
MTFS: Merkle-Tree-Based File System
1st Jia Kan

Department of Electrical and Electronic Engineering
Xi’an Jiaotong-Liverpool University

Suzhou, China
Jia.Kan17@student.xjtlu.edu.cn

2nd Kyeong Soo Kim
Department of Electrical and Electronic Engineering

Xi’an Jiaotong-Liverpool University
Suzhou, China

Kyeongsoo.Kim@xjtlu.edu.cn

Abstract—The blockchain technology has been changing
our daily lives since Bitcoin—i.e., the first decentralized
cryptocurrency—was invented and released as open-source soft-
ware by an unidentified person or a group called Satoshi
Nakamoto in 2009. Of many applications which can be im-
plemented based on the blockchain, storage is an important
one, a notable example of which is the InterPlanetary File
System (IPFS). IPFS is a distributed web based on a peer-to-
peer hypermedia protocol to make the web faster, safer, and
more open and focuses on public accessible files. To provide a
solution for private file storage in the blockchain way, in this
paper we propose a Merkle-tree-based File System (MTFS). In
MTFS, the blockchain is more than a trust machine; it is an
abstract of a cluster system. Distributed random nodes form a
tree network cluster without a central controller to provide a
secure private storage service and faster message propagation.
Advance proxy re-encryption algorithm is applied to guarantee
secure file exchanges under permission. Merkle tree will make
sure that the files are distributed among the service nodes in
a balanced way. The proposed MTFS can be used not only
for personal file storage and exchange but also for industry
requiring mutual trust in file uploading and downloading in
making contracts like insurances.

Index Terms—Blockchain, Private file system, P2P Network.

I. INTRODUCTION

The early Internet was created and used by academia mainly
for research purpose: The email was used to exchange ideas,
and the file transfer protocol (FTP) was used to exchange
data like software packages and experimental results. Note
that centralized file servers then couldn’t meet user demands
all the time due to their limitations in network bandwidth,
input/output (I/O) speed, and/or storage capacity. There are
two major use cases for FTP: Public file distribution and pri-
vate access. In the following years, hypertext transfer protocol
(HTTP) replaced FTP for public file distribution as the world
wide web (WWW) and browser technology became widely
popular. The concept of mirror was also used to better serve
users with higher speed from mirror servers geographically
nearer to users than the original server. Later the peer-to-
peer (P2P) technology brought another revolution, where a
client downloading contents also serves other clients with
downloaded contents, named a peer.

On the other hand, the development of private data storage
has been taking a different path: FTP/secure FTP (SFTP) can
be used for private data exchanges, but, because they are not
supported by Windows File Explorer, the common internet

file system (CIFS), a dialect of server message block (SMB)
protocol, is used in private file storage purpose more often,
especially in enterprises and commercial organizations. Due to
the insufficient performance of CIFS/SMB, more powerful and
user-friendly commercial applications like Dropbox, Google
Drive, and Baidu Yun appeared, and similar services based
on cloud also were directly integrated into operating systems
like Microsoft OneDrive and Apple iCloud. BitTorrent Lab
surprised us by introducing BitTorrent Sync (BTSync; now
Resilio Sync), which is a Dropbox-like application without
the requirement of a centralized server. Using existing P2P
network, BTSync gets files synchronized among personal
devices.

Bitcoin [1] based on blockchain and P2P technology. The
blockchain technology brought us into a new era in private
data storage as well. InterPlanetary File System (IPFS) [7]
intends to build a new distributed web.

Merkle-Tree-based File System (MTFS), which we propose
in this paper, is to provide a solution for private file storage
based on P2P network and the blockchain technology. It uses
the asymmetric cryptography including Proxy Re-Encryption
(PRE) [8] technology to provide secure and reliable private
storage under permission. Random nodes form a cluster with-
out a central controller to provide a private storage service.

