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Abstract—Adversarial attacks have the potential to substan-
tially compromise the security of AI-powered systems and posing
high risks especially in the areas like telecommunication where
security is a top priority. In this study, we focus on adversarial
attacks targeting power allocation for the distributed multiple-
input multiple-output networks. We propose a novel defense
method to mitigate the effects of these attacks and help boosting
the natural performance of the system. The detailed simulations
show that the proposed method significantly increases the
robustness of the system.

Index Terms—Distributed MIMO, cell-free massive MIMO,
power allocation, deep learning, trustworthy AI, 6G security.

I. INTRODUCTION

Wireless networks must perform complicated tasks in a
dynamic spectrum environment that is influenced by channel,
interference, and traffic effects. Deep learning has emerged as
a valuable tool for assisting with many wireless communica-
tion tasks. Deep Neural Networks (DNN) have been utilized
to solve a variety of wireless network challenges such as
power-allocation for multiple-input multiple-output (MIMO)
systems, spectrum sensing, RF signal classification, signal
authentication, and anti-jamming.

Despite having a track record of success in wireless ap-
plications, Machine Learning (ML) also poses some distinct
security challenges. Recent research has revealed that numer-
ous adversarial attacks can be deployed effectively against
DNN-based wireless systems [1], [2]. Because of their small
footprints, adversarial ML-based attacks are more covert and
difficult to detect when compared to traditional wireless
attacks such as jamming.

Distributed MIMO (D-MIMO) is a candidate radio access
network technology for 6G and beyond where the radio
units (RUs) are distributed over an area to increase the
macro-diversity and decrease the shadowing effects. The
distributed RUs are connected to a central processor (CP) via
fronthaul links for coordinated joint transmission/reception
of the signals. Power allocation together with precoding at
RUs is performed to optimize user spectral efficiencies (SEs)
and satisfy uniform and high quality-of-service to all user
equipment (UE) connected to the network. The benefits of
D-MIMO networks are described in detail in [3].

Adversarial attacks have the potential to substantially com-
promise the security of DNN-powered systems and posing

high risks especially in the areas like telecommunication
where security is a top priority. In this study, we focus on
adversarial attacks on the power allocation functionality of
the D-MIMO networks and propose a novel method which
can be employed on the serving AI agent aiming to reduce the
negative impact of such kind of attack threats to a reasonable
level and help make future 6G power control methods in D-
MIMO robust to such smart attacks.

II. SYSTEM MODEL

In this study, we consider a D-MIMO network with M
single antenna RUs and K single antenna UEs. All UEs are
jointly served by all RUs in the same time/frequency resource
block. All RUs are connected to a CP via fronthaul links. Fig.
1 shows an example D-MIMO network.

Fig. 1: An example D-MIMO network with 16 RUs and 4
UEs. Here, UE 4 is malicious and there is a man-in-the-middle
(MITM) attack on the fronthaul link of the RU-1.

We focus on power allocation problem for downlink trans-
mission to optimize the user SEs. We consider max-min
fairness power control approach to maximize the minimum
SE of UEs. This is a common approach satisfying uniform
SEs for all UEs [4]. The complex baseband signal model for
the transmitted signal from the m-th RU can be written as

xm =

K∑
k=1

√
Ptηm,kwm,ksk, ∀k, (1)

where xm is the transmitted signal from the m-th RU, Pt

is the average transmit power limit of each RU, ηm,k is
the power control coefficient for the pair m-th RU and the
k-th UE that controls the power allocation between UEs,



wm,k is the precoder of the m-th RU designed for k-th
UE, and sk is the information data of the k-th UE. We
assume maximal ratio transmission (MRT) precoding that is
commonly preferred by means of its local implementation at
RUs. By MRT precoding, we have wm,k = h∗

m,k where hm,k

is the instantaneous channel coefficient between the m-th RU
and the k-th UE. Throughout the paper, we assume that hm,k

is perfectly known by CP. The findings of this paper can be
directly generalized to imperfect channel estimation case that
we do not consider in this study for the sake of simplicity.
The received signal by the k-th UE can be calculated as

