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Abstract—Organizations nowadays are largely computerized,
with a mixture of internal and external services providing them
with on-demand functionality. In some situations (e.g. emergency
situations), cross-organizational collaboration is needed, provid-
ing external users access to internal services. Trust between
partners in such a collaboration can however be an issue.
Although (federated) access control policies may be in place,
it is unclear which data was requested and delivered after
a collaboration has finished. This may lead to disputes be-
tween participating organizations. The open-source permissioned
blockchain Hyperledger Fabric is utilized to create a logging
mechanism for the actions performed by the participants in such
a collaboration. This paper presents the architecture needed for
such a logging mechanism and provides details on its operation.
A prototype was designed in order to evaluate the performance
of an asynchronous logging approach. Measurements show that
the proposed logging mechanism enables organizations to create
a log of service interactions with limited delay imposed on the
data exchange process.

Index Terms—blockchain, collaborations, cross-organizational,
distributed, logging

I. INTRODUCTION
A. Context

Cross-organizational collaborations should allow partici-
pants to share in-house services across administrative domains
in a secure way, i.e. without making them publicly accessible.
The added value of this is that it allows to share knowledge
among the partners and as such to derive more intelligence.
Figure 1 shows an example of a possible use case. Manufactur-
ers need machines for product creation, e.g. a robotic arm, and
order them from equipment builders. These equipment builders
could fix the operation of their machines using the data they
produce, but they have no direct access to these machines
once installed. The investigated scenario is always the same,
i.e. there is a data exchange between Org X and Org Y and the
latter requests the data. As plenty of such cross-organizational
collaborations are possible, there is both a scientific interest
and market potential for research focusing on interconnecting
cross-organizational systems in a secure way.

B. Goal of logging mechanism

In most cross-organizational collaboration scenarios, partic-
ipants will have access control policies in place which define
what data can be accessed. After a collaboration has ended,
it is however not clear what specific data has been requested
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Fig. 1. Sample collaboration scenario showcasing an equipment builder gain-
ing access to internal APIs of machines it installed at different manufacturers.

and what data has been delivered if no logging mechanism is
used, which may lead to disputes between organizations. The
proposed logging mechanism has two characteristics:

o Make it impossible for an organization to deny (the in-
tegrity of) a request/response which it received during the
collaboration, leaving no option for a dispute afterwards.

« Allow an honest organization to detect a lack of logging
information either due to dishonest organizations, due to
malfunctioning caused by e.g. a network failure or due
to an attack on the operation of the mechanism.

The goal of the logging mechanism is that, when it is executed
correctly, no disputes are possible afterwards. As will become
clear in section III-A, the mechanism itself cannot enforce
correct execution, meaning disputes are still possible. How-
ever, an honest organization can detect incorrect behavior and
decide to immediately stop collaborating with the participants
in the collaboration. An honest organization thus continuously
assesses whether the logging procedure is correctly executed
and takes action when this is not the case.

In order to realize this goal, it is necessary to produce
cryptographically signed logs which describe the exchange
in an unforgeable way. An appropriate solution could be to
communicate, for each data exchange, four signed messages
between Org Y and Org X: signed request and response
messages and also signed request and response confirmation
messages. This approach is used in this paper. The only
remaining problem is that, in case of data loss, an honest
organization loses all its logging data. The solution therefore
needs to enforce a more fail-safe data storage. The first option
is to store the logs in a crash fault-tolerant storage solution,



managed by a third party, which can be read and written by
all organizations. However, in the case under investigation, it
might be difficult to find a third party which is trusted by all
involved organizations. This party has the power to manipulate
logging state, even when organizations execute periodic checks
on it, as it can still be manipulated after the collaboration has
finished. The second option is to replicate state over different
nodes which is investigated in the next section.

II. RELATED WORK

The main advantage of replicating state over using a third
party is that each organization has its own replica of the state
stored in its trusted domain. This means that it can execute
checks on this copy without having to rely on an external
entity. An honest organization can execute two checks in order
to detect a lack of logging information:

1) For each data exchange, it will check whether its state
contains all the signed logs it expects there to be.