II. USE CASE

The use of cloud services is common nowadays in enter-
prises, schools, governments and even households for private
files, and the proposed MTFS could provide an alternative so-
lution for private file storage/exchange based on the blockchain
technology. We illustrate the use case of the blockchain-
based private file storage/exchange in the insurance industry
as an example: People purchase insurance to cover accidental
loss in life. An insurance company asks a person to provide
certain information to insure him/her through risk evaluation.
However, because those submitted files are only kept on the
insurance company’s private server, it is not possible for the
insured to verify the submission of those files later unless the
insured kept the original reception as evidence. Blockchain-
based private file storage can provide mutual trust for both
insurer and insured. When the insured requests for insurance
services, all supported materials are provided in a restricted
network space, which are immutable and reliable.

ar
X

iv
:1

90
2.

09
10

0v
2

 [
cs

.N
I]

 1
3

A
pr

 2
01

9

III. DESIGN

Unlike public files which are usually shared among users
with common interests, like movies, albums, open courses and
software packages, private files are unique to each user and
include confidential information (e.g., personal documents,
photos and videos). Hence security is critical to private file
storage in addition to speed and stability.

A. Architecture

In P2P, a peer is defined as both uploader and downloader,
which combines the role of a client and a server. A major
concern for a P2P system is its relatively lower performance;
lots of peers are behind firewalls and often connected with
slow home connections like ADSL having much smaller
uploading bandwidth than downloading one.

In MTFS’ design, a node is consisted of a batch of servers
with professional connection sitting in a data center. The
host is assigned with public IP address(es) and accessible
open port(s) and the power supplied in 7x24. To build a
modern and efficient service, we must base it on fundamental
infrastructure.

B. Cryptography

IPFS [7] comes without built-in cryptography. To put a file
in a public place with the content encrypted safely, asymmetric
cryptography algorithm needs to be applied to make sure that
only the private key owner can decrypt the file content. In the
application level, OpenPGP or GPG can be used to encrypt
and decrypt the file content.

Because nowadays mobile users take a large proportion,
the limited bandwidth of mobile connections and the limited
power and storage space of mobile devices should be consid-
ered in design. Consider the scenario of sending an encrypted
file to multiple users as an example. The following actions
should be taken in this case:

1) Collect each user’s public key.
2) Encrypt the file with each user’s public key.
3) Upload encrypted files to a server.
Note that the step 2 costs too much computing power and

local storage and that the step 3 costs too much bandwidth.
To address these issues, PRE [9] is used to re-encrypt the
decoding capsule without modifying existing cipher texts.

C. Broadcast network

P2P network is a mandatory component of the blockchain.
Among the three types of P2P communication models (i.e.,
pair-wise, group-wise, and broadcast), broadcasting is the
most common requirement as every transaction or new block
discovery requires to be announced in the whole network as
efficiently as possible.

The broadcast network can be implemented with the gossip
protocol [4] or DHT/KAD network [3]. The gossip protocol is
extremely reliable, but it cannot ensure that the message can
reach every corner of the network within a fixed time. The
propagation convergence could take lots of time.

We propose a tree network for broadcasting as show in
Figure 1. In the tree topology, a node joins the tree as a leaf one
by one, and a protocol is set to ensure the tree is constructed
as balance as possible. In a tree network, the longest distance
between any two nodes will be less than 2 times of the tree
height. That means even in a binary tree topology, the message
can be passed to the farthest node with less than 2 times the
tree height hops. It might be the most efficient way for message
broadcasting in logic.

Fig. 1. Tree-based broadcast network.

In the tree-based broadcast network, message could be
initialized from any tree branch node. A binary tree node
will pass the message to its parent and two children from
the original node. A neighborhood receiving the message will
forward it to other neighborhoods except the one from which
it received the message.

Note that the tree network has also a disadvantage compared
to the gossip protocol: A single node failure can block the
message propagation, because there is only one way for a
message to traverse. In the following, we discuss two options
to address this issue.

1) Tree-based network with redundant nodes: This option
brings redundancy to a node by extending it to a cluster of
multiple nodes. For the experiment purpose, we consider a
cluster of up to 3 nodes. Inside the cluster, the nodes interlink
with one another.

2) Tree-based network with redundant connections: In this
option, each node interlinks with not only the nearest neighbor
but also neighbors within several hops. This makes the tree
network redundant when a direct connection to the nearest
neighbor fails; a message still can be passed to the nearby
nodes.

