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Abstract—We present a blockchain based system that allows
data owners, cloud vendors, and Al developers to collaboratively
train machine learning models in a trustless AI marketplace. Data
is a highly valued digital asset and central to deriving business
insights. Our system enables data owners to retain ownership and
privacy of their data, while still allowing AI developers to leverage
the data for training. Similarly, AI developers can utilize compute
resources from cloud vendors without loosing ownership or
privacy of their trained models. Our system protocols are set up
to incentivize all three entities - data owners, cloud vendors, and
Al developers to truthfully record their actions on the distributed
ledger, so that the blockchain system provides verifiable evidence
of wrongdoing and dispute resolution. Our system is implemented
on the Hyperledger Fabric and can provide a viable alterna-
tive to centralized AI systems that do not guarantee data or
model privacy. We present experimental performance results that
demonstrate the latency and throughput of its transactions under
different network configurations where peers on the blockchain
may be spread across different datacenters and geographies. Our
results indicate that the proposed solution scales well to large
number of data and model owners and can train up to 70 models
per second on a 12-peer non optimized blockchain network and
roughly 30 models per second in a 24 peer network.

I. INTRODUCTION

A number of Al Marketplaces [1]]-[6] are being set up as
collaboration hubs to enable different stakeholders in the Al
value chain to connect, develop, and monetize Al assets i.e.
data and models, in a secure manner. Additionally, these mar-
ketplaces aim to accelerate innovation, promote responsible
use of Al and fair distribution of value generated by the
development and use of Al assets. For example, consider a
group of k hospitals each of whom have a certain amount
of patient healthcare data, but lack expertise to jointly build
Al models. At the same time, Al developers in academia
and industry generally lack access to patient healthcare data.
In this setting, an AI marketplace can enable collaboration
between the hospitals (i.e. data owners) and Al developers
to securely build models to assess patient health. Moreover,
cloud vendors can contribute GPU compute resources to train
these models and any model building blocks can be reused
by other developers. Finally, these models can be discovered
and consumed by businesses including clinics, insurance, and
pharmacy companies.
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A critical factor impeding the success of both centralized
and decentralized AI marketplaces is that they do not guar-
antee data and model privacy [7]-[9]. As a consequence,
both data and model owners can easily lose ownership of
their assets and are unable to derive value from them in a
sustainable manner. Moreover, large scale sharing of data or
models may not be feasible due to regulatory constraints [[10]]
and also because owners might lose competitive intellectual
property and economic advantage. Additionally, centralized
Al marketplaces are dependent on a trusted central entity to
maintain a verifiable audit trail of data sharing and training,
which has the potential to create digital monopolies, increase
costs, and is open to malpractice.

This work presents the design and architecture of a
blockchain based solution that preserves the privacy and
ownership of Al assets in a decentralized Al marketplace that
has no trusted central entity. Our system considers three classes
of market participants: data owners (DO), model developers
or owners (MO) and cloud owners (CO) and allows them to
collaboratively train AI models on available datasets using
federated learning [[11]]. In our system, data privacy is ensured
by splitting each dataset across multiple COs so that no single
entity on the blockchain has access to the entire dataset. Each
CO that holds a data subset then participates in multiple
rounds of training using federated learning in order to build
the model. Model privacy is guaranteed by training models
that are encrypted using fully homomorphic encryption, so
that model predictions are unusable without the decryption
key [12]]. Our system has been implemented using the open
source Hyperledger Fabric [13]] wherein all stakeholders inter-
act with the system through chaincode functions (equivalently
smart contracts on Ethereum network). We present the design
of these functions, which incentivize truthful recording of
all transactions on the blockchain including splitting and
distribution of datasets and the scheduling and execution of
multiple rounds of training across COs. This ensures that the
system provides verifiable evidence of expected behavior or
wrongdoing and dispute resolution, thus building trust with all
stakeholders. For instance, the system allows an MO to easily
verify that the data as proposed by the DO is indeed the data



used to train her model. Similarly, an MO can verify that each
CO participating in federated learning has indeed submitted a
unique intermediate model based on a round of training on its
data, as opposed to submitting a copy of a trained model from
another CO.

We have deployed our solution across a blockchain network
composed of multiple organizations spread across three dif-
ferent locations with each organization contributing up to 24
peers. We execute transactions related to collaborative training
of Al models and present experimental performance results
that demonstrate the latency and throughput of these transac-
tions under different network configurations. Our experiments
show that our system scales well and can support training of
up to 70 models/second with sub second latencies observed
for recording information in the blockchain.

The rest of the paper is organized as follows. Section
presents the design and architecture of our system including
details of its chaincode functions. Section [l1I| presents exper-
imental evaluation results, followed by sections and
which present related work and conclusions respectively.

II. SYSTEM OVERVIEW

Privacy preserving environments for data sharing and model
training when data, models, and compute resources are offered
in a trustless setting, require both efficient protocols and
platforms capable of truthfully recording and verifying the
sequence of actions by different stakeholders.