2) It can compare its state with those of other organizations
to verify whether data is correctly replicated.

For this approach to work, it is important that each organiza-
tion has an append-only log of state transitions, as otherwise
check one could evaluate to true at inspection time but to
false after state rewrites. A technology providing this finality
is Hyperledger Fabric, a prominent permissioned blockchain
architecture, in which each peer has a ledger consisting of
a world state database with key-value pairs (KVPs) and an
append-only chain of transactions (TXs) capturing the corre-
sponding state transitions [1]. Storing TXs in a blockchain
data structure is also interesting for check two, as the latest
hash provides a summary of all TXs that happened before.
Two organizations comparing state then only need to compare
their hash value at a certain block height, which is an efficient
operation. It is important to stress that, in this use case,
chaining blocks of TXs is not used to enforce immutability,
like this is done in e.g. Bitcoin where mining blocks is a costly
operation due to the Proof-of-Work consensus mechanism, but
rather to have an efficient way to compare state. The choice
for a private permissioned blockchain is supported by the flow
chart in Figure 2 which is commonly used in literature:

1) Data needs to be stored in a structured way, introducing
the need for a database.

2) There are multiple writers as each organization will be
allowed to store its logs.

3) As already mentioned, delegating logs to an always online
trusted third party (TTP) is not possible because all
organizations would need to trust it for processing the
logs correctly, an assumption which may not be true for
all collaborations. Instead, an offline TTP can be used as
a certificate authority for a permissioned blockchain.

4) All writers are known, namely the participants in the
collaboration.

5) If all writers would mutually trust each other, each
organization could simply maintain its own log file. If
organizations have a history of trustful collaboration, this

All
writers Permissionless

Blockchain

Online
TTP?,

Public
Permissioned
Blockchain

writers
trusted?

Private
Permissioned
Blockchain

Not use
Blockchain

Fig. 2. Which architectural blockchain model is most appropriate for an
application? [2]

could be the case, but it cannot be assumed for an ad hoc
collaboration between unknown participants.

6) Public verifiability is not required as the participants
involved in the collaboration are the only stakeholders
in the data exchange process.

The paper written by E. Androulaki et al. [3] describes the
fundamentals of Hyperledger Fabric. Although this subsection
does not reproduce its entire internal operation, it is important
to address some fundamental concepts. The main innovation
of Fabric is that it uses a three-phase model as consensus
mechanism. For each TX, there are three separate phases,
more specifically TX execution, ordering and validation. As
explained in the paper, this model solves a number of limita-
tions which are commonly found in permissioned blockchains
which use an order-execute model. One of the advantages
it brings is that the ordering step is decoupled, meaning
pluggable consensus can be used for this phase, i.e. for
agreeing upon a total order of TXs. Currently, Fabric provides
only one out of the box production-ready ordering service
which is based on a Kafka cluster. This distributed messaging
platform can withstand crash faults, but can not cope with
malicious brokers introducing Byzantine faults. The paper
written by J. Sousa et al. [4] proposes the first Byzantine Fault
Tolerant (BFT) ordering service for Fabric. The Kafka cluster
is replaced with a set of frontend nodes, which the peers can
connect to, and a set of ordering nodes, which the frontend
nodes connect to. A Practical Byzantine Fault Tolerant (PBFT)
scheme, based on the BFT-SMaRT library [5], is used between
the ordering nodes as consensus mechanism. This way, it is
possible to withstand f malicious ordering nodes from a set
of size n as long as f < %. Assuming an organization is only
allowed to deploy at most one ordering node in its own domain
to prevent a Sybil attack, 4-6 organizations can cope with 1
malicious organization, 7-9 with 2 malicious organizations, 10-
12 with 3 malicious organizations, etc. This also means that,
when the Byzantine ordering service is used, a collaboration
between three organizations does not seem to be possible in a
fully distributed setting.