D. Blockchain
The last generation of P2P application like BitTorrent lacks

the incentive mechanism. Users can join the file downloading
any time. In MTFS, it’s required for the contributor (i.e.,
miner) stay online as long as possible.

The blockchain technology will take a very important part
in MTFS design. When a user requests for certain file storage,
a contract would be signed between the user and the system. A
subscription relationship will be set up, unless the user decides
to cancel or the node is about to quit.

IV. IMPLEMENTATION

In the design of MTFS, Merkle tree [2] is used to split
encrypted content to small pieces of objects (less or equal
to 1 MB) and verify the completeness. With all the existing
design including [9], GraphChain [5], Tree network [10], we
are able to see the big picture of a private storage system now.

User will be able to start using MTFS by generating a
public/private key pair. To store a file on the network, the
content needs to be encrypted with the user’s public key first.
After the cipher text generated, a storage contract between the
user and a resource contributor will be signed, and the contract
is recorded in blockchain. MTFS will host the encrypted
content for the user.

A. Tree network construction

The tree network is the backbone of MTFS system. It
interlinks the distributed system’s resources, plays the role of
communication infrastructure and implements self governance.
Each node in the network should be a server with public IP
address and open accessed port.

The first node in a tree network becomes root node, whose
group identifier (ID) is an empty string. Any node in the tree
can have up to two children nodes. After the establishment of
a connection, the parent node assigns the child node a group
ID. Note that, during the establishment of a connection with
the parent node, the child node itself can be a parent node for
other nodes.

1) Open branches: The tree network is used for message
broadcasting; the information of open branches (Figure 2)
is spreading and synchronized among nodes by message
broadcasting. Each node keeps a copy of information listing
available branches within the whole tree network.

Two message protocols are defined for the open branches
information management: AVAILABLE BRANCHES
and DISCARDED BRANCHES. The message
AVAILABLE BRANCHES is used to announce new open
connection points to the network that new nodes can join
the network. Another message DISCARDED BRANCHES
indicates that current branch already accepts a child node
connection, so the node’s information will be removed from
the list of globally available open branches.

When a child node managed to connect to a parent node,
the parent node sends a DISCARDED BRANCHES mes-
sage to network due to its two available branches taken.
Meanwhile, the connecting child node will send a message
AVAILABLE BRANCHES after its parent node assigns it a
group ID, telling the network another two branches are open.

2) Group Naming: A node connects to a parent node; there
might be two branches available for attaching. A binary tree
has a left and a right branch. When a branch is attached, the
parent will response a GROUP ID message to confirm the
official group ID of the newly-joined node. This action is to
prevent a node to connect to a tree branch which is already
taken by other node. In such a case, the parent will force to
disconnect the duplicate connection.

In a binary tree, a group ID is represented in a binary
format with a varied length. The group ID of a root node
is an empty string, while its left and right child node take 0
and 1 respectively, as shown in Figure 1. Any hash hex string,
i.e., message digest like sha1 or md5, can be easily converted
into a binary representation. As the tree network grows, the
hash string can be mapped to the outer nodes by the same
prefix in a distributed manner.

B. Discover of nearby nodes

As the tree network grows, there are two things for each
node to memorize: First is the available branches, and second
is all the nodes’ host information. The second requirement
will be extremely expensive when the network size is large.
Instead of storing all the nodes’ host information, it’s cheaper
to remember the nearby neighbors’ IP and port in memory. We
can set a distance k, ask node to remember the nodes within k
steps of hops. k must be equal to or larger than 2; otherwise it’s
meaningless as any node already knows the direct neighbors’
information such as its parent and children.

1) Recursive node discovery: If the encrypted file size is
more than 1 MB, the file is divided into smaller objects by
Merkle tree. Otherwise the file doesn’t need to be divided, and
it can be directly uploaded to a node. By comparing the object
hash with the existing group IDs, user can recursively find the
outermost node in the tree.

