [3] identifies polar codes [4], [5] for relatively long

blocklength and Reed-Muller for short blocklength, combined

QAM. Such design does not guarantee optimality compared

to the theoretical maximum in the FBR.

To enhance the performance of conventional communica-

tion systems, joint design and optimization of coding and

modulation in the FBR is necessary. Although this is often a

tedious task, multilevel polar coded modulation (MLPCM)

was introduced as a joint coding and modulation scheme

that performs better than polar codes for Gaussian chan-

nels [6], [7], but unfortunately does not achieve the maximum

achievable rates under short code-length. These limitations

motivated the investigation of neural networks (NN) for

code design in communication systems, after their success

in various fields.

NNs have been shown to be a convenient tool for code de-

sign in communication systems, yielding better performance

than conventional schemes in terms of error rates. Work in this

area started by replacing one or more blocks of the physical

layer with NNs for performance improvements, such as neural

decoders [8] and neural modulators and demodulators [9]–

[11]. Then, it was extended to propose an end-to-end (E2E)

autoencoder (AE) based communication system in [12]–[14].

More advanced NNs were proposed in [15] where a scheme

using a Turbo-AE together with a feed-forward neural net-

work (FFNN) for modulation is proposed. Yet, these methods

only considered either specific coding rates (like a rate 1/3
turbo code in [15]), encoding a small number of symbols

(ranging from 1 to 15), or a moderate number of information

bits due to the complexity of the NN. Moreover, only the bit

error rate (BER) of these NN was investigated. As such, the

following question arises: Can an NN be used to design a code

that approaches/achieves the information-theoretic maximum
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achievable rate?

To answer this question, one has to study the achievable

information rate under a constraint on the FEP. In [16], the

authors investigated the FEP of an end-to-end communication

system where the coding and modulation are designed using

an FFNN, with a limited number of symbols (up to 15).

However, [16] did not investigate the maximum achievable

rate of this architecture. This also applies to [8]–[15], it

is currently unknown if any of the NNs proposed in these

works achieves good performance compared to the maximum

rate in the FBR, since this perspective was not studied in

these papers. Complexity is also often a challenge in this

area, for instance, training an FFNN-AE like in [16] poses

a challenge in terms of complexity and makes it difficult to

study the performance under a larger number of symbols (say

hundreds).

Since CNNs are known to be easier to train than many

other NNs, in this paper, we investigate the potential of using

a CNN-AE for coding and modulation in delay-sensitive ap-

plications, toward approaching the theoretical maximum rate

in the FBR. To this end, we propose a CNN-AE architecture

with few hyper-parameters and explain how to choose these

parameters. Then, we jointly optimize the transmitter and re-

ceiver by training the AE, thus overcoming the mathematical

complexity of finding an optimal code. Then, we compare the

results with the performance of a scheme that combines polar

codes and quadrature amplitude modulation (QAM), a scheme

that combines Reed-Muller codes with QAM, a scheme that

uses MLPCM [7], and the turbo AE-based scheme proposed

in [15]. Results show that the proposed CNN-AE approaches

the maximum coding rate in [2] and outperforms the bench-

mark schemes, which highlights the capability of CNN-AEs in

finding a good code that approaches the theoretical maximum

rate in the FBR. Finally, we comment on the complexity

and performance of similar designs using recurrent neural

networks (RNN) or an FFNN instead of the CNN.

Next, we present the system model and review the theoret-

ical maximum achievable rates in the FBR. Then, in Sec. III,

we present our proposed CNN-AE architecture. Numerical

results are presented and compared with results in [2], [5],

[7], [15] in Sec. IV. Finally, the paper is concluded and future

work directions are presented in Sec. V.

II. SYSTEM MODEL

For a general communication system, the transmitter feeds

a message s with K information bits to an encoder that

encodes the bits, with rate R, to x = (x1, x2, . . . , xn) ∈ Cn

which must satisfy a power constraint

1

n

n
∑

i=1

|xi|
2 ≤ P. (1)

Then, x is sent through a Gaussian channel leading to the

received signal

y = x + w

Message s

K bits Encoder
Rcod =

K

N

N bits M -ary
Modulator

x ∈ C
n

Channel

y ∈ C
n

Demodulator
N bits

Decoder
Estimated

Message

ŝ

Fig. 1: A conventional communication system consisting of

an encoder, modulator, demodulator, and decoder.

where w is an n-dimensional vector of independent and

identically distributed circularly symmetric complex Gaussian

noise with zero mean and variance N0.

At the receiver side, the decoder is designed to find an

estimate ŝ of the transmitted message, using the conditional

probability of the channel PY|X(y|x), such that the FEP P(̂s 6=
s) does not exceed a predetermined value ε. The trade-off

between the blocklength n and the FEP ε forms a limitation

on the performance of the system in terms of the achievable

information rate. Note that latency and reliability depend on

n and ε, respectively.