The integrity of Fabric thus lies in the operation of the



ordering service. For the cross-organizational collaborations
researched in this paper, the Kafka ordering service is used. It
cannot cope with Byzantine faults, but as organizations execute
the checks mentioned above, they can detect any malicious
behavior. The conclusion is that an improved trust model for
the ordering service could be used, as it makes malicious
behavior of this part of the architecture harder, but it is not
necessary for this application due to the proposed checks. It
is important to note that deploying a Kafka cluster at one
organization is not the same scenario as using a TTP, because
each organization has its own ledger for which it can execute
checks. A malicious ordering service could never invent TXs
as it is not capable of creating a valid signature. Furthermore,
it could never remove TXs as organizations would find out by
executing the checks. The only thing it could do is reorder
TXs, but it is only important that there is a strict order of TXs
in order to obtain the same chain of TXs for each organization,
not what that specific order is [6]. Finally, the TXs only contain
hash values as will become clear in section III-A, meaning it
is impossible to leak information.

There are already multiple research papers examining the
Hyperledger Fabric technology. On the one hand, there are
papers which present use cases different than the one described
in this paper, e.g. banking [7], voting [8], managing access to
an electronic health record [9], managing configuration of IoT
devices [10], managing inter-organizational user authentication
in a distributed manner [11], decentralizing service ecosystems
[12] and executing know-your-customer validation [13]. The
use case presented in the paper written by S. Kiyomoto et
al. [14] comes close to the use case examined in this paper.
Encrypted anonymized data is sent between a data broker and
data receiver and fingerprints of this exchange are stored in
the ledger by the data broker. Only when the data broker has
received a confirmation message of the TX coming from the
blockchain, it sends the key to the data receiver to decrypt
the data. This approach is a synchronous one, i.e. the data
can only be used when the blockchain operation is completed.
An asynchronous approach will be proposed and evaluated in
this paper. On the other hand, there are also papers which
focus more on Fabric itself, e.g. on how the deployment life
cycle should be managed [15] and on how the blockchain
could be queried in an efficient way [16]. There are also
papers available which address the issue of privacy, e.g. when
only a subset of the peers is allowed to see the exchanged
data, e.g. using secure multiparty computation whereby data
is encrypted using a shared secret key or using the public
key of each allowed organization [17], or for executing smart
contracts with secrets, e.g. in trusted execution environments
like Intel SGX enclaves [18].

III. LOGGING MECHANISM

A. Design decision

The baseline architecture to start from consists of multiple
client-server relationships. This situation is shown in Figure 3,
whereby three organizations want to share APIs among them.
Two conceptual channels are defined, i.e. putting content in the

common ledger is called channel 1 and direct communication
between a pair of organizations is called channel 2. There are
two possible design strategies:

1) Only channel 1 is used, i.e. both request and response
are communicated via this channel and are thus stored in
the common ledger. In the case of e.g. video data, TXs
become large and storage could become a problem as the
ledger grows quickly: when a 1080p 24fps video stream
is encoded with an H.264/MPEG4-AVC encoder, a stream
with a bit rate of approximately 1000 kbps is obtained
with a Y-PSNR of around 35 [19]. When only 10 minutes
of video data is shared, this leads to 75 MB of data
per camera that needs to be stored at each peer, which
does not scale very well. Another example is transferring
files of a few MB or more between organizations. An
advantage of this approach is that it is secure, i.e. no
disputes are possible about the actual request/response
that was sent, as all participants can query the ledger.

2) Only a fingerprint of the request and response is stored
in the ledger, i.e. the data of each request and response
is hashed. The actual data is then exchanged via a
communication channel different than the ledger. Each
organization is responsible to store the data corresponding
with the hashes it puts in the ledger, as it should be able
to reveal its data in case of a dispute. The drawback
of this approach is that organizations other than the two
involved in the data exchange cannot determine whether
the request/response sent via channel 2 matched with
the one logged via channel 1. This means that e.g.
dishonest Org Y could falsely deny to have received a
response from honest Org X. In general, it is impossible
to verify whether an organization did not confirm a
request/response on purpose, i.e. allowing a possibility
for a dispute, or whether it did not receive an actual
request/response at all. This means that disputes are still
possible until a signed confirmation message is stored.

Due to the possible scalability issue of strategy one, the

second strategy is further examined in this paper. Although it
is less secure as strategy one, it achieves the goals mentioned
in section I-B.