C. Group Path

0 1

00 01 10 11

000 001 010 011 100 101 110 111

Group ID in Hex:
4ce9d83b48a04562adbc6c9ec2f84d5f

In Decimal:
102235518545104874782406856189893168479

In Binary:
10011001110100111011000001110110100100010100000010
00101011000101010110110111100011011001001111011000

010111110000100110101011111

Prefix: 100

Fig. 2. Tree-based network Naming and Group Path

For a given hex hash string of node ID, it can be represented
in a binary format. Comparing it with the existing network, we
can find nodes whose group IDs are the prefix of the given
hex hash string. Those nodes are defined as Group Path as
shown in Figure 2.

D. Local encryption

PRE is an asymmetric encryption algorithm. When user
uploads a file to the tree, it is required for the user to encrypt
the files with the public key. Besides the cipher text, another
file named capsule is generated. The encrypted cipher text can
be decrypted with user’s private key and the capsule.

Plain text is encrypted with PRE, resulting in a cipher text
file and a capsule file. The cipher text file size is usually as
big as the plain text, while the capsule file size is small.

E. File and folder object

The objects are generated from the encrypted content using
Merkle tree. If the encrypted content is less than 1 MB, only
one object is created. In this case, root hash equals to the
encrypted content hash. Otherwise, a file object named with
root hash suffix ” mt” is generated which contains Merkle tree
structure of file objects. Besides, there is capsule file named
with root hash suffix ” capsule”.

We can decode the file content with user’s private key and
the capsule, but the file name is lost. The file name and size
is stored in the folder object.

1) Convention object size: The convention object size of
MTFS is 1 MB (i.e., 1024*1024 bytes). It is the base size unit
in MTFS. A small document file usually requires only one
unit of the object. For large-size photos or videos, however,
more objects are needed; in such a case, the allocation can be
done in parallel for speedup.

F. User and nodes

1) File uploading: User’s root folder object is created when
the user uploads the first file or creates a sub folder under the
root folder.

The user is tended to choose the the edge node to store
new objects; we can imagine the network like a city, where its
central area is always busy with traffic jam, while its country
side far from the central area has less traffic and enough land.

The user’s files, once encrypted and split into objects, are
uploaded to the tree by comparing group ID and object hash
and finally stored into MTFS. Then, the user’s root folder
information is uploaded to MTFS as an object. The folder
object is updated following the same process as the file object.

As the folder and file objects are saved into the tree,
a contract is set up between the user and the nodes. The
root folder object’s hash is committed into blockchain as a
transaction. Besides the root hash, the transaction also includes
the group ID information.

2) File retrieving: Inversely, when user browses file in
MTFS, the first step is to look for the root folder information
on the nodes. The user’s root folder object and location
information (i.e., group ID of storage) is committed as the
transaction of blockchain. With object ID and group ID, it’s
easy to retrieve the content of the root folder object. If the
folder content is larger than 1 MB, the user will follow the
procedure to gather all the folder objects and decrypt them.

3) Folder object schema: User checks the group path on
the tree, where there should be a node hosting the user’s
information (assume the network keeps 3 replications).

A folder object is different from a file object. A folder object
contains the encrypted folder data. Data are represented in
JSON format. Entities in folder data link to other file object
and folder object. File object size indicates the file size, and
folder object size indicates the total file size under the folder.

This information is useful to calculate how much storage
consumed by the user.

If the file size is larger than 1 MB, use the Merkle tree root
hash; otherwise use the hash of the file content.

G. File exchange
File exchange is similar to sending an email to another

user. A sender should know the address of a receiver, i.e., the
public key. The file sending action is a blockchain transaction
operation; the transaction shows who and which file on MTFS
will be added into the receiver’s folder.

MTFS is a secure system with permission. In the operation
of file sending, no one except the owner has the permission
to modify the folder information. However, user may interact
with MTFS from a mobile device. It would be too expensive
to do operations like downloading, decrypting, modifying,
encrypting, and uploading in this case. Note that, if the user
wants to modify the content, this series of operations has to
be done. What if the user does not modify the content, was it
possible to reduce the operation steps? PRE is introduced for
this case.