For a conventional communication system (Fig. 1), the

encoding process is divided into channel coding with coding

rate Rcod = K
N

where the encoder maps the K information

bits to a codeword of length N bits, followed by an M -ary

modulator of order M = 2kmod which maps each kmod coded

bits into a complex-valued symbol to obtain the vector x of

length n, where n = N/kmod. The overall rate of information

transmission is given by R = Rcodkmod bits per complex-

valued transmission. This model will serve as one of the

benchmarks we use for comparison.

The achievable rate of the conventional system described

above usually deviates from the channel capacity (the max-

imum achievable rate) due to the separation of the design

of channel coding and modulation. This capacity was first

characterized by Shannon in [17], as the maximum rate of

information transmission such that ε → 0 as n → ∞. For a

Gaussian channel with signal-to-noise (SNR)

γ =
P

N0

,

the capacity is given by

C = log2(1 + γ) bits/transmission, (2)

which can be achieved using a code that maps the information

bits s into the complex-valued codeword x without separating

this mapping into binary coding and modulation. However,

for a delay-constrained application, short codes (small n) are

used to ensure low latency. In this case, Shannon’s capacity

which is defined for infinite blocklength n and vanishing error

probability ε becomes inaccurate. Polyanskiy et al. [2] derived

a closed-form approximation of the maximum achievable rate

for the Gaussian channel in the FBR, for a blocklength n as
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Fig. 2: Proposed CNN-AE. The ‘encoding’, ‘modulation’,

‘demodulation’, and ‘decoding’ layers are trained jointly.

short as 100 symbols and target FEP 0 < ε < 0.5. This

maximum rate is characterized for a Gaussian channel with

SNR γ as follows

Rn,ε = C −

√

V

n
Q−1(ε) +O(log n), (3)

where C is defined in (2), Q−1(·) is inverse Q-function,

O(log(n)) is bounded in [2] by O(1) < O (log2(n)) <
1

2n
log

2
(n) + O(1) and we neglect the term O(1) in our

analysis and use the upper bound, and

V =
γ(γ + 2)

(γ + 1)2
log22 e

is the channel dispersion defined as the variance of the mutual

information density between xi and yi.

The maximum achievable rate is defined as the capacity

with a back-off term which is a function of the blocklength

n, FEP ε, and SNR. This theoretical result will be used

as another benchmark for assessing the performance of our

proposed scheme.

The separation of channel coding and modulation in the

conventional communication system shown in Fig. 1 leads

to a sub-optimal system. This simplification is often done

because finding a coding scheme for the general system which

approaches (3) is generally cumbersome. The objective of this

paper is to propose an NN to jointly optimize the transmitter

and receiver functions to outperform conventional methods

and approaches (3), as described next.

III. AUTOENCODER FOR THE FINITE BLOCKLENGTH

REGIME

A. Neural Network structure

In this section, a CNN-AE that is capable of approaching

the maximum rate in the FBR is proposed. The structure of

our CNN-AE is shown in Fig. 2. Different from [9], encoding

and decoding blocks are added around the modulator and the

demodulator. In our approach, we model the 4 blocks (channel

encoder, modulator, demodulator, and channel decoder) as

NNs and train them jointly in an end-to-end manner, while

using K bits as an input at the transmitter (output at the

receiver) and n complex-valued symbols as an output at the

transmitter (input at the receiver). The AE’s objective is to

find an n-dimensional code with rate R bits/transmission

that allows the reconstruction of the message at the re-

ceiver side with an FEP less than ε. Thus, the AE aims

to learn the codebook in an end-to-end manner based on

the channel rather than the conventional method of using a

careful mathematical construction of encoding/decoding and

modulation/demodulation.

The CNN-AE architecture is designed to mimic the blocks

of a conventional communication system. Hence, each block

is represented by a set of layers, and its dimensions are

chosen depending on the function it performs. Let us suppose

that we want to transmit a message with K information bits

through an encoder mapping these bits into N coded bits at

rate Rcod = K/N , followed by a modulator that maps the

N bits into n complex-valued symbols using a modulation

order 2kmod where kmod = N/n. Since the code rate is

Rcod = K/N , to simplify this encoding into a code with

a lower number of input/output bits, we write K = K ′L and

N = N ′L where L is the greatest common divisor of N and

K . This allows us to interpret the encoding of K bits into

N bits at rate Rcod as the encoding of L sub-messages of

K ′ bits each into L sub-codewords of N ′ bits each at rate

Rcod. Thus, the input of the AE will be K = K ′L bits. Then

to construct the codewords, we use three 1-D convolutional

(Conv1D) layers.1. The first two Conv1D layers will map each

sub-message of K ′ information bits (L sub-messages) into a

higher dimensional space of M1 dimensions, leading to an

output size of L × M1. This will allow the AE to learn a

good placement of each of the L sub-codewords in an M1

dimensional space. Then, the third Conv1D layer is used to

map the sub-codewords down to an N ′ dimensional space

(output size L × N ′). Finally, to prepare the LN ′ = N
symbols for modulation into n complex-valued symbols, they

are reshaped into an n× kmod matrix.