yk =

M∑
m=1

hm,kxm+zk =

M∑
m=1

K∑
ℓ=1

√
Ptηm,ℓhm,kh

∗
m,ℓsℓ+zk,

(2)
where zk ∼ CN (0, σ2

k) is the thermal noise at the k-th UE
receiver with an average power σ2

k. The received signal yk
includes four parts which can be given as

yk = ydesired,k + ymismatch,k + yinterference,k + zk, (3)

where

ydesired,k =

M∑
m=1

√
Ptηm,kE[|hm,k|2]sk

ymismatch,k =

M∑
m=1

√
Ptηm,k(|hm,k|2 − E[|hm,k|2])sk

yinterference,k =

K∑
ℓ ̸=k

M∑
m=1

√
Ptηm,ℓhm,kh

∗
m,ℓsℓ.

(4)

Here we assume that each UE only knows the mean of its
effective channel, i.e., E[|hm,k|2], and hence the desired signal
only includes the mean part of the effective channel. Mis-
match part includes the signal sk with unknown coefficient
and the signal related to other user data is considered under
interference part. Using the information-theoretic approach in
[5], achievable user SE for the k-th UE can be obtained as

SEk = log2

(
1 +

|E[ydesired,k]|2

E[|ymismatch,k|2 + |yinterference,k|2] + σ2
k

)
.

(5)
We maximize the minimum of SEk’s under the per-RU
transmit power constraints E[|xm|2] ≤ Pt which can be

rewritten as
K∑

k=1

βm,kηm,k ≤ 1, ∀m. Here βm,k = E[|hm,k|2]
is the large-scale fading coefficient that includes path-loss and
shadowing effects. We consider a block fading model where
we evaluate all expectations in (5) over Rayleigh small-scale
fading with hm,k ∼ CN (0, βm,k). The expectations can be
evaluated as given by [4] and we obtain the problem (P1)

(P1) max
ηm,k

min
k

log2(1 + SINRk) such that ∀m, k (6)

SINRk =

(
M∑

m=1

√
ηm,kβm,k

)2

K∑
ℓ=1

M∑
m=1

ηm,ℓβm,ℓβm,k +
σ2
k

Pt

,

K∑
k=1

βm,kηm,k ≤ 1.

(P1) can be optimally solved using bisection search [4]
with the asymptotic complexity O(Niter

√
K +MM3K4) [6]

where Niter is the number of iterations required in the bisec-
tion search. As the complexity is very high, AI based solutions
are proposed in the literature [7].

The power allocation problem defined by (P1) has the input
channel coefficient vector β = [β1,1 β1,2 . . . βM,K ]T ∈
RMK and the output power control coefficient vector η =
[η1,1 η1,2 . . . ηM,K ]T ∈ RMK . Once we know β and η, the
operation, denoted by the function q(β,η), of finding the SE
vector SE = [SE1 SE2 . . . SEK ]T is a straightforward
analytical operation which can be done using the SINR
formulas in (6). Fig. 2 describes the diagram of the analytical
solution and the corresponding SEs of (P1).

Fig. 2: Analytical solution. It finds η by analytically solving
the problem (P1) defined in (6).

Since the analytical solution f(β) of finding the optimum
power allocation coefficients η is a highly complex operation,
the exact solution is generally approximated by a well-trained
AI model as shown in Fig. 3. In this option, using a training
data which is composed of β and the corresponding optimum
η vector, we train a regression type AI model and use this
model at the inference time to speed up the decision-making
process and avoid the extensive computations.

Fig. 3: AI-based solution. The AI solution is denoted by f̃
and it approximates f by maintaining SE ≈ SEAI.