Stakeholders. Our system models three marketplace stake-
holders: data owners (DO), cloud owners (CO), and model
owners (MO). The DOs own large proprietary datasets (e.g.
healthcare, self-driving cars, compliance data, etc.), which are
especially valuable to train accurate Al models. They wish to
monetize this data and sell it for Al training in a safe, secure,
and transparent manner multiple times without loosing its
ownership. By being part of a marketplace, DOs can increase
the outreach and monetary gains that they can derive from their
data, which may otherwise be utilized minimally or lie unused
in their datalakes. The C'Os are cloud service providers, who
wish to sell storage and GPU compute resources needed to
train Al models. By being part of a marketplace, the COs
can increase their customer base and offer subscription-based
storage and compute services at competitive prices. The M Os
are enterprise or freelance Al developers who have the skills
and experience to develop sophisticated Al models, but lack
the data needed to train the models. The MOs eventually
wish to monetize their trained models and therefore do not
want to loose ownership of their models in the process of
training them. By being part of a marketplace, MOs can obtain
access to diverse datasets that meet their training requirements,
GPU compute resources at competitive prices from COs, and
ultimately lower the overall cost of training AI models. Figure
E] shows the different marketplace stakeholders, each of whom
is motivated to participate in the marketplace based on their
personal economic gains.

System Operation. There are two distinct phases of system
operation for training Al models so that both the DOs and
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Fig. 1: Al Marketplac participantsnd their interaction
with Blockchain via different chaincode functions (i.e. smart
contracts). We have implemented 15 chaincode functions to
interact and store information in the blockchain.

MOs retain privacy of their assets, i.e, Data distribution phase
and Collaborative model training phase.

Data distribution phase. The protocol begins with DOs ex-
pressing their intent to share their datasets in the marketplace
for Al training. However, any exposure of the whole dataset
can lead to data leaks to other parties in the system. In order to
preserve the privacy of their datasets, the DOs can potentially
share encrypted datasets, in which case Al training would need
to be performed on encrypted data. However when MOs wish
to monetize trained models, model inferencing would again
require data to be fed in encrypted form. This implies that MOs
may need to depend on DOs for encryption of new input data
for inference or possibly decrypting the prediction response.
Our system uses an alternative novel approach wherein the
dataset is split into multiple subsets and stored across COs
so that no single CO has full access to the dataset and
each CO holds a small fraction of the overall data. The DO
enters into an offline contract with a set of COs and securely
transfers the data subsets off-chain to the individual CO’s. The
COs record the receipt of data subsets on blockchain, which
is verified and acknowledged by the DO. While recording
information on blockchain, each entity uses pseudo identifiers
for anonymization and the actual identities of entities is not
revealed. Thus only the DO knows the identities of all COs
that store its data and none of the COs know each other.

Collaborative training phase. Once a dataset is distributed
to the C'Os, it is available for purposes of Al training in
the marketplace. We refer to these data subsets as privacy
preserving data subsets (PPDS). An MO develops a model
with the help of data samples that DOs expose and obtains
permission to train the model on the entire dataset. Since the
dataset is distributed across multiple COs, our system employs
federated learning to train the Al models, wherein each CO
contributes compute resources towards training. However, in
federated learning, all COs obtain access to the final trained
model, which implies that MOs would loose ownership of
their models during the training phase. In order to avoid this,
the MOs encrypt their models using homomorphic encryption
and the training proceeds in rounds. During each round, the
MO shares the running version of the encrypted model with
all COs. Each CO trains the encrypted model using its own



data subset and returns back the trained model to the MO.
The MO aggregates the individually trained models are shares
the updated version with the COs for a next round of training,
eventually obtaining a final trained encrypted model. Training
of homomorphically encrypted models is a well studied area
[14] [15]] [16]. We do not delve into the details of the model
encryption but choose an approach that seamlessly blends
homomorphic encryption with federated learning.

Additionally, since M Os have access to partially trained
models at the end of each round, they can potentially learn
characteristics of data stored by each CO. In order to avoid
this, during each each round, a random set of COs holding
a dataset are utilized for training. In this manner, while all
data subsets are eventually utilized for training over multiple
rounds, it becomes difficult for M Os to decipher the data char-
acteristics of individual COs, thereby guaranteeing complete
integrity of data ownership.

There are a number of challenges in realizing the above
steps in a trusteless setting using blockchain. Specifically, how
does one ensure that the market operation is transparent to
all parties? How can one build a trusted platform for data
sharing and collaborative training such that participants can
record actions without exposing data and models? How can
the protocol ensure that parties cannot collude with each
other? How can all parties record their actions such that the
system automatically provides evidence of expected behavior
or wrongdoing and dispute resolution?

Our system leverages Blockchain to enable all stakeholders
to truthfully record the sequence of events during data sharing
and training. Blockchain has the advantage of enabling trust
between different non-trusted entities in a marketplace. For
details of how blockchain works, one can refer to [[13]] that pro-
vides a comprehensive overview of an open source blockchain
implementation, the Hyperledger Fabric. To provide complete
transparency and preserve the ownership in a trusted manner
our system uses blockchain for recording and validating all
operations. We assume that all stakeholders subscribing to the
protocol will either contribute nodes to the blockchain network
to facilitate their requests and integrate the APIs to interact
with the blockchain for all required events as specified in the
protocol. In this paper, we turn our attention to designing the
system and protocol that would enable all the stakeholders to
participate in Al training without the fear of losing ownership.
With our system, existing techniques for model encryptions
and data splitting can be easily plugged in. Therefore, we delve
less on individual mechanisms of optimized data splitting or
model encryptions and focus completely on designing a system
that would enable ownership preservation.