B. Architecture of logging mechanism

Figure 3 shows the components that are used for the
proposed logging mechanism. Each organization has an EP,
client, and a proxy. EP stands for endorsing peer as used
in the Hyperledger Fabric architecture. The set of endorsing
peers is typically a subset of the entire peer set. Their role
is to simulate TX proposals originating from the proxies, i.e.
they execute the chaincode (CC), also called smart contracts,
with the given input parameters and send back their simulated
response and read/write sets of the ledger’s key-value pairs
[20]. As each organization should be able to sign its own
TX proposals, they all need at least one such endorsing
peer. Each EP runs the CC in a separate Docker container.
As Docker prevents a container from accessing data and
processes running in the host system and also prevents it from
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Fig. 3. Components needed for the proposed logging mechanism.

exhausting resources [21], the host system cannot suffer from
malicious code. The client components each expose a web API
within the collaboration to share internal services. Requests
for data and corresponding responses are exchanged between
these clients. When the exchange is ongoing, the proxies are
asynchronously called by the clients to execute steps of the
logging mechanism. These proxies then communicate with the
EPs of the organization to sign TX proposals before they are
sent to the ordering service.

As mentioned in section I-B, four signed messages are
needed per data exchange. The core of the logging mechanism
therefore consists of four functions defined in the CC. Every
organization executes the same CC, i.e. they update the ledger
in the same predefined way, and only one channel is needed
as each organization is allowed to see all TXs. There are
two logging functions and two inspect functions. The logging
functions are needed to log the request coming from Org Y
and the response coming from Org X:

e Logrequest: Org Y creates a TX proposal for putting the
data of R()1, as shown in Figure 3, into the ledger. It
signs the proposal and sends the TX to the ordering
service.

e LogResponse: Org X creates a TX proposal for putting the
data of RS, as shown in Figure 3, into the ledger. It signs
the proposal and sends the TX to the ordering service.

A hash is calculated in the implementation of these functions.
For RQ, the hash is calculated over the HTTP method,
URL and body. For RSj, the hash is calculated over the
response body. Currently, the SHA-256 hashing function is
used, meaning data of any length is compressed to 32 bytes.

Afterwards, the data is stored in the ledger using Fabric’s
function putstate, i.e. they update the ledger’s KVPs and
cause state transitions. These transitions are then logged as
different TXs in the chain of blocks. It is important to note
that Hyperledger Fabric throws an error when two TXs in the
same block try to update the same KVP [22]. To prevent this, a
unique key in the ledger is constructed by appending _request
or _response to the exchange ID value.

As the content set in these KVPs can be anything, i.e. an
organization can log whatever it wants, it needs to be examined
whether the logged requests/responses correspond with the
actual requests/responses sent via channel 2. Only when this
is true, the log can be seen as a correct reflection of what has
happened during a collaboration. Two more functions are thus
required:

e Tnspectrequest: Org X needs to confirm whether the
received request R()> matches with the one logged RQ)4

by Org Y.
e InspectResponse: Org Y needs to confirm whether the
received response RS2 matches with the one logged RS

by Org X.
Both functions use Fabric’s function cetstate, i.e. they read
data from the ledger. A read operation does not cause state
transitions, meaning no evidence of this check is stored in
the ledger. However, the goal is to obtain a log file showing
the exchanges that have happened, implying that when an
organization agrees with a log, it should confirm this. The
organization inspecting a request/response should therefore
do the same as with LogRequest and LogResponse, 1.e. pllt its
confirmation in the ledger by creating a TX proposal, signing



it and sending it to the ordering service.

As already mentioned in section II, an asynchronous flow
is proposed in this paper. This means that the speed of the
data exchange process does not heavily depend on the speed
of the logging mechanism, i.e. channel 2 is almost not delayed
by channel 1. The more synchronous the approach is, i.e.
the more blocking behavior is present, the slower the data
exchange process becomes. If this logging mechanism would
then be used to log calls received by an API being faced with
a high load, it could become the bottleneck of the system.
The goal is therefore to minimize the overhead caused by
the logging mechanism and to evaluate the performance of
an asynchronous approach. To show the complete cycle of
a secure data exchange, a sequence diagram is presented in
Figure 4. It shows the asynchronous approach with its two
interaction schemes each operating at their own pace. The first
scheme enables a fast exchange of data, the second scheme
enables a slower logging of all the actions. The exact order
of execution can differ a bit, depending on how long an
asynchronous operation takes to execute.