III. ADVERSARIAL ATTACKS ON AI MODELS

It is known that AI models are highly vulnerable to
adversarial attack threats where carefully crafted perturbations
can create significant errors in the expected outputs. Previ-
ous research studies have investigated potential adversarial
attack threats for AI-driven power control implementations
in massive MIMO systems [1]. To give another example,
the authors in [2] have shown that threats against target AI
model in MIMO systems which might be originated from
malicious UEs can substantially decrease the SE performance
by applying a successful adversarial sample under different
scenarios. And, it has been shown that the risk associated
with these kinds of adversarial attacks are bigger than the
standard attack threats. In a real world scenario, the success
of an adversarial attack in a D-MIMO network is constrained
by three key factors from the adversary’s perspective. Firstly,
the adversary mostly cannot use the original AI model as in
the case of whitebox setting to craft adversarial samples due
to lack of access to target model’s architecture and weights.
Secondly, the attacker cannot have complete knowledge of the



input features of the AI model, as it is almost impossible to
know the channel information of each UE. Last but not least,
the adversary will not be able to introduce perturbations to all
features of the input vector, even if the channel information
is known beforehand. However, despite all these constraints,
there are established strategies in literature that boost the
attacker’s success [8]. In this study, to examine and show
the efficacy of our proposed method, we chose the worst-
case scenario with the most disastrous possible outcome, in
which the adversary has access to (read/modify) each element
of the input vector fed to the AI model in CP together with
the details of the target model.

During normal operation, we feed the channel information
β obtained from UEs to the AI model, and this model outputs
a nearly optimal ηAI value which maximizes the sum of the
SEs of all UEs as previously shown in Fig. 3. However, during
a malicious activity, an adversary can add a well-crafted
perturbation to the channel input β to generate the perturbed
input β + ∆ yielding a power allocation η′

AI resulting in
decreased SEs. This malicious scenario is depicted in Fig. 4.

Fig. 4: Adversarial attack on the AI solution.

Theoretically, the attacker can produce any kind of pertur-
bation ∆ including randomly generated simple solutions. In
the adversarial attack scenario, the objective of the attacker
is to use ∂SEAI, sum/∂β to minimize SEs, where SEAI, sum
is the sum of elements of SEAI. If the adversary has access
to the target AI model architecture and weights, it can use
this original AI model to find the gradient of the output
sum rate with respect to β values. Then, the adversary
adds a perturbation in the opposite direction of the gradient
information to minimize SEs which is widely known as
Fast Gradient Sign Method (FGSM) [9] in literature. If the
adversary does not have the original AI model, it can use a
surrogate AI model to craft the adversarial perturbation in a
similar manner. Later, Kurakin et al. [10] proposed a small but
effective improvement to the FGSM, known as Basic Iterative
Method (BIM). In this approach, rather than taking only one
step of size ϵ in the gradient sign’s direction, the attacker
takes several but smaller steps, and use the given ϵ value to
clip the result. For our case, the BIM algorithm can be given
by Algorithm 1.

In Algorithm 1, ∆i is the crafted adversarial sample (to be
added to the input of the victim) at the ith iteration, imax,1 is
the maximum number of iterations, ϵ is a tunable parameter,
limiting maximum level of perturbation for L∞ norm, α1 is
the step size, and clipϵ{·} is the clipping operator that clips
entries of the argument larger than ϵ to ϵ and less than −ϵ to
−ϵ, and sign(·) is the sign operator mapping positive entries
to 1, negative entries to −1, and zero entries to 0.

Algorithm 1: BIM attack algorithm.

Input: β, f̃(·), imax,1, ϵ, α1

Output: ∆
1 ∆0 = 0, i = 0.
2 while i < imax,1 do
3 Compute the AI output: η′

AI = f̃(β +∆i).
4 Compute the SE vector: SE′

AI = q(β,η′
AI).

5 Compute the sum of SEs: SE′
AI, sum is equal to the

sum of the elements of SE′
AI.

6 Update the perturbation vector:
∆i+1 = clipϵ

(
∆i − α1 · sign(∂SE′

AI, sum/∂β)
)
.

7 Increase i by 1.

8 return ∆ = ∆i.