Existing works like [7] [[17] uses the blockchain to both
store data and train models. However, our system decouples
the storage of data and models from the blockchain (ie., peers
in the underlying blockchain network do not store data or train
models). This design brings in twin benefits. Firstly, unlike [7]]
the network nodes need not perform redundant model training
operations to provide proof of work or achieve consensus. This
eliminates the computation and storage overhead from network
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Fig. 2: Mapping between solution and blockchain based enti-
ties

nodes. Secondly, the communication with blockchain can be
designed as shorter messages using blockchain for recording
purposes only. This naturally enables existing data and model
platforms to plug-in and integrate into any blockchain network
seamlessly. Figure [T] shows the interactions of the participating
parties with the blockchain network. The interactions are
defined in the subsequent sections.

A. The protocol and Interaction with Blockchain

In this section we walkthrough the protocol and interaction
with the blockchain. Figure [T] illustrates the interaction of dif-
ferent stakeholders with the blockchain. As mentioned earlier,
we assume that the different stakeholders will use our API’s
to truthfully record the events in the blockchain. Our design
ensures that blockchain performs a few critical validations and
verification and the stakeholders will not be able to proceed
without these validations. This makes blockchain relevant and
bypassing the blockchain interactions would not be feasible.

1) Blockchain members and assets: As illustrated in fig-
ure [2| our solution for Al marketplace leverages capabilities
of the underlying blockchain network to define members,
assets, and transactions. Members are essentially participants
or stakeholders in the AI marketplace which includes COs,
MOs, and DOs. Real world resources are modeled as assets
in the blockchain, which in our case includes the Data, Data
Subsets, and Models. Transactions (or chaincode functions)
enable members to perform a set of predefined operations on
the assets related to collaborative training. Member access to
perform operations on assets is controlled by the access control
list (ACL).

New members are created through the Create calls. A
sample representation of DO in the blockchain is illustrated in
the listing |1| (members are treated as assets in the blockchain).
For example, createDO call returns a unique identifier and
allows a DO to register and join the marketplace. Similarly
other create calls are used to create MO and CO entities and
their identifiers are recorded in blockchain.

Listing 1: DO definition

asset DO identified by id {
o String id
o String name optional

o String organization optional
o String howMany optional

}

Our solution defines 10 different types of assets to store
different entities and their states. We enumerate a few critical



assets and describe in detail their purpose throughout the
protocol. Assets are essentially represented as data structures
within blockchain and used by C'Os, M Os and DOs to record
information during different steps of collaborative training.
For instance, corresponding to each CO, there exists a an
asset called Cloud Instance (CI), which links the CO to the
Data chunk it holds (including data subsets and their replicated
counterparts). Three main components in the C'I are the subset
ID, the CO identifier, and a field that tracks the status of the
Data Subset. It should be noted that the actual identifiers of
COs, MOs, and DOs (i.e. an ip address or a URL), is never
actually stored on the blockchain. Therefore, no parties can
query the blockchain and obtain the identifier to establish a
direct contact with C'O. The blockchain provides a pseudo-
random identifier for every member, which is used to store
and refer to the members for purposes of querying.

Another asset called Train Couple (T'C) is used to represent
a model training instance, which associates a model with a data
subset. A T'C has a DSS and a model object as its member
variables. The status field indicates whether the model is ready
to be trained or has completed the training phase. The listings
and [3| show the C'I and T'C' asset definitions respectively as
represented in the blockchain.

Listing 2: C'I metadata

asset CloudInstance
identified by id (

o string id

--> CO co

--> DSS dss optional

o CIStatus status optional

o String nonce optional

o String hash optional

Listing 3: TC metadata

asset TC identified by id {
o String id
--> DS ds
——> Mod mod
o TCStatus status
o Integer rem
o Boolean paid
o Integer round

o Integer rounds optional

}
}

Similar to assets, our solution includes about 37 different
transactions for enabling collaborative training between differ-
ent stakeholders in a trustless setting. About 15 of these are
called directly by different members while the remaining ones
are called from within other transactions. We enumerate a few
critical transactions below.

The StartRound transaction (listing [4) is used by the M Os
to begin the training process wherein blockchain chooses a
random set of data subsets which are trained by each cloud
owner independently for federated learning.