With PRE, the file owner can encrypt the file content into
a cipher text and a capsule. The cipher text is as long as the
content, but the capsule is usually very short. The capsule can
be re-encrypted with sender’s private key and receiver’s public
key. Once the receiver accepts the re-encrypt capsule granted
by sender, the receiver can easily decrypt the cipher text with
the new capsule and his or her own private key.

H. Replication and verification
After the file is uploaded to the system, the file must

replicate itself for several copies on the group path. Because
the objects on the node is protected with authentication, the
other nodes on the group path do not have the permission to
pull the objects. So, it is required that the node pushes objects
to the replicated nodes. The verification of the storage needs
to be performed periodically, as the object content may be
damaged, lost, or even the node may try to cheat by claiming
that they have the objects but actually not.

V. CONCLUSIONS

In this paper, we have proposed MTFS and discussed
its many aspects from the technology requirements to the
design and implementation with major focus on cryptography,
blockchain, network and storage schema.

Based on a novel design we building a secure private file
storage system using existing technologies: A tree network is
used as a backbone network for storage with high performance
broadcasting, where only servers with public IP addresses are
allowed to join as nodes to avoid the issues related with
firewall and gateway NAT in achieving higher performance.
Also PRE encryption is introduced to re-encrypt the decoded
capsule without modifying existing cipher texts. Base on these
component technologies, the schema of storage is designed,
and MTFS can provide a high-performance solution for a
secure private file storage service based on the blockchain
technology.

REFERENCES

[1] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
[2] Merkle, R. C. (1987, August). A digital signature based on a conven-

tional encryption function. In Conference on the theory and application
of cryptographic techniques (pp. 369-378). Springer, Berlin, Heidelberg.

[3] Maymounkov, P., & Mazieres, D. (2002, March). Kademlia: A peer-
to-peer information system based on the xor metric. In International
Workshop on Peer-to-Peer Systems (pp. 53-65). Springer, Berlin, Hei-
delberg.

[4] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S.,
... & Terry, D. (1987, December). Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixth annual ACM Sym-
posium on Principles of distributed computing (pp. 1-12). ACM.

[5] Kan, J., Chen, S., & Huang, X. (2018). Improve Blockchain Perfor-
mance using Graph Data Structure and Parallel Mining. arXiv preprint
arXiv:1808.10810.

[6] Bi, W., Yang, H., & Zheng, M. (2018). An Accelerated Method
for Message Propagation in Blockchain Networks. arXiv preprint
arXiv:1809.00455.

[7] Benet, J. (2014). IPFS-content addressed, versioned, P2P file system.
arXiv preprint arXiv:1407.3561.

[8] Wikipedia, (2017). Proxy re-encryption - Wikipedia, the free encyclo-
pedia. Available at: https://en.wikipedia.org/wiki/Proxy re-encryption

[9] David, N. (2018). Umbral: a threshold proxy re-encryption
scheme. Available at: https://github.com/nucypher/umbral-
doc/blob/master/umbral-doc.pdf

[10] Kan, J., Zou, L., Bella, L., & Huang, X. (2018). Boost Blockchain Broad-
cast Propagation with Tree Routing. arXiv preprint arXiv:1810.12795.

http://arxiv.org/abs/1808.10810
http://arxiv.org/abs/1809.00455
http://arxiv.org/abs/1407.3561
http://arxiv.org/abs/1810.12795

	I Introduction
	II Use Case
	III Design
	III-A Architecture
	III-B Cryptography
	III-C Broadcast network
	III-C1 Tree-based network with redundant nodes
	III-C2 Tree-based network with redundant connections

	III-D Blockchain

	IV Implementation
	IV-A Tree network construction
	IV-A1 Open branches
	IV-A2 Group Naming

	IV-B Discover of nearby nodes
	IV-B1 Recursive node discovery

	IV-C Group Path
	IV-D Local encryption
	IV-E File and folder object
	IV-E1 Convention object size

	IV-F User and nodes
	IV-F1 File uploading
	IV-F2 File retrieving
	IV-F3 Folder object schema

	IV-G File exchange
	IV-H Replication and verification

	V Conclusions
	References