IV. DEFENSE AGAINST ADVERSARIAL ATTACKS

The adversarial attacks substantially degrades the perfor-
mance of AI-powered solutions. In Fig. 5, we present the
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Fig. 5: Effect of adversarial attack on the AI solution of (P1).
M = 16,K = 4, ϵ = 4 dB.

cumulative distribution function (CDF) of per-user SEs for ad-
versarial attack (BIM) and no-attack cases where AI solution
is applied in both cases. We observe that the SE performance
under adversarial attack significantly degrades. We observe a
performance loss about 0.24 bps/Hz in the median, and 0.46
bps/Hz in the 5th percentile1 compared to no attack case.
The results show that smart defense methods are required to
mitigate the effects of these threats.

A. Problems With Existing Defense Solutions

To mitigate adversarial attacks, several defense solutions have
been proposed in the literature, with adversarial training
being one of the most dominant approach. In this technique,
training of the AI model is done by augmenting training
data with adversarial samples in an aim to make the model
robust to such kind of inputs during inference time. However,
adversarial training type of defense approaches cannot work
for most of the regression tasks/models.

In Fig. 6, we provide the CDF plots of per-user SEs for
the analytical solution. Under the adversarial attack scenario,
the performance of the analytical solution (ground truth) also
degrades, showing that adversarial training is not suitable for
this regression task. Because applying perturbation to channel

1The SE values corresponding to CDF = 0.05.
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Fig. 6: Effect of adversarial attack on the analytical solution
of (P1). M = 16,K = 4, ϵ = 4 dB.

information vector results into a completely different optimum
power allocation values from the ones in no attack case.
This observation proves that applying adversarial training will
degrade the natural (clean) performance of the system for
these kinds of complex regression models.

Adversarial training generally works in image classification
tasks where the input of the AI model has some form of
semantic integrity. For example, the right side image in Fig.
7 is misclassified as a ’sports car’ by a state-of-the-art image
classifier model. However, for us as human beings, the left
and right images are all interpreted as dog. We do not actually
change the ground truth label of this image when we apply
an adversarial perturbation. In other words, the exact solution
is the same for both the clean image and adversarial image.
Therefore, we could actually use the perturbed image sample
in the right side of Fig. 7 for adversarial training.

Fig. 7: An example adversarial attack on image domain.

However, in our regression task modeled by the analytical
function f(.) that maps input β to output η, when we apply
a perturbation to input β and get β′, f(β) and f(β′) will not
be equal and hence we cannot train our model with (β′,η)
pairs anymore.

B. Proposed Defense Method

To mitigate the effects of adversarial attacks, we suggest a
proactive defense approach. We propose a method in which
we try to find an imaginary perturbation δ which yields a
better power allocation output by maximizing the user SEs.

During the life-cycle of the solution of (P1), a well-
trained AI model might be used to find the near-optimum
power allocation for a given channel input. The AI model
is not aware of any possible malicious activity and cannot
understand whether any adversarial perturbation is added to
the input β. Therefore, without any defense mechanism it
finds the output power coefficients using the input β′ = β+∆
as shown in Fig. 3. When there is no attack, ∆ = 0, and if

there is an attack on the input, then ∆ becomes a non-zero
vector.

We suggest finding a virtual perturbation δ which yields
a better power allocation. By injecting a virtual perturbation,
the method improves the output user SEs of the AI solution by
optimizing the sum of the user SEs, SEAI, sum. Instead of using
β′ to predict the output, we propose to iteratively compute
the derivative of our objective function SEAI, sum with respect
to β′ and add the resulting accumulated gradient vector δ to
β′ to predict the output. We compute the virtual perturbation
vector δ iteratively. At each iteration, we compute the gradient
∂SEAI, sum/∂β

′ via the AI model and update the virtual
perturbation vector considering the direction of the gradient
so that the SEAI, sum increases. After a finite number of steps,
the algorithm converges, and we find the final δ vector. The
details of our proposed method is given in Algorithm 2.

Algorithm 2: The proposed defense algorithm.

Input: β′, f̃(·), imax,2, ϵ, α2

Output: δ
1 δ0 = 0, i = 0.
2 while i < imax,2 do
3 Compute the AI output: η′′

AI = f̃(β′ + δi).
4 Compute the SE vector: SE′′

AI = q(β′,η′′
AI).