Listing 4: Chaincode for StartRound Transaction

func (t sDataMarketChaincode) StartRound(stub shim.ChaincodeStubInterface, args
[Istring) peer.Response {

//Initiate a TC

var tec TIC

tcid := args([0]
tcBytes, err := stub.GetState (tcid)
if tcBytes == nil {

fmt.Printf("tc with id %s do not exists\n", tcid)

return shim.Error("tc do not exists")
}
/Check if at model tra
if tc.Status != "APE
fmt.Printf ("IC
return shim.Error ("tc

}

he TC is ap

ning can s

with id %s no n", tcid)

not yet ap

rack the number of rounds

tc.Round
//Get random list of DSS to tra

. Each CO updates re
tc.Curdssidlist = nil

var r int = (tc.Round+l) % 2

var ds DS

dsid := tc.Dsid

dsBytes, err := stub.GetState(dsid)

numk

tc.Rem = 0
for i := 0; i < len(ds.Dssidlist); i++ {
var dss DSS
dssBytes, err := stub.GetState(ds.Dssidlist[i])
if i%2 == r {
tc.Curdssidlist = append(tc.Curdssidlist, dss.Id)
tc.Rem += len(dss.Ciidlist)
)
)
fmt.Printf (" o
//Store the s ir
err = stub.PutState(tcid, newTcBytes)
return shim.Success (newTcBytes)

For sake of brevity we skip other transactions but describe
them in the context of protocol in the subsequent sessions.

B. Data Distribution and Acknowledgement in Blockchain

One of the first steps involved collaborative training is

the splitting and replication of a dataset by the DO among
different C'Os. In our solution, both these steps are performed
intelligently to ensure that the ownership of the dataset is
preserved and that malicious C'Os do not falsely claim to have
trained their models using their data subsets, without actually
training them.
Data Splitting. As explained previously, the DO makes an oft-
chain agreement with a certain number of COs and sends the
data subsets to them securely. In our solution, no information
about the actual dataset itself is recorded on the blockchain to
ensure its privacy. The DO splits the dataset such that each
CO has a small subset of the entire dataset. Moreover, the
splitting is done in a skewed fashion i.e. no subset has all the
classes of the data or range of values. Also, no subset has
majority of the data from a single class. The first condition
ensures that no single C'O can derive meaningful information
about the dataset, while the second condition ensures that
using multiple queries or using multiple model iterations, an
MO cannot interpret the data characteristics.

In terms of steps recorded on blockchain, the DO creates
a C1T instance by using the transaction ‘CreateCI’ for each
chunk of data that gets distributed. The initial status is set to
‘Free* and all the COs are notified. The C'Os actively wait for
events on blockchain and upon receiving a notification, each
CO prepares itself to receive the data offchain from the DO.
Thus each C'O knows the identity of the DO and vice-versa,
however none of the C'Os know each other.

A fraudulent CO can claim to have received a different
data subset than the one provided by the DO. In order to
avoid this scenario, our protocol requires that the C'O declare
the hash of the data subset it receives on blockchain. The CO
records the hash values of its data subset in the asset C1I.
It uses the transaction JoinC'I to update the hash value on
blockchain. The DO consults the blockchain and verifies the
hash declared by the C'O against its own computation of the
hash on the data subset that it distributed to the CO. If there is
a mismatch, the DO can tag the C'O as fraudulent. The DO
uses the transaction VerifyClI to update the status in the
C1 to ‘verified® if the DO sees a matching hash, otherwise it
remains set as non-verified. This step ensures that C'O receives
no faulty data subset. Once a DO verifies the hash of a CO’s
data subset and marks the CI status as verified, the data
chunks become ready for training.
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Data replication. In order to save GPU compute resources, a
fraudulent C'O can also claim to have trained the model on
its subset without actually performing the required training
(by supplying a dummy model). To prevent this scenario,
our solution also requires that each data subset be replicated
(i.e. copied) across multiple C'Os as illustrated in figure
We use the term replicated subsets to refer to data subsets
that are replicated. The replicated subsets serve a different
function compared to PPDS. The former ensures that model
training was indeed performed correctly on each data subset,
while the later is used for the purpose of preserving ownership
without exposing the full dataset. During federated learning,
model training rounds are performed by all the mn COs that
hold a subset of a dataset. Thus, if a fraudulent CO reports
an inaccurately trained model, this can be compared against
other COs that hold the same replicated subset. As long as
the number of fraudulent COs is < n/2, any party can verify
whether the C'O actually trained the model using its data
subset or provided a fake model.

In terms of steps recorded on blockchain, for each dataset,
‘CreateDSS’ is called to have an entry for each of the data
chunks in blockchain, i.e. both replicated and PPDS. After
each round of training, each C'O records a hash of its partially
trained model onto the blockchain. However, as the hash
values of models trained by COs that hold replicated data
subsets would be the same, a fraudulent C'O can still read these
hash values from the blockchain and report these back again
as proof of a trained model. To overcome this problem, each
CO appends a random nonce to its partially trained model
and then computes the hash. The C'O then reports both the
hash and the nonce onto the blockchain. Since no two COs
can produce the same nonce, the hash reported by each CO is
guaranteed to be different. Thus if a fraudulent CO copies any
other C'O’s hash and/or nonce and reports it as its own, then
the C'O reporting the same hash at a later time on blockchain
can be concluded as fraudulent. As long as the number of
fraudulent COs is < n/2, the correct model corresponding to
each data subset will be available via consensus. Additionally,
any party that has access to the partially trained model (e.g.
MO) can append the nonce reported by the C'O to the model
and compute its hash to verify the hash reported by the C'O.