Figure 3 shows the HTTP headers of RQ> and RS;. As
Org Y logs the request for data, it needs to send the TX ID
Log Request along with R(Q)s. This enables Org X to wait
for the TX to be committed to its local ledger and to execute
its inspect function (arrow 12 and 13). This works the same
for the response, i.e. Org X sends the TX ID Log Response
along with RS,, allowing Org Y to execute its inspect function
at the appropriate moment (arrow 14 and 15). Finally, each
organization also wants to verify whether its partner executed
the inspect function. Each organization therefore sends along
the TX ID which it will use to register its inspection. Sending
the TX ID Inspect Response in RQ)2 allows Org X to check
whether Org Y inspected its response, while sending the TX
ID Inspect Request in RS, allows Org Y to check whether
Org X inspected its request. It is important to note that when
waiting for a TX to be committed to the local ledger, a period
of two seconds is used between two consecutive inspects of
the ledger and a timeout value is used to determine when a
TX should be committed at the latest. This timeout is needed
to enable check one mentioned in section II.

The ‘Fabric® lifeline is further detailed in Figure 5, showing
the integration of Fabric’s TX flow into the logging mech-
anism. This interaction is executed for each CC function,
e.g. Logrequest as shown in the figure. For this use case, an
organization only needs to send TX proposals to its own en-
dorsing peer (arrow 1-3). As each organization is responsible
for its own actions, no other organizations need to endorse
the proposal, which benefits the scalability of this mechanism.
This does however imply that each organization can update any
KVP it wants. However, as each update is signed, backtracking
dishonest behavior is simple. The rest of the diagram shows
the normal TX flow as used in Hyperledger Fabric.

Finally, it is important to focus on Fabric’s finality aspect as
already mentioned in section II. Fabric can provide finality due
to the use of a deterministic ordering service. This service is
responsible for ordering incoming TXs from the organizations’
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Fig. 4. Sequence diagram showing the asynchronous execution flow of one
data exchange between two organizations.
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Fig. 5. Sequence diagram showing the integration of Hyperledger Fabric.

proxies, creating blocks, signing them for data integrity and
authentication, and finally delivering them to all the peers in
the network. Once delivered, blocks can never be changed, as
a Fabric’s peer always checks whether an incoming block’s
sequence number succeeds the height of its chain. This means
that, even when an ordering service is malicious, it can never
rewrite history of an honest organization.

IV. PERFORMANCE EVALUATION
A. Setup

A prototype is designed in order to evaluate the performance
of the proposed logging mechanism. Hyperledger Fabric v1.3
is used together with the Go programming language to write
CCs. On top of Fabric’s components, which are setup using
containers and command line instructions, a Node.js client and
proxy process are written incorporating Fabric’s Node SDK
[23]. The result is a fully containerized application which
is deployed in a Kubernetes cluster. Within this cluster, all
pods belonging to one organization are deployed on the same
machine. It is important to note that a Kubernetes cluster
is only used to ease the evaluation process, i.e. to rapidly
scale replicas, but that this setup could not be used for
real collaboration scenarios as the Kubernetes master nodes
could remove crucial container instances, e.g. the EP of an
organization. Figure 6 shows an overview of the containers that
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Fig. 6. An overview of the evaluation setup when the Kafka ordering service is used.

are required to run experiments for a collaboration consisting
of three organizations. The blue containers are required for
setting up Fabric while the red containers are required to share
an organization’s internal services. Transport Layer Security
(TLS) is not enabled for these experiments as there is no
research challenge in setting this up. Fabric’s default key-value
store LevelDB [24] is used as database in the peers’ memory.