5 Compute the sum of SEs: SE′′
AI, sum is equal to the

sum of the elements of SE′′
AI.

6 Update the virtual perturbation vector:
δi+1 = clipϵ

(
δi + α2 · sign(∂SE′′

AI, sum/∂β
′)
)
.

7 Check if the algorithm is converged: If the
difference between δi+1 and δi is low enough,
terminate. Otherwise increase i by 1.

8 return δ = δi.

In Algorithm 2, β′ is the input (possible perturbed by the at-
tacker) channel information vector, f̃(·) is the AI model used
to solve (P1), imax,2 is the maximum number of iterations, α2

is the step-size, and δ is the output virtual perturbation.
It is important to note that the attacker uses the gradient of

the sum of SEs with respect to the actual channel vector β and
tries to manipulate the target AI model output via providing
β′ = β + ∆. On the other hand, the original unperturbed
input β is not available for the defense method and hence it
uses the potentially perturbed channel vector β′ as the input
and hence the gradient is evaluated with respect to β′. When
there is no attack, both gradients coincide; however, when
there is an attack, they differ. Our numerical results show
that although we might not use the actual channel vector
when calculating the gradient, we observe a significant benefit
under adversarial attack scenario. It should be noted that the
gradient ∂SEAI, sum/∂β

′ depends on the AI model as SEAI, sum
is a function of η′′

AI which is the output of the AI model.
Therefore, the gradient cannot be directly evaluated using an
analytical function. We evaluate it via the AI model using the
structure of the model. The calculation is efficient because



the calculation of SEs using the input and output of the AI
model by the function q is a low-complexity operation.

Fig. 8: The operation for proposed defense technique

Fig. 8 shows the diagram of the proposed defense method.
The function g(·) shows the defense method that evaluates the
virtual perturbation using the perturbed input as described in
Algorithm 1. After finding the virtual perturbation, we add it
to the perturbed input and run the AI model to generate the
power allocation output. The algorithm aims to eliminate the
negative effect of the unknown perturbation ∆ by designing
a virtual perturbation δ so that ∆+ δ ≈ 0.

V. SIMULATION RESULTS

In this section, we present the effectiveness of the proposed
defense technique by detailed simulations. For this purpose,
we uniformly distribute M = 16 RUs and K = 4 UEs in a
500 m x 500 m square region. The simulation parameters are
chosen as given in Table I.

TABLE I: Simulation Parameters

Parameter Model and/or Value
Carrier frequency, bandwidth 1.9 GHz, 20 MHz

Path-loss [PLm,k]dB is chosen according to
the 3-slope model in [4]

Shadowing [βm,k,sh]dB ∼ N (0, 82)

Channel model hm,k ∼ CN (0, βm,k) where
[βm,k]dB = [PLm,k]dB + [βm,k,sh]dB

Average RU transmit power,
UE receiver noise power Pt = 0.2 W, σ2

k = −92 dBm, ∀k

We use a DNN-based regression model to learn the
mapping between the large-scale fading coefficient vector
β = [β1,1 β1,2 . . . βM,K ]T ∈ RMK and the power control
coefficient vector η = [η1,1η1,2 . . . ηM,K ]T ∈ RMK . We train
a model which we denote as f̃(·) representing the AI model
used in D-MIMO system and we assume the adversary has
whitebox access to the AI model to craft adversarial samples.
The detailed model architecture is given in Fig. 9.

In Fig. 10, we present the per-user CDFs for the AI model
(Fig. 3) together with the result of analytical solution (Fig. 2).
We observe 0.03 bps/Hz and 0.08 bps/Hz gaps for the median
and 5th percentile SEs, respectively. The results show that the
AI model can accurately approximate the analytical solution.

In the simulations, we compare 3 different methods under
3 different scenarios which are listed in Table II.