C. Training via Federated learning steps on blockchain

Once a DO shares and verifies the data chunks held by
different C'Os, the corresponding C'Os are ready to partici-
pate in the training process via federated learning. The DO
publishes details related to its dataset and a contract binding
which an MO can lookup these details and use the dataset
for training. When an MO is convinced about the dataset and
the associated contract, it expresses its intent to train an Al
model on the dataset. The training of models via federated
learning proceeds in rounds. Since the dataset is distributed
across multiple C'Os, during each round of training the MO
supplies the current running model to all C'Os. At the end of
the training round, the MO receives updated models from all
the C'Os and aggregates these into a single federated model
(generally by averaging), which it then supplies to all COs for
a new round of training. The M O also decides the termination
criteria for training the model, i.e. it evaluates metrics on the
federated model to determine if the model requires further
training.

In terms of the sequence of operations recorded on
blockchain, models are essentially represented as assets and
an MO uses ‘CreateMod’ to create an instance of the Model
object on blockchain. The model object holds the following
information: Model Owner ID, Model ID, Model Type, Model
URL, Training Method and Model Hash. The model type
specifies the type of AI model (e.g. DT, Neural Network,
etc.,). Model URL points to the current version of the model
that is obtained after certain number of rounds of training.
The training method specifies parameters related to how the
training has to be performed by each CO The hash value field
holds the hash declared by a C'O after a round of training.
This is used for verification by the MO when it downloads
the trained models for aggregation.

An MO expresses intent to develop and train a model by
creating a T'C' object in the blockchain using the smart contract
‘Request TC’. It mentions the dataset and the model object
while creating the T'C. The ‘status‘ field in the T'C' object
tracks the different phases of training. A notification is raised
by the blockchain when a T'C' is created, which notifies the
DO that a model owner wishes to train on the dataset. The
DO then uses the ‘ApproveTC’ transaction to approve the
model training by setting the status field to “APPROVED”.
This allows the DO to verify if the same MO has submitted
multiple prior requests and approve model training. An asset
called Train Job (7'J) is created by the same transaction used
by the DO to approve the T'C' for tracking the progress of
individual jobs (training of each of the datasets). Therefore,
for each C'I there exists a corresponding 7'J.

Randomization of PPDS. The training begins with an MO
invoking the ‘StartRound (SR)’ smart contract transaction.
The SR transaction takes as input the 7°C' and identifies the
dataset (and eventually PPDS) that can be used for training
the model in that round. While federated learning in general
allows training on all the PPDS held by different C'Os, our
solution uses a random set of PPDS during each round of



training. For the chosen PPDS all the replicated units are
considered. A random selection of PPDS for each round of
training ensures that M Os cannot deduce any meaningful
information about the data held by C'Os using the partially
trained models obtained after each round. However, training
over multiple rounds ensures that all the PPDS are eventually
utilized for training. At the end of SR, blockchain raises
notification for each C'O whose PPDS and replicated units
has been selected for that round.

The COs listens for events published on the blockchain.
If a notification corresponding to the start round transaction
arrives with T'C' ID associated with a C'O, the corresponding
CO participates in a round of training. The CO examines
the model object provided in the T'C' to obtain information
about the model and the associated training method. The URL
for the training program is encrypted with the keys provided
in the training file. The CO downloads the training program
and starts training. The trained models are stored in specific
object stores. The location of the trained model is signed
using the public key provided by MO in training file. The T'.J
is updated with the hash value of the model and encrypted
model location using the smart transaction ‘UpdateT]’. The
rem field in the T'C is used to track whether all C'O’s have
updated their respective 7'.Js. When the rem matches the total
number of PPDS selected, the M O is notified that the training
is completed.

Training consensus. As explained in the previous section, a
malicious CO may provide a model that is not accurately
trained in order to save GPU resources. The consensus across
models trained on replicated data subsets helps avoid this
problem. For each PPDS, there exists a set of replication
subsets held by other C'Os. Therefore the MO can check
the contents stored in blockchain and verify whether the
models trained on replicated subsets yield the same hash
values. Incase the hash values are different, then the trained
model corresponding to a data subset is obtained via consensus
across the respective replicated subsets. This cross validation
of models across C'Os ensures that training on PPDS is valid
and that C'Os do not maliciously declare that they have trained
a model without actually training it accurately.

The MO listens for notifications about round completion
(i.e. when rem matches the number of PPDS that has updated
the T'.J) and upon receiving downloads the individually trained
models uploaded by the COs on cloud object storage. The
MO uses its key to decrypt the URL (encrypted by the CO
using the key available in the training file that belongs to the
MO). After downloading the model file, it computes the hash
value and compares it with the hash value reported by the CO
to ensure that the version the C'O claims to have uploaded is
the same as the one downloaded by MO.

After successfully downloading all the models trained by
respective COs, the MO aggregates these into a single fed-
erated model and evaluates metrics on the model. Based on
the metrics, the MO can invoke the SR again and continue
to perform the training process or terminate the training.