To modulate the n symbols with kmod symbols each, we

use two Conv1D layers. The first Conv1D layer maps the

kmod symbols into a higher dimensional space of M2 dimen-

sions using a Conv1D layer (output size n×M2). This allows

the AE to learn a good placement of the modulation symbols

1A larger number of layers can be used if needed, but it was noticed that
3 layers suffice for the purpose of this paper.



in an M2-dimensional space. Then, the other Conv1D layer

maps each of the n modulated M2-dimensional symbols into

a complex-valued symbol which we represent using a 2-

dimensional real-valued representation via another Conv1D

layer (output size n×2). A (nontrainable) normalization layer

is finally added to satisfy the average power constraint in

(1) by normalizing by the average power of the n symbols.

Then, after the (nontrainable) channel layer, the receiver side

including the demodulator and decoder are designed in the

same manner to reconstruct the transmitted message. The

parameters of AE are summarized in Table I.

We use Conv1D layers due to their lower complexity and

better trainability than FFNN and RNN [18]. Also, each layer

is followed by an Exponential Linear Unit (ELU) activation

function to allow for non-linear coding. However, we use a

linear activation function at the end of the mapper to allow for

any positive or negative values at the output of the modulation.

In the last layer at the receiver side, we use a sigmoid

activation function followed by thresholding at 0.5 to ensure

that the output is a binary vector. Finally, we note that each

trainable layer is followed by a Batch Normalization layer to

help the model converge quickly.

B. Methodology

Since this work aims to demonstrate the existence of an AE

that can achieve a rate close to the maximum achievable rate

in the FBL, we fix a blocklength n and a target FEP ε. Then,

we train the AE in an end-to-end manner at a certain SNR γ
and rate R, by feeding a dataset of information bits (K bits

in each data sample) and training via backpropagation. Then,

we test the AE using a different set of data and evaluate its

FEP. If the FEP is larger than ε, we gradually decrease R
via choosing Rcod and kmod until the FEP becomes smaller

than ε. The CNN parameters are chosen accordingly, based

on the parameters presented in the previous section, where

Rcod and kmod are selected so that Rcodkmod = R, while

the parameters M1 and M2 (whose impact is analyzed in Sec

IV) are chosen as 200 and 100, respectively, since they turned

out to work well for the range of rates, code-length, and FEP

considered in this study.

It is worth noting that works in the literature which study

the BER achieved by an AE [8], [9], [12], [13], [15] train

the AE at a certain SNR with a fixed rate R and test it at a

wide range of SNRs where it can be observed that the BER

decreases as SNR increases. This can also be done in our

work. However, the goal of our work is to show that at any

SNR, the proposed CNN-AE architecture can approach the

maximum rate in the FBR. Since this maximum rate increases

with SNR, so must the rate of the CNN-AE. Since increasing

the rate of the CNN-AE requires changing the dimensions of

its input and output, this implies that a new training is needed

when the SNR is increased. Note that this is not unique to our

CNN-AE, since increasing the rate of a conventional scheme

requires changing the coding and/or modulation parameters

which is analogous to changing the architecture in our case.

Type of layer Activation function Output size

Encoder

Input None (LK ′
× 1)

Conv 1D elu (L×M1)

Conv 1D elu (L×M1)

Conv 1D elu (L×N ′)

Reshape None (n× kmod)

Modulator

Conv1D elu (n×M2)

Conv1D linear (n× 2)

Normalization Layer None (n× 2)

Channel

Gaussian channel None (n× 2)

Demodulator

Conv1D elu (n×M2)

Conv1D linear (n× kmod)

Reshape None (L×N ′)

Decoder

Conv1D elu (L×M1)

Conv1D elu (L×M1)

Conv1D sigmoid (LK ′
× 1)

TABLE I: Parameters of the proposed CNN-AE.

M1,M2 (50, 20) (80, 50) (200, 100)
Rate 3 bits/transm. × × X

Rate 1 bits/transm. X X X

TABLE II: Performance of the AE at different values of M1

and M2 and SNR = 10 dB. Here, ‘×’ means that the target

FEP was not achieved, whereas ‘X’ means it was achieved.

IV. NUMERICAL RESULTS

In this section, simulations are performed to find the

maximum rates that can be achieved at given FEP ε and

blocklength n. Numerical results are presented based on

the methodology provided in Sec. III-B under the settings

provided next. The AE performance is compared to the per-

formance of polar codes combined with QAM, Reed-Muller

codes combined with QAM, MLPCM, and the TurboAE-

MOD scheme in [15] in addition to the theoretical maximum

provided in (3).