Notice that we always evaluate the SEs using the actual
channel vectors even if the input is perturbed by the attacker.
This is because the real performance of the system depends on
the actual channel. When there is an attack on the input, the
victim system cannot evaluate the actual SEs as the original

TABLE II: Scenarios and Methods

Scenario 1 No attack where the system has the true channel vectors

Scenario 2
White Gaussian Noise (WGN) attack where the attacker
injects zero-mean, ϵ variance WGN to the original
channel samples

Scenario 3 Adversarial attack where the attacker applies BIM
Method 1 AI solution without any defense
Method 2 Analytical solution without any defense
Method 3 AI solution with the proposed defense method

channel information will not be available. On the other hand,
the computation of the actual SEs is not required to find power
allocation. We evaluate the actual SEs in simulations to see
the performance of the system with and without attack.

Fig. 11 involves CDF of UEs for all 9 cases obtained by all
combinations of Methods 1-3 and Scenarios 1-3 for ϵ = 4 dB.
We observe that the proposed defense technique significantly
enhances the performance for UEs with low SE values. With
the proposed technique, 0.28 bps/Hz enhancement on 5th
percentile per-user SEs is obtained. Considering that the
remaining gap to AI solution without any attack is equal to
0.19 bps/Hz, it can be concluded that more than half of the
performance loss due to adversarial attack can be regained
by the proposed defense method. When there is no attack or
there exists a WGN attack, a slight improvement is obtained
over AI solution without any defense. This shows that the
proposed method can be used without any performance loss
regardless of the attack situation. The proposed defense
method is effective against adversarial attacks which are the
most disruptive ones for AI-based power allocation methods.

To measure the robustness of the proposed defense method,
we define a metric rrobustness as

rrobustness =
SEdefense − SEattack

SEno-attack − SEattack
, (7)

where SEno-attack,SEattack,SEdefense indicates 5th percentile per-
user SEs of AI solution without attack and defense, under
adversarial attack without defense, and under adversarial at-
tack with the proposed defense method, respectively. rrobustness
shows the ratio of performance that can be regained by the
defense method for UEs with low SE values.

In Fig. 12, we present the robustness ratios for various
ϵ values. We see that the robustness ratio values are larger
than 40 percent for all ϵ ≤ 8 dB. The robustness ratio is a
decreasing function of ϵ as it becomes harder to compensate
the effect of adversarial attacks as the perturbation magnitude
increases. Notice that for ϵ values larger than 8 dB, which is
the shadowing standard deviation, the system might detect the
existence of an attack by observing unnatural changes in the
channel coefficients, and can perform different actions.

Fig. 13 shows average runtimes of AI, proposed defense,
and analytical solutions under adversarial attack. As expected,
the proposed defense method is slower than the AI solution
as it runs the AI function f̃ several times to find a virtual
perturbation. On the other hand, it is an efficient defense
technique as it is roughly 6 times faster than the analytical
solution.



Fig. 9: AI Model

1.4 1.6 1.8 2 2.2 2.4

SE (bps/Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

CDF of per-User SEs for No Attack Case

AI

Analytical

0.08

bps/Hz

0.03

bps/Hz

Fig. 10: Comparison of AI and analytical solutions of (P1)
for M = 16,K = 4.
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VI. CONCLUSION

In this paper, we proposed a novel method to increase the
robustness of the AI-driven power allocation in D-MIMO
against adversarial attacks. We empirically shown the ef-
fectiveness of the proposed approach and verified that it
significantly increases the spectral efficiency of the UEs in
the presence of adversarial inputs from malicious parties. The
important thing to note is that the proposed method does not
have any negative effect on the natural (clean) SE performance
of the system when there is no attack and yields superior
performance than AI solution by increasing AI model’s SE
performance towards the optimum solution. Furthermore, its
complexity is much lower than that of the analytical solution.
These results demonstrates that the proposed solution can
be safely and efficiently implemented to increase robustness
of the system without sacrificing normal performance. As a
future work, we plan to elaborate on whether our proposed
method is applicable to other AI-driven tasks in D-MIMO
such as codebook-based beamforming or RU selection.
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