D. Trusted Verifiability of Participant actions

This section shows how the actions of any participant can

be verified using transactions stored on the blockchain.
How does MO verify that CO has the dataset that it is
claiming to have? In our system, a dataset is split across
multiple COs and each data subset is also replicated across
multiple COs. Thus multiple CIs exist for the same data
subset. When a data subset is used for training, all copies
of the same data subset is used for training (albeit in different

CO). Each C1I will have the hash value of its data subset. A
consensus is used to check if the result reported by the CO
owning the same subset are same. For example, consider a
data subset replicated across 5 C'Os. Thus all C'Os will train
on the same data subset. A consensus on correct training can
be set to verify the output from at least two COs. The MO
can wait for the response from 2 C'Os and verify the model.
If the models match, then the data subset that C'O claims to
have is correct.

How can we ensure that 2 COs having same data subset do
not copy each others hash? In the setting where a data subset
is replicated among multiple C'Os, one C'O can copy the hash
of a data subset to its C'I and falsely claim to have a copy
of the data subset. To avoid this, each CO computes the hash
on the data subset appended by a nonce, before publishing its
hash. It also publishes the nonce used in the C'I. Therefore
a DO can verify if any two COs reported the same hash or
not.

How does CO ensure that DO has given it the correct
dataset?

In order to establish that it has not received a bad data

subset or an in-correct one (in case a DO colludes with another
CO), a CO can verify the hashes uploaded by other COs
that have the same subset. To identify same subsets, the CO
computes the hash of the data it has and compare it with others.
It adds the nonce declared by another C'O to its data subset
and recalculates the hash on its subset. If the hash matches
with the one uploaded by the C'O whose nonce was used,
then it is likely that both COs were given the same subset
of the dataset. Thus, a C'O can cross verify whether it has
received the correct data subset from a DO.
How does DO verify that CO has got the correct dataset?
The CO upon receiving a data subset updates the CI with
the hash of its subset along with the nonce information. DO
recomputes the hash along with the nonce of the C'O and
verifies if both match and sets the status to “VERIFY’. Only
the DO is provided permission to update the C'I.

How does an MO ensure that the partially trained model
uploaded by the CO is the same that it has downloaded? A
CO trains the model received from a MO on its data subset.
Once the training is over, the CO updates the T'J with the
hash of the model. Since several C'Os posses the same data
subset, a malicious C'O can copy the hash value of the model
provided by a CO that actually spends resources to train a
model. In order to avoid this, a nonce is added by a C'O to the
model before computing its hash. When the model url becomes
available, the MO downloads the model and computes the



hash by appending the nonce provided in the 7'J. It the hashes
match, then the model uploaded by the C'O is the same as the
one it has downloaded.

How does MO ensure that CO simply doesn’t copy the
hash from another CO having same data subset? A CO
adds a nonce to model to compute the hash and no two COs
can declare the same nonce. Therefore if a CO copies the hash
computed by another CO, then MO can recompute the hash
by using the model uploaded by C'O and the nonce declared
by it. If the hashes match then the model uploaded by the CO
is same as the one it has declared.

How does DO ensure that the MO doesn’t control which
data subsets will be used in a training round? The data
distributed to the C'Os is recorded in the blockchain through
the CI. In this case, an MO can easily query the blockchain
and get the list of C'Is and attempt to identify the distribution
of the data subsets. In our system, the selection of COs
to execute model training in each round is performed by
the blockchain through a chaincode function ‘start Round’.
Although invoked by the MO, this chaincode function which
holds the logic of picking up a random subset of COs to
conduct a round of training, is carried out by the underlying
blockchain which is completely agnostic of the M O. This is
also one of the advantages of using a blockchain.

How does DO ensure that MO cannot access the data
shared with CO? The COs hold the data subsets and can
therefore collude with a MO to share the data. If a subset of
COs collude with the MO, the MO can gain access to a part
of the dataset, in which case the data may be compromised
and the ownership is lost. However this is not possible since
the MO only has access to the blockchain and does not know
the identity of any C'Os. Each CO is effectively represented
as a random hash value in the blockchain. Therefore, an MO
does not obtain access to the actual identify or location of the
CO.

III. EXPERIMENTS, OBSERVATION AND RESULTS

We have implemented our system - 15 transactions in all,
using chain code functions. Using these transactions one can
perform all operations of the protocol and complete model
training activities. We have evaluated the protocol for two
important metrics: latency and throughput, typical of dis-
tributed systems that require scalability. Our experiments were
performed with permissioned blockchain network (Hypledger
fabric version 1.2.0-rc1) components deployed as Docker con-
tainers running atop Soft-Layer [18] servers. Each component
was provisioned a separate server with 32 cores, 64GB RAM
and ran Ubuntul6.04. We use Hyperledger Caliper (or Caliper)
[19] as the benchmarking tool. Caliper allows users to measure
the performance of a blockchain implementation with a set
of predefined use cases and produces reports containing a
number of performance indicators, such as tps (Transactions
Per Second), transaction latency, etc.