The minimum number of organizations required is three
based on the following reasoning. Multiple organizations can
collude to tamper one or more blocks in their local copy of
the chain and recalculate all the hash values of the subsequent
blocks. This hack only works when at least 50% of the orga-
nizations do this, because the chain contained by the majority
of the organizations will be seen as the correct one. This is
under the assumption that the Kafka cluster does not exist
anymore, as otherwise the original chain could be regenerated.
Although theoretically possible, this scenario is assumed to be
unlikely, because it requires different organizations to agree
on corruption. A scenario with two organizations is thus not
allowed, because one organization then has a 50% share of the
network, meaning it can easily recalculate its local chain. A
possible solution for this could be that a third party is added
to supervise the collaboration, i.e. a non-endorsing peer in
Fabric’s terminology. Such a peer would only keep a copy
of the ledger and store the TXs without interacting with the
network. There is no maximum number of organizations, but
a collaboration between ten organizations already seems to be
a lot from a practical point of view.

According to the documentation, at least four Kafka brokers
and three, five or seven ZooKeeper nodes need to be available
[25]. For this use case however, a minimum of three Kafka
brokers is sufficient, based on following reasoning. The min-
imum number of in-sync replicas needs to be two in order to
avoid a single point of failure. The number of replicas needs
to be three in order to retain the minimum number of in-sync
replicas, i.e. keep the channel readable and writable, when one
Kafka broker fails. However, when there is such a failure, no

channel can be created as Kaftka topic creation requires all
replicas to be alive. For this use case, channel creation is not
necessary anymore once there is a channel available. Requiring
at least four Kafka brokers is therefore not strictly necessary
here.

Each organization’s EP needs to have a signing identity, i.e.
private key, to sign TX proposals. To allow the network to
verify its digital signature, the EP also needs a certificate. A
certificate chain consisting of an organization’s intermediate
certificate authority and a root certificate authority is used
in this setup, both deployed using Fabric’s CA server imple-
mentation. As signature creation and verification takes time,
they will certainly have an impact on time measurements. It is
important to note that in a real collaboration scenario, the root
certificate authority shown in Figure 6 will not be there as the
world’s largest certificate authorities will be used as root of
trust. After all, organizations could simply use the certificate
coupled to their domain to issue certificates to their peers,
while the certificates for the ordering service could be granted
to a third party hosting the ordering service.

B. Measurements

The same example collaboration shown in Figure 1 is used
to perform measurements, i.e. Org Y wants to pull data from
Org X and Org Z. Each organization runs an Ubuntu 18.04
VM on a 2.4GHz machine with four VMware vCPUs, 4GiB
of RAM and a hard disk partition of at least 16GiB. The VM
for the third party is given 8GiB of RAM. Network delay is
furthermore emulated using the tc command. As the average
ping round-trip time to Amazon servers in Western Europe
varies around 30 ms [26], the artificial delay of the egress
packet scheduler is set to 15ms.

In fact, a lot of parameters can be tweaked for these
experiments, not only latency L, but also block size B'S, block
creation timeout BT, number of organizations O, number of
data requests from the equipment builder to the manufacturers
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Fig. 7. The asynchronous approach has an average throughput of 17.6 data
exchanges per second. The logging mechanism is able to keep up with the
speed of the data exchange process.

per second E and size of the data S. The following parameter
setting is determined for the use case examined in this paper:

o L is set to 15ms as explained above.

e BS is limited to 512 KiB. The maximum size of an
individual TX is a few kilobytes at most as the TXs’ pay-
load does not contain raw request/response data, resulting
in blocks with around 100 TXs. The allowed maximum
number of TXs per block is set to a larger value in order
for it to be no separate block-cutting trigger.

e BT is set to 2 seconds, i.e. a partially filled block will
be cut 2 seconds after the first TX of the interval arrived.

e O is set to 3 for the example collaboration.

o I/ is set to 20. This parameter limits the number of
requests to the different manufacturers on channel 2. The
goal is to send 10 calls per second to each manufacturer.

o S is set to 1500 bytes, i.e. the internal service returns
1500 random hexadecimal characters in each JSON re-
sponse.