A. Simulation parameters

For simulations, we train and test the CNN-AE under a

Gaussian channel at blocklength n = 128 and FEP ε = 10−2.

We generate 106 random binary vectors for each of the

training and the testing sets. The training is conducted using

Adam optimizer [19] with a learning rate of 0.001 and binary

cross entropy loss, while the parameters M1 and M2 are

chosen as 200 and 100, respectively. The batch size is set to

500 while the number of epochs is 100. Finally, the training

SNR, a communication-related parameter, was fixed at a value

that matches (equal or slightly lower than) the testing SNR.

Simulation results are discussed next.

B. Results

The achievable rates that satisfy an FEP < 10−2 for a

blocklength of n = 128 are presented in Fig. 3, in addition to

the maximum rate in the FBR, and the achievable rate polar

and Reed-Muller coded QAM (with hard detection), MLPCM,



and the AE-based scheme in [15]. While these schemes are

conventional and employ separate encoders and modulators,

the MLPCM scheme uses joint coding and modulation where

the encoding and modulation are jointly designed so that each

symbol carries information from different polar codes (layers)

and the demodulation and decoding are done in a hierarchical

manner (multi-stage decoding) [7]. The benchmark AE-based

scheme is the TurboAE-MOD scheme provided in [15] which

jointly trains a Turbo-AE and a QAM modulator/demodulator,

and whose performance is comparable to a classical turbo

code combined with a QAM modulator as shown in [15].

It can be seen from the figure that the CNN-AE outperforms

the benchmark schemes, and achieves rates close to the

theoretical maximum provided in (3). This demonstrates the

capability of the proposed CNN-AE in finding a good code for

the channel in the FBR. It is worth noting that the TurboAE-

MOD scheme, in [15] has the limitation of a fixed encoding

rate of 1/3, which makes its architecture less flexible. Thus,

this TurboAE-MOD scheme provides rates that are multiples

of 1/3 depending on the selected modulation order.2 This

rate control is coarse compared to the proposed CNN-AE

which has more flexibility in choosing the coding rate and

modulation order so that it approaches the theoretical bound.

The dimensions of the encoder and modulator filter space

(M1 and M2) were further investigated in Table. II. The table

records the ability of the network to reach the rates of 3 and

1 bits per transmission at SNR = 10 dB for different M1

and M2. At higher rates closer to the maximum achievable

rate (R = 3), it was found that small values of M1 and M2

constrain the performance of the AE which makes it unable

to reach the target FEP. However, at lower rates (R = 1), it

was found that smaller M1 and M2 can achieve the desired

performance. This is because larger M1 and M2 give the

AE more flexibility in placing the codewords and modulation

symbols in a higher dimensional space before mapping back

to n symbols. However, it must be noted that larger M1 and

M2 increase the training complexity.

Finally, during our experiments, we investigated different

types of AEs (FFNN, RNN, CNN) to examine their complex-

ity. We found that to achieve a rate of R = 2 for instance at

n = 128, Rcod = 1

2
, kmod = 4, and ε = 10−2 for SNR =

12 dB, the RNN needs 252, 427 trainable parameters while

the CNN needs 103, 861 trainable parameters at M1 = 100
and M2 = 20. Moreover, the FFNN needed 723, 200 trainable

parameters and was still unable to achieve this rate making it

inefficient and nonscalable to larger blocklengths. Comparing

the RNN and the CNN, we found that they achieved similar

performance in terms of achievable rates, but the CNN-AE

was faster in terms of training time thanks to its parameter

sharing technique. Hence, the proposed CNN-AE provides a

better performance in terms of coding rate and complexity.

2Note that the rate of the scheme in [1] can be improved using an AE
architecture which achieves a higher coding rate, which is worth additional
investigation. However, our proposed CNN-AE demonstrates that there is no
need to restrict attention to a TurboAE-MOD architecture.

Fig. 3: The simulated achievable rates of the CNN-AE

compared with schemes from the literature and theoretical

achievable rates

V. CONCLUSION

We proposed a CNN-AE that provides achievable rates

over the Gaussian channel which approaches the theoretical

maximum rate in the FBR. We also showed that the proposed

CNN-AE outperforms benchmark conventional schemes and

another NN-based AE, the TurboAE-MOD scheme in [15].

The main conclusion of this work is that a CNN-AE can be

used to find a code for the Gaussian channel in the FBR which

approaches the theoretical maximum rate. This work can be

extended to cover more complex channels that exist in real-

world scenarios such as interference channels and Rayleigh

fading channels. Furthermore, with the increasing demand

and the apparition of 5G networks with dense deployment

and massive connectivity, a promising research direction is to

consider the performance of CNN-AE in large-scale wireless

networks in the FBR.
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