All our experiments use standard default settings of con-
figuration parameters that comes with the Fabric. This is to
emulate the general behavior of the blockchain and one can
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Fig. 4: Tlustration of a blockchain network used to study
performance of our protocol. The number of peers shown in
the picture is only for illustration and in reality is scaled upto
24 in each location.

expect better responses in optimized settings. The block size
for all our experiments was 500 and the block timeout was
Is. The default block formation policy was considered as
2:3:1. The transaction submission rate were 500tps,1000tps
and 1500tps. We have tried with other higher transaction rates,
but the metrics felt sharply down. We ran each experiment 30
times and in each run a total of 100,000 transactions were
submitted. We report the average across all the runs.

Peers in the blockchain were setup in different locations to
faithfully reproduce experiments closer to real world scenarios.
We had considered upto 24 peers in each location and 2 data
center (DC) locations viz., San Jose and London. Experiments
were conducted with nodes located within a Data center
(Single DC) or across data center locations (2 DC setup). In
the 2 DC setup we have two configurations. One where the geo
locations were San Jose 1 and San Jose 2 and another where
peers are distributed between between San Jose 1 and London
geographies. The number of peers were equally distributed
between two locations. For example, in a 4 peer network 2
DC setup- 2 peers are located in San Jose location and 2 peers
are located in London. Figure |4 illustrates the network setup
used in our experiments in different locations. We have one
orderer and one client both in the San Jose location.

A. Effect of Increasing number of Peers

We study the effect of increasing peers in a single DC
and 2 DC setup. Figure [5] and Figure [6] shows the different
transactions per second and latencies observed with increasing
number of peers in a 2 DC setup.
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Fig. 5: Effect on Throughput with increasing peer sizes dis-
tributed across 2 geographically distributed data centers.



Transaction Latency for various Peer Sizes in 2 DC setup
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Fig. 6: Effect on Latency with increasing number of peers
distributed across 2 geographically distributed data centers

Our experimental results indicates that the throughput falls
by about 1.5 times when the number of peers are doubled.
For instance, increasing the peers from 4 to 6 reduces the
average throughput by about 30% compared to a 4-peer
configuration. While this is expected due to the endorsement
times and varying queue sizes, the result is also due to the large
ping latencies observed acorss the machines in these different
locations.

Latency is measured end-to-end, from the time of submitting
a call to the blockchain to the time it was committed to the
ledger by the peers. Figure [6] shows the average latencies
computed for different peer configurations. With increase in
peer size spread across even 2 different locations the latency
increases by about 4-6 times. Our measurements of the ping
times between the client and different peers in different loca-
tions show that the ping latencies vary in the range of 300ms to
3s. As blockchain peers have to communicate with the client
during the endorsement and commit phases, communication
costs play a significant role in latencies on blockchain. With
high network speeds one can expect the latencies to reduce,
however latency has a significant impact on the throughput.

B. Effect of Send Rates

We measure the effects of varying Send Rates. Send Rate
emulates different loads that each peer gets from their clients.
We experiment with three different send rate 500tps, 1000tps,
1500tps and observe the throughput and latencies of the
blockchain system. We have tried experiments with higher
send rates but the throughput falls sharply and therefore pivot
our observations around these numbers.
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Figure [/| shows the observed throughput averaged over all
transactions for varying peer sizes. As our objective was to
measure the ‘limit’ of the blockchain to handle incoming rates
(i.e. incoming rate handled by blockchain without drop in
throughput), we average the rate over 30 different rounds for
all transactions. In the Figure ‘SR-TP’ shows the gap between
the throughput and the ‘send rate’. It can be seen that the
blockchain can scale effortlessly for send rate of 1000tps and
falls sharply for 1500tps. The sharp fall is due to the fact that
as peers increase, time to endorse and commit also increases
significantly reducing the throughput rates.

Given these throughput rates we try to answer the question
about the number of model trainings that our system can
support. Considering a single DO, CO and MO training a
data set it takes about 15 transactions to complete the entire
model training. It does not include the model training time
which is done by the cloud owners and not by the blockchain.
On average about 950 transactions are supported (4 DC being
the best) for ‘send rate’ of 1000. This implies that about 65
model trainings per second could be supported easily without
additional optimization. Compared to both existing networks
like Bitcoin [20] that supports roughly 7tps and number of
models reported by current online systems [9] (about 200
models a month) our system is well equipped to scale for
large scale model training.

Figure [8| shows the average latency (for all transactions)
for different send rates. Latency increases sharply when the
transaction ‘send rate’ is more than 1000 tps. This is due to
increase in number of transactions within the blockchain. The
blockchain components (such as orderer and endorsers) slow
down, spending their time in book keeping of records. Further,
the queue sizes for the orderer increase as the transaction
input rate increases. Transactions spend time in the kafka
queue (queue within the orderer of blockchain that stores the
transactions for making blocks) before getting committed. This
blockchain setup can support approximately 1000 tps after
which the latency increases sharply.

C. Transactionwise comparisons

We study transaction wise impact due to increasing peers
and different send rates. Figure E] (a) shows the different
throughput for each smart contract in the solution. Similarly,



latency for all transactions across two different network set-
tings (1-DC and 2-DC) is presented in Figure [9] (b).

All smart contracts follow the similar trend in the number
of transactions observed for a particular peer distribution. The
best observed case is one of 4 peers in a single DC which can
support up to 1000(tps). The throughput reduces significantly
for the 24 peer network spread across 2 DCs. As mentioned
earlier this reduction is due to the ping times observed between
the peers and the client. In short, individual transactions have
similar throughput or latencies. This is key to the design as
no single API would block or create undue delays in the
transaction execution leading to a bottleneck.