During the experiments, data requests are sent to manu-
facturer A and manufacturer B in an alternated way. The
duration of each data exchange cycle is measured at the client
of the equipment builder, while the duration of each logging
cycle is measured at its proxy. It is important to note that
the alternation between the different manufacturers is non-
blocking, i.e. data requests are sent periodically with rate E' us-
ing Node.js its set1nterval function. Five runs are executed for
the experiments, each time with a clean deployment, and the
average of these measurements is stored. The creation of the
different CC containers is not included in the measurements as
they are started beforehand. Finally, it is important to mention
that I/O operations are kept to a minimum, i.e. no console
messages in the Node.js processes appear and measurements
are written to disk when the experiment finishes. However,
Fabric’s logging information for the peer and orderer container
is set to DEBUG. This is needed for our implementation as
debug information is required for coordinating the start of
Fabric’s network.

B Data exchange Hmm Logging mechanism
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Fig. 8. The decoupling of the data exchange and logging mechanism processes
emerges when the number of organizations is scaled.

TABLE I
THROUGHPUT VALUES FOR AN INCREASING NUMBER OF ORGANIZATIONS
Organizations
3 4 5 6 7 8 9 10
To
(Exch./s) 17.9 | 258 | 34.1 | 41.1 | 479 | 53.7 | 61.0 | 64.4
T 89.6 | 86.1 | 853 | 82.2 | 79.8 | 76.8 | 76.2 | 71.6
(%)

Figure 7 shows the results of the asynchronous approach.
The average values are drawn together with error bars at each
5-th data point showing the standard deviation. The advantage
of this approach is immediately clear: 100 data exchanges
occur in about 5.68 seconds, resulting in an average throughput
of 17.6 exchanges per second approximately. The performance
is further evaluated by scaling the number of organizations
O. The same experiment is executed here, i.e. there is one
equipment builder which sends data requests to the different
manufacturers in an alternated way. Based on the reasoning
in the previous section, O is scaled from three to ten, i.e.
the number of manufacturers ranges from two to nine. The
number of data exchanges and the rate with which they are
sent E/ are adapted in order to obtain equivalent scenarios
where each manufacturer needs to send 200 responses. This
means that F ranges from 20 to 90 calls per second and the
number of exchanges from 400 to 1800. Other parameters
are kept constant and the same number of Kafka, ZooKeeper
and orderer nodes are used, i.e. 3 replicas of each type are
deployed.

Figure 8 presents the obtained results. The experiment is
repeated five times for each value of O and the corresponding
average values and standard deviations are drawn. It shows that
the data exchange process only takes a little bit more time to
complete for larger collaborations, while the time needed for
the logging mechanism increases significantly. The advantage
of the asynchronous approach is clear as the data exchange
process scales very well. The equipment builder, processing
the data, observes almost no additional delay. Table I shows the
average throughput 7, observed at the equipment builder and



the throughput rate 7;.. The latter is the rate between 7, and E,
whereby E' can be seen as the theoretical maximum throughput
value as data requests are periodically sent with this rate. The
results show that 7}, increases significantly because more and
more manufacturers will send their responses in the same time
interval. The obtained values show that tens of data exchanges
per second can be completed. Table I also shows that T
decreases. This can be expected as the equipment builder has
to execute an increasing number of operations for the logging
mechanism, which means that the data exchange process gets
delayed. Finally, the size of the chain is around 34 MiB when
O = 10, meaning the average size of a TX in the system is

34 _ :
4 = 4.8 KiB.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a logging mechanism for cross-organizational
collaborations is proposed, which enables organizations to
create an irrefutable log file. When the logging mechanism
is correctly executed, no disputes are possible about which
data was exchanged. When an honest organization detects that
something is wrong with the logging procedure, either due to
the presence of a dishonest organization, due to malfunctioning
or due to an attack, it can assess whether it is still useful to be
part of an unreliable collaboration setup. The logging mecha-
nism does not heavily interrupt the data exchange process as
all logging operations are executed asynchronously, allowing
to reach tens of data exchanges per second, even when the
number of organizations is increased.

The proposed architecture will be further investigated in
future work. The deployment, i.e. setup and tear down, of this
logging mechanism in a rapid, ad hoc way will be researched
as well as the associated cost in terms of time and money.
Finally, a dynamic scenario, where organizations can join and
leave the collaboration when needed, must be investigated.
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