The average time taken to finish all the 15 transactions is
about 15s in a 4 peer 1-DC setup. Thus, for a model trained
the total time spent on the blockchain is roughly 15 seconds.
This time, compared to the actual model training time which
can span hundreds of minutes is insignificant compared to the
benefits obtained.

D. Comparison to centralized transaction system

We have also performed experiments considering an alter-
native centralized system that can provide similar functionality
using a traditional database. Operations in the blockchain
are mapped to either insert operations (where information
is recorded) and procedural sql (where logic is available)
in database. For the experiments, we use single node open
source database Postgres [21] setup and use Pgbench [22]
to perform the experiments. Pgbench reports about 2000-
3600 tps for a send rate of 100K transactions using 8 clients
and each client generating workload using 8 threads. The
latency as observed using Pgbench ranges from 700-3000
ms (including the connection time). These observations are
on a highly optimized single node transaction systems and
accommodates roughly twice the number of transactions than
the proposed blockchain system. However, trust is left to the
external intermediaries. Our system at a reasonable drop in
transactions compared to well optimized Postgres provides
inherent trust and outweighs the costs involved.

In summary, we see that the proposed protocol can scale
efficiently for training large number of Al applications (sup-
porting 1000tps in a 4-DC setup, equivalent to 65-70 models
trainings per second). A model training using our system
introduces approximately 15s of delay which remains insignif-
icant compared to the large time scales involved in training
Al applications. Even when compared to traditional database
systems that provide similar functionality, the performance
levels are comparable, thus enabling an affordable system that
ensures privacy and ownership of Al assets in an otherwise
trustless environment.

IV. RELATED WORK

Our system can be contrasted against prior frameworks for
Al marketplaces along the dimensions of design, privacy and
data leaks.

Kaggle [9] is one of the earliest centralized ventures, which
provides a marketplace platform for data owners and model

developers to collaborate. However both data and models are
publicly available to participants. In our distributed design,
data and models are maintained by individual stakeholders
while blockchain ensures transparent execution of training of
models on data. Moreover the design relieves blockchain peers
from performing Al training related operations, which enables
plug-and-play of our system over any blockchain network.

SkyChain [17]] solution is specific to medical Al services.
Both model and datasets are uploaded to the SkyChain
database and SkyChain provides the infrastructure to train
the model. Data and models being core Al assets in the
marketplace, one would expect their value and monetary
benefits to grow with every usage. [23] is a blockchain based
decentralized database for storing personal data in encrypted
fashion. Buyers can pay DAT tokens to buy the "Keys” to
the datasets. However, these marketplaces expose either the
data or model or both to the participants, resulting in loss
of value over time. Ocean protocol [8] is another blockchain
based Al marketplace and uses a reputation based system to
remove fake Data and dishonest participants for the systems.
Our system can operate across multiple administrative domains
providing complete privacy and ownership of Al assets. With
every application using the data or model, our platform has
the potential to provide monetary benefits to all stakeholders.
Droplet [24] operates using token transfer. Data is encrypted
using symmetric encryption. However the data is exposed
to services that perform training and is therefore prone to
leakages.

Closest to our work is the Danku protocol [[7] proposed by
Algorithmia, which enables the operation of an Al marketplace
wherein blockchain peers are utilized for both training and
data storage. However, multiple peers execute the training of
the same model by downloading data, leading to redundant
computation and storage utilization. OpenMined [25] focusses
on exposing data from end users who own very small amount
of data. Our solution allows large data sets to be trained
without relying on the data owners to provide computational
resources. Computable labs [26] is yet another Al marketplace
that trains models, however the data is completely exposed to
the buyers who can potentially leak the data to other buyers.
Our approach employs lightweight solution where the assets
are stored off-chain. The blockchain peers are not overloaded
with the training or storage tasks. In [[7], with the increase
in the number of training jobs, peers would spend significant
amount of time in training, which renders it inefficient for
large data sets or training that requires longer durations. Our
unique proposition is to guarantee complete ownership of data
and models without exposing them to any participants in the
system.

V. CONCLUSIONS

Lack of data and model privacy leading to the subsequent
loss of value and ownership have impeded the growth of both
centralized and decentralized Al marketplaces. We present a
novel mechanism for protecting the privacy and ownership of
assets in a decentralized and trustless Al marketplace using
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blockchain. Our system chaincode functions are set up to
incentivize all participants to truthfully record their actions on
the distributed ledger, so that the underlying blockchain system
holds verifiable evidence of expected behavior, wrongdoing
and dispute resolution. Our implementation using the Hyper-
ledger Fabric shows that our system can support large scale
model training and provides a viable alternative to centralized
Al systems that do not guarantee data or model privacy.

In future, we intend to include more comprehensive algo-
rithms for homomorphic encryptions of models and utilizing
encrypted models in federated learning. We are also working
towards an evaluation mechanism where the stakeholders can
transparently evaluate the models and data and get paid for
their contributions.
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